On Some Stochastic Load Balancing Problems

Anupam Gupta

Carnegie Mellon University

Joint work with
Amit Kumar, IIT Delhi
Viswanath Nagarajan, Michigan
Xiangkun Shen, Michigan

(appeared at SODA 2018)
Optimization under Uncertainty

Question: How to model/solve problems with uncertainty in input/actions?
▶ data not yet available, or obtaining exact data difficult/expensive
▶ actions have uncertainty in outcomes
▶ (my talk) we only have stochastic predictions
Optimization under Uncertainty

Question: How to model/solve problems with uncertainty in input/actions?
- data not yet available, or obtaining exact data difficult/expensive
- actions have uncertainty in outcomes
- (my talk) we only have stochastic predictions

Goal: get algos making (near)-optimal decisions given predictions.
Optimization under Uncertainty

Question: How to model/solve problems with uncertainty in input/actions?
- data not yet available, or obtaining exact data difficult/expensive
- actions have uncertainty in outcomes
- (my talk) we only have *stochastic* predictions

Goal: get algos making (near)-optimal decisions given predictions.

- worst-case analysis (vs. queueing perspective, cf. Mor’s talk)
 - Relate to performance of best strategy *on worst-case instance*
Optimization under Uncertainty

Question: How to model/solve problems with uncertainty in input/actions?
 ▶ data not yet available, or obtaining exact data difficult/expensive
 ▶ actions have uncertainty in outcomes
 ▶ (my talk) we only have stochastic predictions

Goal: get algos making (near)-optimal decisions given predictions.

- worst-case analysis (vs. queueing perspective, cf. Mor’s talk)
 ▶ Relate to performance of best strategy on worst-case instance

- given predictions (vs. all-adversarial model as in competitive analysis)
Approximation Algorithms for Stochastic Optimization

- High Level Model:
 - Inputs random variables X_1, X_2, \ldots with known distributions
 - (for today) assume discrete distributions, explicit access to them
High Level Model:
- Inputs random variables X_1, X_2, \ldots with known distributions
- (for today) assume discrete distributions, explicit access to them
- outcomes not known a priori, revealed over time
- want to optimize, say, $\mathbb{E}[\text{objective}]$.
High Level Model:
- Inputs random variables X_1, X_2, \ldots with known distributions
- (for today) assume discrete distributions, explicit access to them
- outcomes not known a priori, revealed over time
- want to optimize, say, $\mathbb{E}[\text{objective}]$.
- many different models
 - e.g., adaptive vs. non-adaptive
 - e.g., single-stage vs. multi-stage
High Level Model:

- Inputs random variables X_1, X_2, \ldots with known distributions
- (for today) assume discrete distributions, explicit access to them
- outcomes not known a priori, revealed over time
- want to optimize, say, $\mathbb{E}[\text{objective}]$.

- many different models
 - e.g., adaptive vs. non-adaptive
 - e.g., single-stage vs. multi-stage

Today: centralized load-balancing problem, minimizing $\mathbb{E}[\text{makespan}]$.
today’s problem
(Classical) Load Balancing Problem

- Schedule n jobs on m machines to minimize makespan.
- Graham list-scheduling from 1966.
(Classical) Load Balancing Problem

- Schedule n jobs on m machines to minimize makespan.
- Graham list-scheduling from 1966.
(Classical) Load Balancing Problem

- Schedule n jobs on m machines to minimize makespan.
- Graham list-scheduling from 1966.
(Classical) Load Balancing Problem

- Schedule n jobs on m machines to minimize \textit{makespan}.
- Graham list-scheduling from 1966.
much work on the deterministic problem

- Simplest Model: Identical machines:
 - List Scheduling: 2-approx [Graham 66], PTAS [Hochbaum, Shmoys 87].
much work on the deterministic problem

- Simplest Model: Identical machines:
 - List Scheduling: 2-approx [Graham 66], PTAS [Hochbaum, Shmoys 87].

- Most General: Unrelated machines:
 - Jobs have different sizes on different machines.
much work on the deterministic problem

- Simplest Model: Identical machines:
 - List Scheduling: 2-approx [Graham 66], PTAS [Hochbaum, Shmoys 87].

