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Abstract. Algorithm designers typically assume that the input data is
correct, and then proceed to find “optimal” or “sub-optimal” solutions
using this input data. However this assumption of correct data does not
always hold in practice, especially in the context of online learning sys-
tems where the objective is to learn appropriate feature weights given
some training samples. Such scenarios necessitate the study of inverse
optimization problems where one is given an input instance as well as
a desired output and the task is to adjust the input data so that the
given output is indeed optimal. Motivated by learning structured pre-
diction models, in this paper we consider inverse optimization with a
margin, i.e., we require the given output to be better than all other fea-
sible outputs by a desired margin. We consider such inverse optimization
problems for maximum weight matroid basis, matroid intersection, per-
fect matchings, minimum cost maximum flows, and shortest paths and
derive the first known results for such problems with a non-zero margin.
The effectiveness of these algorithmic approaches to online learning for
structured prediction is also discussed.

1 Introduction

Algorithm designers generally assume that the input data is sacrosanct and
correct. Algorithms are then typically run on this input data to compute “op-
timal” or “sub-optimal” solutions quickly whether it be the computation of a
maximum spanning tree, a maximum matching, max weight arborescence, or
shortest paths. However, with an increasing reliance on automatic methods to
collect data, as well as in systems that learn, this assumption does not always
hold. The input data can be erroneous (even though it may be approximately
correct), and it becomes important to “adjust” the input data to achieve certain
desired conditions.

A simple example can be used to illustrate the main point – suppose we are
given a weighted graph G = (V,E) and a spanning tree T , and told that T
should be a maximum weight spanning tree in G. The goal now is to perturb
the edge weights of the graph G, minimizing the L2 norm of the perturbation,
so that T is indeed the optimal spanning tree. This kind of problem has been
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studied previously in the form of “Inverse Optimization” problems. However, we
wish to accomplish a stronger goal of making sure that the given tree T is better
than every other tree in G by a given margin δ.

Our initial motivation for studying this problem comes from the structured
prediction task in machine learning [1, 2, 3, 4, 5]. For concreteness and ease of
exposition, we now describe structured prediction in the context of predicting de-
pendency parse trees for natural language sentences. Given an English sentence,
its dependency parse is a rooted, directed tree that indicates the dependencies
between different words in the sentence as shown in Figure 4. The input sentence
can be represented as a complete, directed graph on the words of the sentence
that is parameterized by features on the edges. Given a learned model (repre-
sented as a vector of parameters), the weight of an edge is computed as the inner
product of its feature vector and the model. As linguistic constraints dictate that
the required dependency parse must form a rooted, spanning arborescence of the
graph, one can use off-the-shelf combinatorial algorithms [6, 7] to find the high-
est weight arborescence. The learning problem is thus to find a parameter vector
such that once the edges are weighted by the inner products, running a combina-
torial optimization algorithm would return the desired parse tree. At “training
time”, we are given a sentence as well as its correct parse tree and the prob-
lem that we need to solve is exactly the inverse optimization problem - given
the current model and the parse tree, say T , find the minimum perturbation to
the model so that the combinatorial optimization algorithm would return T . It
is well established in the learning theory literature that achieving a large mar-
gin solution enables better generalization [8]. We consider minimizing the L2

norm because of connections to prior work [9]. In particular, for applications in
structured prediction, the convergence and error bounds (included in Section 6)
require L2 norm minimization.

Fig. 1. Example dependency parse tree. The tree describes the relations between head
words and their dependents in the sentence

In our work we consider such inverse optimization problems with a margin
in a general matroid setting. We consider both the problem of modifying the
weights of the elements of a matroid, so that a given basis is a maximum weight



basis (with a given margin of δ) and the considerably harder problem of matroid
intersection where a given basis of two matroids should have weight higher (by
at least δ) than any other set of elements that is a basis in the two matroids. This
framework captures two special cases which are useful for structured prediction
- namely maximum weight bipartite matching (useful for language translation)
and maximum weight arborescence (useful for sentence parsing). We also con-
sider δ-margin inverse optimization problems for a number of other classical
combinatorial optimzation problems such as perfect matchings, minimum cost
flows and shortest path trees. In addition, we present a generic framework for
online learning for structured prediction using the corresponding inverse opti-
mization problem as a subroutine and present convergence and error bounds on
this framework.

