Programming the Topology of Networks
Technology and Algorithms

Manya Ghobadi

Pierre Blanche Klaus-Tycho Foerster Daniel Kilper Gireeja Ranade
Jeff Cox Jamie Gaudette Janardhan Kulkarni Houman Rastegarfar
Nikhil Devanur Phillipa Gill Ratul Mahajan Stefan Schmid
Mark Filer Madeleine Glick Amar Phanishayee Rachee Singh

UNIVERSITY OF TORONTO Google Microsoft Research MIT EECS
The cloud infrastructure

Inefficiencies and waste in the cloud infrastructure

Data centers

Optical cables
Technology and algorithms to optimize network topology

Network topology

Capacity provisioning

Traffic engineering
High-level idea

Static topology

Dynamic topology

Throughput: 2 units

Throughput: 3 units

Networks with programmable topologies
Programmable topologies

• Challenging:
 • Requires reconfigurable hardware technology
 • Requires revisiting networking layer algorithms

• Impactful:
 • Cheaper networks
 • Higher throughput
Talk outline

Technology and algorithms to enable programmable topologies in the cloud

Data center networks

ProjecToR: Programming the network topology [SIGCOMM’16]

Wide-area networks

Programming the capacity of links [SIGCOMM’18, HotNets’17, OFC’16]
Today’s data center interconnects

Static capacity between Top-of-Rack (ToR) pairs

Ideal demand matrix: uniform and static

Non-ideal demand matrix: skewed and dynamic
Need for a reconfigurable interconnect

Data:
• 200K servers across 4 production clusters
• Cluster sizes: 100 -- 2500 racks

Observation:
• Many rack pairs exchange little traffic
• Only some hot rack pairs are active

Implication:
• Static topology with uniform capacity:
 • Over-provisioned for most rack pairs
 • Under-provisioned for few others

Reconfigurable interconnect:
To dynamically provide additional capacity between hot rack pairs
Our proposal: ProjecToR interconnect

- Free-space topology (programmable)
- Digital micromirror device to redirect light
- Disco-ball shaped mirror assembly to magnify reachability
Digital Micromirror Device (DMD)

Array of micromirrors (10 um) Memory cell
A 3-ToR ProjecToR interconnect prototype

Mirrors reflecting to ToR$_2$ and ToR$_3$
Routing algorithm

• We have a highly flexible topology allowing for millions of ways to connect lasers to photodetectors
• Ideal solution: fast changing topology to adapt to demand change
• Challenge: It takes 12μs to reprogram a link
Routing algorithm

- Two topology approach:
 - Slow switching topology or **dedicated** topology
 - Fast switching links or **opportunistic** links
Routing packets

Virtual output queues

opportunistic link

dedicated topology

K-shortest paths routing
Scheduling opportunistic links

• Given a set of potential links and current traffic demand, find a set of active opportunistic links
Scheduling opportunistic links

- Standard switch scheduling problem
- Blossom matching
- BvN matrix decomposition
- Centralized scheduler
- Single tiered matching
Scheduling opportunistic links

- Standard switch scheduling problem
- Blossom matching
- BvN matrix decomposition
- Centralized scheduler
- Single-tiered matching

Extended the Gale-Shapely algorithm for finding stable matches [GS-1962]
Constant competitive against an offline optimal allocation
Simulation results

- Slow switching time
- Tail flow completion time
- Different traffic matrices
- Impact of switching time
- Impact of fan-out

- No reconfigurability
+ Reconfigurable
+ Switching time: 12μs
The key takeaway from this talk

Current assumption: Network topology is fixed
New world: Network topology is dynamic

Problems to solve:
- Scheduling
- Capacity provisioning
- Traffic engineering
- Load-balancing

- Exciting: Unusual wealth of algorithms
- Challenging: Changes fundamental assumptions
- Impactful: Better efficiency ($/Gbps)