- Most General: Unrelated machines:
 - Jobs have different sizes on different machines.
 - 2-approx [Lenstra, Shmoys, Tardos 90], better for special cases.
Stochastic Load Balancing

- Job j on machine i takes on size X_{ij} (r.v. with known distribution)
- Today: these r.v.s are independent
- Find an assignment to minimize expected makespan:

$$
E \left[\max_{i=1}^{m} \sum_{j \in J_i} X_{ij} \right].
$$
Stochastic Load Balancing

- Job j on machine i takes on size X_{ij} (r.v. with known distribution)
- Today: these r.v.s are independent
- Find an assignment to minimize expected makespan:

$$
\mathbb{E}\left[\max_{i=1}^{m} \sum_{j \in J_i} X_{ij} \right].
$$
Stochastic Load Balancing

- Job j on machine i takes on size X_{ij} (r.v. with known distribution)
- Today: these r.v.s are independent
- Find an assignment to minimize expected makespan:

$$
\mathbb{E} \left[\max_{i=1}^{m} \sum_{j \in J_i} X_{ij} \right].
$$
Stochastic Load Balancing

- Job \(j \) on machine \(i \) takes on size \(X_{ij} \) (r.v. with known distribution)
- Today: these r.v.s are independent
- Find an assignment to minimize expected makespan:

\[
E \left[\max_{i=1}^{m} \sum_{j \in J_i} X_{ij} \right].
\]
Stochastic Load Balancing

- Job j on machine i takes on size X_{ij} (r.v. with known distribution)
- Today: these r.v.s are independent
- Find an assignment to minimize expected makespan:
 \[\mathbb{E} \left[\max_{i=1}^{m} \sum_{j \in J_i} X_{ij} \right]. \]
Related Work: Stochastic Job Sizes

- #P-hard to evaluate objective exactly

- $O(1)$-approximation for *identical machines* [Kleinberg, Rabani, Tardos 00].

- Better results for special classes of job size distributions [Goel, Indyk 99].
 - Poisson distributed job sizes: 2-approximation.
 - Exponential distributed job sizes: PTAS.
Related Work: Stochastic Job Sizes

- #P-hard to evaluate objective exactly

- $O(1)$-approximation for identical machines [Kleinberg, Rabani, Tardos 00].
- Better results for special classes of job size distributions [Goel, Indyk 99].
 - Poisson distributed job sizes: 2-approximation.
 - Exponential distributed job sizes: PTAS.

- What about general unrelated case?
Main Result

Theorem

An $O(1)$-approx algo for minimizing $\mathbb{E}[\text{makespan}]$ on unrelated machines.
Roadmap and Assumptions

- Identical machines case
- Ideas needed for unrelated machines (and sketch of proof)
Roadmap and Assumptions

- Identical machines case
- Ideas needed for unrelated machines (and sketch of proof)
- By scaling, assume $\mathbb{E}[OPT_{makespan}] = 1$.
Roadmap and Assumptions

- Identical machines case
- Ideas needed for unrelated machines (and sketch of proof)

By scaling, assume $\mathbb{E}[OPTmakespan] = 1$.

Assume each job is “small”: $\Pr[size > E[OPTmakespan]] = 0$.

- Easy extension to general sizes
Deterministic Surrogate

- Find deterministic quantity as a surrogate for each r.v.
- Do optimization over these deterministic quantities
- Surrogate = expected size?
Deterministic Surrogate

- Find deterministic quantity as a surrogate for each r.v.
- Do optimization over these deterministic quantities
- Surrogate = expected size? (No!)
Deterministic Surrogate

- Find deterministic quantity as a surrogate for each r.v.
- Do optimization over these deterministic quantities
- Surrogate = expected size? \textbf{(No!)}

Bad Example

- Type 1: size 1 (deterministic).
- Type 2: size Bernoulli(0, 1) r.v. with $p = \frac{1}{\sqrt{m}}$.

\[
m - \sqrt{m} \text{ jobs: expectation 1}
\]
\[
m \text{ jobs: expectation } \frac{1}{\sqrt{m}}
\]
\[
m \text{ machines}
\]
Deterministic Surrogate

- Find deterministic quantity as a surrogate for each r.v.
- Do optimization over these deterministic quantities
- Surrogate = expected size? \textbf{(No!)}

Bad Example

- **Type 1**: size 1 (deterministic).
- **Type 2**: size Bernoulli(0, 1) r.v. with \(p = \frac{1}{\sqrt{m}} \).

\[E[mkspan] = \log m \]
Deterministic Surrogate

- Find deterministic quantity as a surrogate for each r.v.
- Do optimization over these deterministic quantities
- Surrogate = expected size? (No!)