1.1 Related Work

Inverse optimization problems have been widely studied in the Operations Re-
search literature. Most prior work however has focused on minimizing the L1

or L∞ norms between the weight vectors and, more importantly, do not allow
non-zero margin (δ). Heuberger [10] provides an excellent survey of the diverse
inverse optimization problems that have been tackled. Both the inverse matroid
optimization [11] and matroid intersection [12] have previously been studied in
the setting of minimizing the L1 norm and with zero margin. However, they
use techniques that are specialized to minimizing the L1 norm of the pertur-
bation and do not extend to minimizing the L2 norm. At the same time, these
approaches to do not generalize to the general case of inverse optimization with
non-zero margins.

In typical global models for structured prediction (for e.g. see [1, 13, 5, 3, 14,
15]), the discrete optimization problem is considered a “black box”. By treating
the combinatorial problem as a black box, these methods lose the ability to pre-
cisely reason about how certain changes to the underlying parameter vector can
affect the eventual output. The simplest approach to solving the online struc-
tured prediction problem is the structured perceptron [3]. On each example, the
structured perceptron makes a prediction based on its current model. If this pre-
diction is incorrect, the algorithm suffers unit loss and updates its parameters
with a simple linear update that moves the predictor closer to the truth and
further from the current best guess. While empirically successful in a number
of problems, this particular update is relatively imprecise: there are typically an
exponential number of possible outputs for any given input, and simply promot-
ing the correct one and demoting the models’ current prediction may do very
little to move the model as far as it needs to go. An alternative approach is the
large margin discriminative approach [8] that seeks to change the parameters as
little as possible subject to the constraint that the true output has a higher score
than all incorrect outputs. However, such an approach is often computationally
infeasible for structured prediction as there are usually an exponential number
of potential outputs. McDonald et al. [15] circumvent this infeasibility by using
a k-best list of possible outputs and restrict the set of constraints to require that



the true output has a higher score than the incorrect outputs on the k-best list.
This has been shown to be effective for small values of k on simple parsing tasks
[15]. However, for more complex tasks, like machine translation, one needs more
complicated update frameworks [16]. In this work we show that the large margin
discriminative approach is applicable to a wide range of problems in structured
prediction using techniques from inverse combinatorial optimization.

In the context of online prediction, the most related work to ours is that of
Taskar et al. [4], who also consider structured prediction using inverse bipartite
matchings. They define a loss function that measures, against a ground truth
matching, the number of mispredicted edges in the found matching. This “Ham-
ming distance” style loss function nicely decomposes over the structure of the
graph and thereby admits an efficient “loss augmented” inference solution, in
which correct edges are penalized during learning. (The idea is that if correct
edges are penalized, but the model still produces the correct matching, then it
has done so with a sufficiently large margin.) This idea only works in the case
of decomposable loss functions, or the simpler 0-margin formulation. In com-
parison, our approach works both for decomposable loss functions as well as
“zero/one loss” over the entire structure. Furthermore, our approach generalizes
to arbitrary matroid intersection problems and minimum cost flows and thus is
applicable to a much wider range of structured prediction problems.

1.2 Contribution and Techniques

A lot of prior work in the inverse optimization literature formulates the prob-
lem as a linear program and then uses strong duality conditions to find the new
perturbed weights. However, such techniques cannot be extended to handle a
non-zero margin that is required by the application to structured prediction. We
formulate inverse optimization to minimize the L2 norm of the perturbations as
a quadratic program and use problem specific optimality conditions to deter-
mine a concise set of linear constraints that are both necessary and sufficient
to guarantee the required margin. In particular, one of the key ingredients is a
set of polynomially many linear constraints that ensure that an appropriately
defined auxiliary graph does not contain small directed cycles. We note that our
formulations can easily be adapted to minimize the L1 norm of the perturbations
by simply modifying the objective and using linear programming.

We obtain concise formulations for exactly solving δ-margin inverse optimiza-
tion problems for (i) maximum weight matroid basis, (ii) maximum weight basis
in the intersection of two matroids, (iii) shortest s-t path, (iv) shortest path tree,
(v) minimum cost maximum flow in a directed graph.

We also present convergence results for the generic online learning framework
for structured prediction motivating our study.

The rest of the paper is organized as follows. In Section 2, we formally de-
fine δ-margin inverse optimization. In Sections 3 and 4, we present our results
on inverse optimization for matroids, and matroid intersections respectively. In
Sections 5, Appendix A, and Appendix B, we discuss inverse optimization for
perfect matchings in bipartite graphs, minimum cost flows, and shortest path



trees. In Section 6, we describe an online learning framework for structured pre-
diction as an application and the proof of convergence and error bounds for this
learning framework are presented in Appendix C. Experimental results for our
learning model are presented in Appendix D showing significant improvement
over previous techniques.

2 Problem Description

As explained in the introduction, we require a given solution to be better than
all other feasible solutions by a margin of δ. We now formalize this notion of
δ-optimality.

Definition 1 (δ-Optimality). For a maximization problem P , let F denote
the set of feasible solutions, let w be the weight vector, c(w,A) denote the cost of
feasible solution A under weights w, and let δ ≥ 0 be a scalar. A feasible solution
S ∈ F is called δ-optimal under weights w if and only if

c(w, S) ≥ c(w, S′) + δ, ∀S′( 6= S) ∈ F .

δ-optimality for minimization problems is defined similarly. All problems we
consider in this work can be classified as δ-margin inverse optimization.

Definition 2 (δ-Margin Inverse Optimization). For a given optimization
problem P , let F denote the set of feasible solutions, let w be the weight vector,
let δ ≥ 0 be a scalar, and let S ∈ F be a given feasible solution. δ-Margin Inverse
optimization is to find a new weight vector w′ minimizing ||w′−w||2 (L2 norm)
such that S is the δ-optimal solution of P under weights w′.

In the following sections we consider δ-margin inverse optimization for a
number of problems mentioned earlier.

3 Maximum weight matroid basis

In order to provide intuition about the type of problems we propose to solve in
this paper, we first begin with the simple case of Inverse Matroid Optimization.
We recall the definition of a matroid.

Definition 3 (Matroid). A matroid is a pair M = (X, I) where X is a ground
set of elements and I is a family of subsets of X (called Independent sets) such
that - (i) I 6= φ (ii) (Hereditary) If B ∈ I, and A ⊆ B, then A ∈ I. (iii)
(Exchange property) If A,B ∈ I, and |A| < |B|, then there exists some element
e ∈ B \A such that A ∪ {e} ∈ I.

Definition 4 (Matroid Basis and Circuit). Let M = (X, I) be a matroid.
Then any maximal independent set in I is called a basis of the matroid. Con-
versely, any minimal dependent set is called a circuit.



For the inverse problem we are given a matroid M = (X, I), a weight function
w on the elements, and a basis B of M. The goal is to find a weight function w′

so that B is the δ-optimal basis of M under the new weights. As it is well known
that a spanning tree is a basis of a graphical matroid, this inverse matroid
optimization problem directly generalizes the inverse maximum spanning tree
problem.

We first state a simple optimality condition for a given basis B of a matroid
M. An easy generalization of [17] for δ ≥ 0 gives the following lemma.

Lemma 1. A given basis B of a matroid M is δ-optimal (under weight function
w) if and only if for any f /∈ B, and each e ∈ CB(f), w(e) − w(f) ≥ δ, where
CB(f) denotes the unique circuit in B ∪ {f}.

We thus have a set of polynomially many linear constraints that are necessary
and sufficient for the given basis B to be δ-optimal. The inverse matroid op-
timization problem can then be formulated as a linearly constrained quadratic
problem as follows -

min
w′

∑
e∈X

(w′(e)− w(e))2 subj. to: (1)

w′(e)− w′(f) ≥ δ, ∀f /∈ B, ∀e ∈ CB(f) (2)

Such a program with a quadratic objective and linear constraints can be
solved in polynomial time and a number of practical solvers such as [18] are
available.