Bad Example

- Type 1: size 1 (deterministic).
- Type 2: size Bernoulli(0, 1) r.v. with $p = \frac{1}{\sqrt{m}}$.

$m - \sqrt{m}$ machines

\sqrt{m} machines

$E[\text{mkspan}] = \frac{\log m}{\log \log m}$
Deterministic Surrogate

- Find deterministic quantity as a surrogate for each r.v.
- Do optimization over these deterministic quantities
- Surrogate = expected size? (No!)

Bad Example

- Type 1: size 1 (deterministic).
- Type 2: size Bernoulli(0, 1) r.v. with \(p = \frac{1}{\sqrt{m}} \).

\[
E[\text{mkspan}] = \frac{\log m}{\log \log m}
\]
Deterministic Surrogate

- Find deterministic quantity as a surrogate for each r.v.
- Do optimization over these deterministic quantities
- Surrogate = expected size? (No!)

Bad Example

- **Type 1**: size 1 (deterministic).
- **Type 2**: size Bernoulli(0, 1) r.v. with \(p = \frac{1}{\sqrt{m}} \).

\[
\begin{align*}
E[\text{mkspan}] &\leq 2 \\
E[\text{mkspan}] &\leq 2
\end{align*}
\]

\[
\begin{align*}
E[\text{mkspan}] &= \frac{\log m}{\log \log m} \\
E[\text{mkspan}] &= \frac{\log m}{\log \log m}
\end{align*}
\]
Our Chief Weapon: Effective Size
Effective Size

For any random variable X and parameter $k > 1$, define

$$\beta_k(X) := \frac{1}{\log k} \cdot \log \mathbb{E}[e^{\log k \cdot X}].$$
Effective Size

For any random variable X and parameter $k > 1$, define

$$\beta_k(X) := \frac{1}{\log k} \cdot \log \mathbb{E}\left[e^{\log k \cdot X}\right] = \frac{1}{\log k} \cdot \log \mathbb{E}\left[k^X\right].$$
Effective Size

For any random variable X and parameter $k > 1$, define

$$\beta_k(X) := \frac{1}{\log k} \cdot \log \mathbf{E}[e^{\log k \cdot X}] = \frac{1}{\log k} \cdot \log \mathbf{E}[k^X].$$

- E.g., $X = C$ w.p. 1, then $\beta_k(X) = C$.
Effective Size

For any random variable X and parameter $k > 1$, define

$$\beta_k(X) := \frac{1}{\log k} \cdot \log \mathbb{E}[e^{\log k \cdot X}] = \frac{1}{\log k} \cdot \log \mathbb{E}[k^X].$$

- E.g., $X = C$ w.p. 1, then $\beta_k(X) = C$.
- E.g., $X =\text{Bernoulli}(1/\sqrt{k})$, then $\beta_k(X) = \frac{\log(1/\sqrt{k} \cdot k^1 + (1-1/\sqrt{k}) \cdot k^0)}{\log k} \geq 1/2$.

[Hui 88] [Elwalid, Mitra 93] [Kelly 96]
Effective Size

For any random variable X and parameter $k > 1$, define

\[
\beta_k(X) := \frac{1}{\log k} \cdot \log \mathbb{E} \left[e^{\log k \cdot X} \right] = \frac{1}{\log k} \cdot \log \mathbb{E} \left[k^X \right].
\]

- E.g., $X = C$ w.p. 1, then $\beta_k(X) = C$.
- E.g., $X = \text{Bernoulli}(1/\sqrt{k})$, then $\beta_k(X) = \frac{\log(1/\sqrt{k} \cdot k^1 + (1 - 1/\sqrt{k}) \cdot k^0)}{\log k} \geq 1/2$.
- Increasing function of k
Effective Size