4 Matroid Intersection

Similar to the case with a single matroid, we need to derive a necessary and
sufficient condition for a common basis B of two matroids to be δ-optimal. We
can establish such an optimality condition with the help of an exchange graph
associated with the basis B and matroids M1 and M2.

Definition 5 (Exchange Graph). Given two matroids M1 = (X, I1) and
M2 = (X, I2), a weight function w : X → R+, and a common basis B, an
exchange graph is a directed, bipartite graph G = (V,A) with a length function l
on edges that is defined as follows.

V = B ∪X \B (3)

A = A1 ∪A2 (4)

A1 = {(x, y)|x ∈ B, y ∈ X \B,B − {x}+ {y} ∈ I1} (5)

A2 = {(y, x)|x ∈ B, y ∈ X \B,B − {x}+ {y} ∈ I2} (6)

l(s) =

{
w(x) if s = (x, y) ∈ A1

−w(y) if s = (y, x) ∈ A2

(7)



The above graph captures the exchange operations that can be performed. An
edge (e, f) implies that deleting e and adding f toB preserves independence w.r.t
matroid M1 and similarly for the other direction. As the graph is bipartite, every
cycle is of even length - a cycle C = (x1, y1, x2, y2, . . . xk, yk, x1) corresponds to
constructing a set B′′ = B − {x1, x2, . . . xk} ∪ {y1, y2, . . . , yk}. Further

w(B′′) = w(B)−
k∑
i=1

w(xi) +

k∑
i=1

w(yi) = w(B)− l(C)

where l(C) =
∑
e∈C l(e) is the sum of lengths of edges in the cycle C. We are now

in a position to present the δ-optimality condition of B in terms of the exchange
graph. Fujishige [19] shows the following lemma for the case of δ = 0. We include
the extended proof for general δ margin here for completeness. It is important
to note that while there are other optimality conditions for matroid intersection
such as the weight decomposition theorem by Frank [20], these conditions do
not easily generalize for non-zero δ.

Lemma 2 (Matroid Intersection δ-optimality condition). The given com-
mon basis B is δ-optimal if and only if the exchange graph G contains no directed
cycle C such that

∑
e∈C l(e) ≤ δ.

Proof. We’ll refer to two well-known lemmas [17] regarding the relationship be-
tween bases of a matroid and matchings in the exchange graph. Let G1 = (V,A1)
and G2 = (V,A2) be the subgraphs of G induced by the two matroids respec-
tively. Further for B′ ⊂ X, let G(B,B′) denote the subgraph induced on the G
by the vertex sets B \B′ and B′ \B.

Lemma 3. If B′ is a basis of matroid M1 [M2], then G1(B,B′)[G2(B,B′)] con-
tains a perfect matching. ut

Lemma 4. For B′ ⊆ X, if G1(B,B′)[G2(B,B′)] has a unique perfect matching,
then B′ is a basis of M1 [M2]. ut

Sufficiency: This is the easy direction. Let B′ be any common basis other
than B. Applying Lemma 3, we know that G(B,B′) has two perfect matchings
(one each in G1(B,B′) and G2(B,B′)). Union of these two perfect matchings
yields a collection of cycles C. Further, by construction, by traversing these cycles,
one can transform B → B′ and hence, we have w(B′) = w(B) −

∑
C∈C l(C).

Therefore, since we have l(C) > δ for all cycles, we are guaranteed that w(B′) <
w(B)− δ as desired.

Necessity: Ideally, we would like to say that every cycle in G leads to a
swapping such that the set so obtained is also independent in both the matroids.
This would immediately imply that a cycle of small length would lead to a
common basis B′ which is not much smaller than B.

However, the presence of a cycle simply implies the presence of a perfect
matching (one in each direction) which may not be unique. For example, Figure 2
shows an instance of an arborescence problem (left), and the associated exchange
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Fig. 2. Instance showing every cycle in G need not lead to a common basis

graph (right). Here G contains a cycle a-x-b-y-a which leads to a new set x, y, c
which is not an arborescence.