For any random variable X and parameter $k > 1$, define

$$
\text{effective size } \beta_k(X) := \frac{1}{\log k} \cdot \log \mathbb{E} \left[e^{\log k \cdot X} \right].
$$

$m - \sqrt{m}$ jobs: size (deterministic) 1

m jobs: size Bernoulli r.v. (0, 1) w.p. $\frac{1}{\sqrt{m}}$

m machines
Effective Size

For any random variable X and parameter $k > 1$, define

\[
\text{effective size} \quad \beta_k(X) := \frac{1}{\log k} \cdot \log \mathbb{E} \left[e^{\log k \cdot X} \right].
\]
Effective Size

For any random variable X and parameter $k > 1$, define

$$\text{effective size } \beta_k(X) := \frac{1}{\log k} \cdot \log \mathbb{E} [e^{\log k \cdot X}].$$

- $m - \sqrt{m}$ jobs: size (deterministic) 1
- m jobs: size Bernoulli r.v. $(0, 1)$ w.p. $\frac{1}{\sqrt{m}}$
- \sqrt{m} machines
- Effective size load: $O(\sqrt{m})$
Effective Size

For any random variable X and parameter $k > 1$, define

$$\text{effective size } \beta_k(X) := \frac{1}{\log k} \cdot \log \mathbb{E} \left[e^{\log k \cdot X} \right].$$
Effective Size

For any random variable X and parameter $k > 1$, define

$$\beta_k(X) := \frac{1}{\log k} \cdot \log \mathbb{E}[e^{\log k \cdot X}] .$$
Effective Size

For any random variable X and parameter $k > 1$, define

$$\beta_k(X) := \frac{1}{\log k} \cdot \log \mathbb{E} \left[e^{\log k \cdot X} \right].$$

- [KRT’00] For identical machines, set $k = m$:

- [KRT’00] Union bound over all machines.

- Hence $O(1)$-approximation.
Effective Size

For any random variable X and parameter $k > 1$, define

$$\text{effective size } \beta_k(X) := \frac{1}{\log k} \cdot \log \mathbb{E} \left[e^{\log k \cdot X} \right].$$

[KRT’00] For identical machines, set $k = m$:

- total β_m summed over all jobs $\geq m \implies$ expected OPT $= \Omega(1)$.
Effective Size

For any random variable X and parameter $k > 1$, define

$$
\text{effective size} \quad \beta_k(X) := \frac{1}{\log k} \cdot \log \mathbb{E}[e^{\log k \cdot X}].
$$

- [KRT’00] For indentical machines, set $k = m$:
 - total β_m summed over all jobs $\geq m$ \Rightarrow expected OPT $= \Omega(1)$.
 - β_m for jobs on each machine ≤ 1 \Rightarrow expected makespan $= O(1)$.
Effective Size

For any random variable X and parameter $k > 1$, define

$$\text{effective size } \beta_k(X) := \frac{1}{\log k} \cdot \log \mathbb{E}[e^{\log k \cdot X}].$$

- [KRT'00] For identical machines, set $k = m$:
 - total β_m summed over all jobs $\geq m \Rightarrow$ expected OPT $= \Omega(1)$.
 - β_m for jobs on each machine $\leq 1 \Rightarrow$ expected makespan $= O(1)$.
 - $\Pr[\text{one machine load } \geq 1 + c] \leq (1/m)^c$. (next slide.)
 - union bound over all machines.
Effective Size

For any random variable X and parameter $k > 1$, define

$$\beta_k(X) := \frac{1}{\log k} \cdot \log \mathbb{E}[e^{\log k \cdot X}].$$

[KRT’00] For identical machines, set $k = m$:

- total β_m summed over all jobs $\geq m \Rightarrow$ expected OPT $= \Omega(1)$.

- β_m for jobs on each machine $\leq 1 \Rightarrow$ expected makespan $= O(1)$.

 - $\Pr[\text{one machine load } \geq 1 + c] \leq (1/m)^c$. (next slide.)
 - union bound over all machines.