In the previous example, observe that if the cycle a-x-b-y-a were to have small
weight, that would imply that at least one of a-y-a or b-x-b cycles too has small
weight both of which lead to a feasible solution. This observation motivates us
to look at the smallest cycle of weight less than δ and hope that it does induce
an unique perfect matching.

Suppose that the graph has a cycle having weight less than δ. Let C be the
smallest (in terms of number of arcs) such cycle. Look at the graph induced by the
vertex set of the cycle. We claim that this induced subgraph has a unique perfect
matching (one in each direction). Here we prove the claim for one direction. C
being an even cycle trivially contains a perfect matching M from B-side to X\B-
side. Suppose there exists another perfect matching M ′. For every edge (x, y)
in M ′ \M , the edge along with the path between y and x in C cause a cycle.
Further, each such cycle is smaller (number of edges) than C.

Let M̄ denote the matching M with edge directions reversed. The union of
M ′ and M̄ now forms a collection of cycles. Consider any such cycle D. WLOG
let the cycle be (x0, y0, x1, y1, . . . , xk, yk, x0) such that the (xi+1, yi) are edges
in M (i.e. (yi, xi+1) ∈ M̄) and (xi, yi) ∈ M ′. [All arithmetic is modulo k + 1].
We’ll now be interested in the length of the path between these vertices in the
original cycle C. Let Ci denote the cycle formed by the edge (xi, yi) and the
path between yi and xi in C. We have,

l(Ci) = l(C)− l(Path from xi to yi in C) + l((xi, yi))

Since (xi, yi−1) ∈M ,

l(Path from xi to yi in C) = l((xi, yi−1)) + l(Path from yi−1 to yi in C)

Further since by construction l((x, yi)) = l((x, yj))(= ±w(x)), we have

l(Ci) = l(C)− l(Path from yi−1 to yi in C)

Let Pi−1→i denote this path. Summing over all (xi, yi) edges in D, we get

k∑
i=0

l(Ci) = kl(C)− (l(Pk→0) + l(P0→1) + . . .+ l(Pk−1→k))

= kl(C)− k′l(C)



↑ Since we start from yk, go around the C and reach yk back

= k′′l(C)

< k′′δ

The sum of k weights is less than k′′δ with k′′ < k, which implies

∃Ci, such that l(Ci) < δ

But this is a contradiction since C was the smallest cycle having weight less
than δ. Hence, the perfect matching M is unique. Similarly, the perfect matching
induced by C in the other direction too is unique. Applying Lemma 4 successively
on both sides, we know that B′ obtained by exchanging as per C is a common
basis for both matroids. Further, we have

w(B′) = w(B)− l(C)

w(B′) > w(B)− δ

Hence we have proved that if G has a cycle with small weight, then B is not
δ-optimal, thus proving the necessity of the claim.

4.1 Lower bounding cycles

In order to use Lemma 2 to solve the inverse matroid intersection problem effi-
ciently using quadratic programming, we need a way to formulate this condition
as a polynomial number of linear constraints. We now explore a technique to
express the condition that a given graph has no small (of length less than δ)
cycles concisely. Say we are given a directed graph G = (V,A) and our task is
to assign edge-lengths so that all cycles in G have weight at least δ. Letting the
edge-lengths to be variables, the feasible region in this case is unbounded and
is defined by a constraint for every cycle in G, i.e. we have the region R1 in m
dimensions defined by -

R1 :∑
e∈C

le ≥ δ For all cycles C (8)

Of course, this formulation has an exponential number of constraints. Although
the ellipsoid algorithm can be used to solve the quadratic program in polynomial
time, it is often too slow for practical use. We now show that we can obtain a
concise extended formulation by adding a few extra variables.

Suppose we have variables dxy representing the shortest distance between
vertices x and y. In this case, the graph has no cycle of weight less than δ if and
only if dxx ≥ δ for all vertices x (assume dxx = ∞, if x is not in any cycle).



Consider the region R2 in m+ n2 dimensions.

R2 :

dxy ≤ l(xy) For all (x, y) ∈ A (9)

dxz ≤ dxy + l(yz) For all x, z ∈ V and y s.t. (y, z) ∈ A (10)

dxx ≥ δ For all x ∈ V (11)

Constraints (9) and (10) enforce triangle inequality, and (11) enforce the con-
dition that all cycles are large. We now prove that optimizing any function of l
over R1 is equivalent to optimizing the same over R2.