- Hence $O(1)$-approximation.
Lemma (Upper Bound)

For indep. r.v.s Y_1, \ldots, Y_n, if $\sum_i \beta_k(Y_i) \leq 1$ then $\Pr[\sum_i Y_i \geq 1 + c] \leq \frac{1}{kc}$.
Lemma (Upper Bound)

For indep. r.v.s Y_1, \ldots, Y_n, if $\sum_i \beta_k(Y_i) \leq 1$ then $\Pr[\sum_i Y_i \geq 1 + c] \leq \frac{1}{kc}$.

\[
\Pr[\sum_i Y_i \geq 1 + c] = \Pr[e^{(\log k) \sum_i Y_i} \geq e^{(\log k)(1+c)}] \leq \frac{\mathbb{E}[e^{(\log k) \sum_i Y_i}]}{e^{(\log k)(1+c)}}
\]
\[
= \prod_i \mathbb{E}[e^{(\log k) Y_i}] \frac{1}{e^{(\log k)(1+c)}}
\]
Lemma (Upper Bound)

For indep. r.v.s Y_1, \ldots, Y_n, if $\sum_i \beta_k(Y_i) \leq 1$ then $\Pr[\sum_i Y_i \geq 1 + c] \leq \frac{1}{k^c}$.

\[
\Pr[\sum_i Y_i \geq 1 + c] = \Pr[e^{(\log k) \sum_i Y_i} \geq e^{(\log k)(1+c)}] \leq \frac{\mathbb{E}[e^{(\log k) \sum_i Y_i}]}{e^{(\log k)(1+c)}}
\]

\[
= \prod_i \frac{\mathbb{E}[e^{(\log k) Y_i}]}{e^{(\log k)(1+c)}}
\]

Taking logarithms,

\[
\log \Pr[\sum_i Y_i \geq 1 + c] \leq (\log k) \cdot \left[\sum_i \beta_p(Y_i) - (1 + c) \right] \leq (\log k) \cdot (-c).
\]
Effective size for Unrelated Machines Setting
Effective Size: Unrelated Machines

- Must use different k for different kinds of jobs. (Fixed k fails.)
Effective Size: Unrelated Machines

- Must use different k for different kinds of jobs. (Fixed k fails.)

All jobs have size $\sim (0, 1)$ Bernoulli r.v. with $p = \frac{1}{\sqrt{m}}$.

- **Type 1**: can only be assigned to the first machine.
- **Type 2**: can be assigned to any machine.
Effective Size: Unrelated Machines

- Must use different k for different kinds of jobs. (Fixed k fails.)

All jobs have size $\sim (0, 1)$ Bernoulli r.v. with $p = \frac{1}{\sqrt{m}}$.

- **Type 1**: can only be assigned to the first machine.
- **Type 2**: can be assigned to any machine.
Effective Size: Unrelated Machines

- Must use different k for different kinds of jobs. (Fixed k fails.)

All jobs have size $\sim (0, 1)$ Bernoulli r.v. with $p = \frac{1}{\sqrt{m}}$.

- **Type 1**: can only be assigned to the first machine.
- **Type 2**: can be assigned to any machine.

\[
\begin{align*}
\sqrt{m} & \text{ jobs: effective size } \theta \\
m & \text{ jobs: effective size } \theta \\
\end{align*}
\]
Effective Size: Unrelated Machines

- Must use different k for different kinds of jobs. (Fixed k fails.)

All jobs have size $\sim (0, 1)$ Bernoulli r.v. with $p = \frac{1}{\sqrt{m}}$.

- **Type 1**: can only be assigned to the first machine.
- **Type 2**: can be assigned to any machine.

\[E[\text{mkspan}] = \frac{\log m}{\log \log m} \]
Effective Size: Unrelated Machines

- Must use different k for different kinds of jobs. (Fixed k fails.)

All jobs have size $\sim (0, 1)$ Bernoulli r.v. with $p = \frac{1}{\sqrt{m}}$.

- **Type 1**: can only be assigned to the first machine.
- **Type 2**: can be assigned to any machine.

\[E[\text{mkspan}] = 1 + \frac{1}{e} \]

\[E[\text{mkspan}] = \frac{\log m}{\log \log m} \]
Our Solution for Unrelated Machines
Our Approach

1. valid inequalities using effective size.

2. (large) LP relaxation.

3. Rounding algorithm.
Valid Inequalities

Lemma (New Valid Inequalities)

If assignment satisfies $E \left[\max_{i=1}^{m} \sum_{j \in J_i} X_{ij} \right] \leq 1$, then

$$\sum_{i \in K} \sum_{j \in J_i} \beta_{|K|}(X_{ij}) \leq O(|K|) \quad \forall K \subseteq [m].$$
LP Relaxation (cont’d)

- Solve the LP using separation oracle = sorting.
LP Relaxation (cont’d)

- Solve the LP using separation oracle = sorting.
 - LP infeasible \implies optimal expected makespan > 1.
 - Contrapositive to above lemma.
 - LP feasible \implies round fractional solution to satisfy subset of constraints
 - Suffice to bound $E[\text{makespan}]$, show next.
LP Relaxation (cont’d)

- Solve the LP using separation oracle = sorting.
 - LP infeasible \implies optimal expected makespan > 1.
 * Contrapositive to above lemma.
 - LP feasible \implies round fractional solution to satisfy subset of constraints
 * Suffice to bound $E[\text{makespan}]$, show next.

- Construct instance of unrelated machines problem

- Use rounding from [Lenstra, Shmoys, Tardos 92], [Shmoys, Tardos 93].
Valid Inequalities

Lemma (New Valid Inequalities)

If assignment satisfies $\mathbb{E} \left[\max_{i=1}^{m} \sum_{j \in J_i} X_{ij} \right] \leq 1$, then

$$\sum_{i \in K} \sum_{j \in J_i} \beta_{|K|}(X_{ij}) \leq O(|K|) \quad \forall K \subseteq [m].$$
“Pre-Rounding” Algorithm

1. remaining machines $L \leftarrow [m]$, $\ell = |L|$.
2. while $\ell > 0$:
 1. “class ℓ machines: $L' \leftarrow \{i \in L : z_i(\ell) \leq 1\}$.
 2. $p_{ij} \leftarrow \beta_\ell(X_{ij})$ for machines $i \in L'$, all jobs.
 3. $L \leftarrow L \setminus L'$ and $\ell = |L|$.

\[
\sum_{i \in K} \beta_{|K|}(X_{ij}) \cdot y_{ij} \leq |K|, \quad \forall K \subseteq [m]
\]
“Pre-Rounding” Algorithm

1. remaining machines $L \leftarrow [m]$, $\ell = |L|$.
2. while $\ell > 0$:
 1. “class ℓ machines: $L' \leftarrow \{i \in L : z_i(\ell) \leq 1\}$.
 2. $p_{ij} \leftarrow \beta_{\ell}(X_{ij})$ for machines $i \in L'$, all jobs.
 3. $L \leftarrow L \setminus L'$ and $\ell = |L|$.

\[
\sum_{i \in K} \beta_{|K|}(X_{ij}) \cdot y_{ij} \leq |K|, \quad \forall K \subseteq [m]
\]
“Pre-Rounding” Algorithm

1. remaining machines $L \leftarrow [m]$, $\ell = |L|$.
2. while $\ell > 0$:
 1. “class ℓ machines: $L' \leftarrow \{i \in L : z_i(\ell) \leq 1\}$.
 2. $p_{ij} \leftarrow \beta_\ell(X_{ij})$ for machines $i \in L'$, all jobs.
 3. $L \leftarrow L \setminus L'$ and $\ell = |L|$.

$$\sum_{i \in K} \beta_{|K|}(X_{ij}) \cdot y_{ij} \leq |K|, \quad \forall K \subseteq [m]$$
“Pre-Rounding” Algorithm

1. remaining machines $L \leftarrow [m]$, $\ell = |L|$.

2. while $\ell > 0$:

 1. “class ℓ machines: $L' \leftarrow \{i \in L : z_i(\ell) \leq 1\}$.

 2. $p_{ij} \leftarrow \beta_\ell(X_{ij})$ for machines $i \in L'$, all jobs.