Lemma 5. R1 is identical to the projection of R2 on the m dimensions corre-
sponding to the edge-lengths.

Proof. R1 ⊆ Projection(R2): Let l : E → R denote a point in R1. Since
the constraints (9) and (10) are always valid for a true distance function, let
d : V×V → R denote the actual distance function in the graph induced by l.
Such a d definitely satisfies constraints (9) and (10). Additionally, for all vertices
x belonging to some cycle, since all cycles under l have weight at least δ, we have
dxx ≥ δ. For a vertex x which does not belong to any cycle, one can simply set
dxx =∞.

Projection(R2) ⊆ R1: Consider a point in R2. We now have the lengths of
edges le as well as some dxy values. Consider any cycle C = (x1, x2, . . . , xk, x1)
in the graph. Applying constraint (10) repeatedly we get

dx1x1
≤ l(x1x2) + l(x2x3) + . . .+ l(xk−1xk) + l(xkx1) (12)

and also by constraint (11), we have

dx1x1 ≥ δ (13)

Hence we have, l(x1x2) + l(x2x3) + . . . + l(xk−1xk) + l(xkx1) ≥ δ, i.e.
∑
e∈C le ≥ δ

which means that the le values are feasible in R1.

Hence, optimizing any function of the le variables over R1 is equivalent to
optimizing it over R2. However, R2 has only m+mn+n constraints and n2 +m
variables.

4.2 Putting it together

Lemmas 2 and 5 suggest a way to solve the δ-margin inverse matroid intersection
problem. As per the requirements of Lemma 2, given the two matroids and the
common basis B, construct the exchange graph G = (V,A = A1 ∪ A2). Let
w : X → R+ be the original weight function and let w′ be the new weight
function which we desire. If l is the arc lengths ofG, according to the construction
of Lemma 2, lxy = w′(x) and lyx = −w′(y) where x ∈ B, y ∈ S \ B. Further,
the objective that we minimize is the L2 norm of w−w′. We can now add these



additional constraints and the objective to the region R2 as per Lemma 5 to
obtain the minimum change on the weights of elements so that the exchange
graph has no small cycles and hence B is δ−optimal.

min
w′

∑
e∈X

(w′(e)− w(e))2 subj. to: (14)

lxy = w′(x), ∀(x, y) ∈ A1 (15)

lyx = −w′(y), ∀(y, x) ∈ A2 (16)

dxy ≤ lxy, ∀(x, y) ∈ A (17)

dxz ≤ dxy + lyz, ∀x, z ∈ V,∀(y, z) ∈ A (18)

dxx ≥ δ, ∀x ∈ V (19)

4.3 Maximum Weight Arborescence

Given a directed graph, a r-arborescence (also known as a branching) is the
directed analogue of a spanning tree and is defined as a set of edges T spanning
all vertices such that every vertex (except r) has exactly one incoming edge
in T . It is well known that an arborescence in a directed graph is a basis in
the intersection of a graphical matroid and a partition matroid. We analyze
the complexity of the above technique for the special case of maximum weight
arborescence. Let G denote the graph in question having n vertices and m edges.

The exchange graph Gex has a vertex for every edge of G, i.e., nex = m.
The bipartition of Gex is such that we have components of size n and m − n
respectively. Hence we have mex = O(mn). As seen in Section 4.1, we use O(n2ex)
variables and O(mexnex) contraints. Thus, putting it all together, we have a
quadratic program with O(m2) variables and O(m2n) constraints.

The inverse maximum weight arborescence problem is important as it can
used as a subroutine in the online learning for dependency parsing [21]. The
dependency parse tree of a sentence can be represented as an arborescence over
a graph consisting of every word in the sentence as a node. In Appendix D, we
show experimental results for dependency parsing using our framework.