 3. $L \leftarrow L \setminus L'$ and $\ell = |L|$.

\[
p_{i,j} \leftarrow \beta_5(T_{i,j})
\]

\[
\sum_{i \in K} \beta_{|K|}(X_{ij}) \cdot y_{ij} \leq |K|, \quad \forall K \subseteq [m]
\]
“Pre-Rounding” Algorithm

1. remaining machines $L \leftarrow [m]$, $\ell = |L|$.
2. while $\ell > 0$:
 1. “class ℓ machines: $L' \leftarrow \{i \in L : z_i(\ell) \leq 1\}$.
 2. $p_{ij} \leftarrow \beta_{\ell}(X_{ij})$ for machines $i \in L'$, all jobs.
 3. $L \leftarrow L \setminus L'$ and $\ell = |L|$.

$\sum_{i \in K} \beta_{|K|}(X_{ij}) \cdot y_{ij} \leq |K|, \quad \forall K \subseteq [m]$
“Pre-Rounding” Algorithm

1. remaining machines \(L \leftarrow [m], \ell = |L| \).
2. while \(\ell > 0 \):
 1. “class \(\ell \) machines: \(L' \leftarrow \{i \in L : z_i(\ell) \leq 1\} \).
 2. \(p_{ij} \leftarrow \beta_\ell(X_{ij}) \) for machines \(i \in L' \), all jobs.
 3. \(L \leftarrow L \setminus L' \) and \(\ell = |L| \).

\[
\sum_{i \in K} \beta_{|K|}(X_{ij}) \cdot y_{ij} \leq |K|, \quad \forall K \subseteq [m]
\]
“Pre-Rounding” Algorithm

1. remaining machines $L \leftarrow [m]$, $\ell = |L|$.
2. while $\ell > 0$:
 1. “class ℓ machines: $L' \leftarrow \{i \in L : z_i(\ell) \leq 1\}$.
 2. $p_{ij} \leftarrow \beta_\ell(X_{ij})$ for machines $i \in L'$, all jobs.
 3. $L \leftarrow L \setminus L'$ and $\ell = |L|$.

$\sum_{i \in K} \beta_{|K|}(X_{ij}) \cdot y_{ij} \leq |K|, \quad \forall K \subseteq [m]$
“Pre-Rounding” Algorithm

1. remaining machines \(L \leftarrow [m], \ell = |L|. \)
2. while \(\ell > 0 \):
 1. “class \(\ell \) machines: \(L' \leftarrow \{ i \in L : z_i(\ell) \leq 1 \} \).
 2. \(p_{ij} \leftarrow \beta_\ell(X_{ij}) \) for machines \(i \in L' \), all jobs.
 3. \(L \leftarrow L \setminus L' \) and \(\ell = |L| \).

\[
\sum_{i \in K} \beta_{|K|}(X_{ij}) \cdot y_{ij} \leq |K|, \quad \forall K \subseteq [m]
\]
“Pre-Rounding” Algorithm

1. remaining machines $L \leftarrow [m]$, $\ell = |L|$.

2. while $\ell > 0$:

 1. “class ℓ machines: $L' \leftarrow \{i \in L : z_i(\ell) \leq 1\}$.
 2. $p_{ij} \leftarrow \beta_{\ell}(X_{ij})$ for machines $i \in L'$, all jobs.
 3. $L \leftarrow L \setminus L'$ and $\ell = |L|$.

\[
\sum_{i \in K} \beta_{|K|}(X_{ij}) \cdot y_{ij} \leq |K|, \quad \forall K \subseteq [m]
\]
“Pre-Rounding” Algorithm

1. remaining machines $L \leftarrow [m]$, $\ell = |L|$.
2. while $\ell > 0$:
 1. “class ℓ machines: $L' \leftarrow \{i \in L : z_i(\ell) \leq 1\}$.
 2. $p_{ij} \leftarrow \beta_{\ell}(X_{ij})$ for machines $i \in L'$, all jobs.
 3. $L \leftarrow L \setminus L'$ and $\ell = |L|$.

\[
\sum_{i \in K} \beta_{|K|}(X_{ij}) \cdot y_{ij} \leq |K|, \quad \forall K \subseteq [m]
\]
“Pre-Rounding” Algorithm

1. remaining machines $L \leftarrow [m]$, $\ell = |L|$.

2. while $\ell > 0$:
 1. “class ℓ machines: $L' \leftarrow \{i \in L : z_i(\ell) \leq 1\}$.
 2. $p_{ij} \leftarrow \beta_\ell(X_{ij})$ for machines $i \in L'$, all jobs.
 3. $L \leftarrow L \setminus L'$ and $\ell = |L|$.

$$\sum_{i \in K} \beta_{|K|}(X_{ij}) \cdot y_{ij} \leq |K|, \quad \forall K \subseteq [m]$$
Analysis Sketch

- LP gives fractional sol. for unrelated machines (target load $B = 1$).
- Round it: 2-approx rounded assignment $\{J_i\}_{i=1}^m$ satisfies:
 \[
 \sum_{j \in J_i} \beta_{\ell(i)}(X_{ij}) \leq 2, \quad \forall i \in [m]
 \]
Analysis Sketch

- LP gives fractional sol. for unrelated machines (target load $B = 1$).
- Round it: 2-approx rounded assignment $\{J_i\}_{i=1}^m$ satisfies:
 \[
 \sum_{j \in J_i} \beta_{\ell(i)}(X_{ij}) \leq 2, \quad \forall i \in [m]
 \]
- $\Pr[\text{machine } i \text{ load } \geq 2 + c] \leq \frac{1}{\ell(i)^c}$.

Analysis Sketch

- LP gives fractional sol. for unrelated machines (target load $B = 1$).

- Round it: 2-approx rounded assignment $\{J_i\}_{i=1}^m$ satisfies:

 $$\sum_{j \in J_i} \beta_{\ell(i)}(X_{ij}) \leq 2, \quad \forall i \in [m]$$

- $\Pr[\text{machine } i \text{ load } \geq 2 + c] \leq \frac{1}{\ell(i)^c}.$

- Union bound over machines gives

 $$\Pr[\text{maxload } > 2 + c] \leq \sum_i \frac{1}{\ell(i)^c} \leq \sum_i \frac{1}{i^c} \ll 1.$$

- Can also bound $\mathbb{E}[\text{maxload}].$
wrapup

- $O(1)$-approx for stochastic load balancing on unrelated machines.
 - Main tool: effective size

Extensions (in the paper):
- $O(1)$-approx for budgeted makespan minimization.
- $O(q \log q)$-approx for q-norm minimization.

\star Now $O(1)$-approx by M. Molinaro (forthcoming)

Tighter analysis (2?) even for identical machines?
Incorporate routing aspects?
Data center issues?
Thank you!
wrapup

- $O(1)$-approx for stochastic load balancing on unrelated machines.
 - Main tool: effective size

Extensions (in the paper):

- $O(1)$-approx for *budgeted* makespan minimization.
- $O\left(\frac{q}{\log q}\right)$-approx for q-norm minimization.
 - Now $O(1)$-approx by M. Molinaro (forthcoming)

- Tighter analysis (2?) even for identical machines?
wrapup

- $O(1)$-approx for stochastic load balancing on unrelated machines.
 - Main tool: effective size

- Extensions (in the paper):
 - $O(1)$-approx for *budgeted* makespan minimization.
 - $O\left(\frac{q}{\log q}\right)$-approx for q-norm minimization.
 - Now $O(1)$-approx by M. Molinaro (forthcoming)

- Tighter analysis (2?) even for identical machines?

- Incorporate routing aspects?
wrapup

- $O(1)$-approx for stochastic load balancing on unrelated machines.
 - Main tool: effective size

- Extensions (in the paper):
 - $O(1)$-approx for *budgeted* makespan minimization.
 - $O\left(\frac{q}{\log q}\right)$-approx for q-norm minimization.
 - Now $O(1)$-approx by M. Molinaro (forthcoming)

- Tighter analysis (2?) even for identical machines?
- Incorporate routing aspects?
- Data center issues?
wrapup

- $O(1)$-approx for stochastic load balancing on unrelated machines.
 - Main tool: effective size

- Extensions (in the paper):
 - $O(1)$-approx for *budgeted* makespan minimization.
 - $O\left(\frac{q}{\log q}\right)$-approx for q-norm minimization.
 - Now $O(1)$-approx by M. Molinaro (forthcoming)

- Tighter analysis (2?) even for identical machines?
- Incorporate routing aspects?
- Data center issues?

Thank you!