Shortest s−t paths. Given a weighted graph G = (V,E,w), a path P between
terminals s and t, and a margin δ, the inverse shortest s-t path problem is to find
a minimum perturbation to w (minimizing the L2 norm) so that P is shorter
than all other paths between s and t by at least δ under the new weight function.
As shown by [22], the inverse shortest s-t path problem can be reduced to the
inverse arborescence problem. Let G′ be G augmented by adding zero weight
edges from t to all other vertices. It can be easily observed that P is the shortest
s-t path in G if and only if P and a subset of the zero weight edges form the
minimum weight s-arborescence of G′. Thus we can use an algorithm for inverse
minimum weight arborescence to solve the inverse shortest path problem.?

? Inverse minimum weight arborescence problem can be solved similar to the inverse
maximum weight arborescence problem



5 Perfect Matchings in Bipartite Graphs

For the bipartite maximum weight perfect matching inverse problem, the pre-
vious technique yields a quadratic program having O(m2) variables and O(m2)
constraints as the exchange graph is sparse. In this section we show that we can
in fact obtain more concise formulations. Recall that for a given edge weighted,
bipartite graph G = (X ∪ Y,E,w), and a perfect matching M , an alternat-
ing cycle is a cycle in G in which edges alternate between those that belong
to M and those that do not. An alternating cycle C is called δ-augmenting, if∑
e∈C∩M w(e) <

∑
e∈C\M w(e)+δ. The following characterization of a δ-optimal

perfect matching is well known.

Lemma 6. A perfect matching M is δ-optimal if and only if the graph contains
no δ-augmenting cycles.

The central idea is to construct a directed graph H on just the nodes of X
such that any directed cycle in H will correspond to an alternating cycle in G
(w.r.t to the matching M) and vice versa. We construct H = (X,A) to be a
directed graph such that (x, z) ∈ A if and only if ∃y ∈ Y such that (x, y) ∈ M
and (y, z) ∈ E; further let l(x, z) = w(x, y)−w(y, z). Figure 3 shows an example
of this construction.

X Y

Graph G Graph H

a

b

c

d

a

b

c

d

edges in G

matched edges in Mg

Fig. 3. Example to show construction of H from a bipartite graph G and matching M

Proposition 1. The auxiliary graph H has a directed cycle of length less than
δ if and only if G has a δ-augmenting alternating cycle.

Proof. If: Let C = (x0, y0, x1, y1, . . . , xk, yk, x0) be a δ-augmenting cycle in G
where all (xi, yi) ∈ M . By construction, H has a cycle C ′ = (x0, x1, . . . , xk, x0)

and l(C ′) =
∑k
i=0(w(xi, yi) − w(yi, xi+1)) (modulo k + 1) =

∑
e∈C∩M w(e) −∑

e∈C\M w(e) < δ.

Only If: Let C = (x0, x1, . . . , xk, x0) be a cycle in H with l(C) < δ. By
construction, ∃ cycle C ′ = (x0, y0, x1, y1, . . . , xk, yk, x0) in G. Now, l(C) =



∑k
i=0(w(xi, yi)−w(yi, xi+1)) (modulo k+1) =

∑
e∈C′∩M w(e)−

∑
e∈C′\M w(e).

Thus C ′ is a δ-augmenting cycle in G.

Using Lemma 6 and Proposition 1 along with Lemma 5, we can formulate the
inverse perfect matching problem as a quadratic program having O(n2) variables
and O(mn) constraints.

6 Application : Online learning for structured prediction

In this section, we present a framework for online learning using inverse com-
binatorial optimization. The structured prediction task is to predict a discrete
combinatorial structure (such as an arborescence) given a structured input (such
as a graph). The learning task is to learn model parameters so that solving a
combinatorial optimization problem on the input instance would return the de-
sired output structure. Structured prediction is extensively used in natural lan-
guage processing tasks such as obtaining parse trees of a sentence, or automatic
language translation.

In the online learning setting, we are presented with a set of T training sam-
ples. These consist of an input xt (for instance, a sentence) and an output yt
(for instance, a syntactic analysis of this sentence described as an arborescence
on a graph over the words in the sentence [23, 21]). Each edge in this graph
is parameterized by a set of F features that, for instance, indicate how likely
one word is to be the subject of another. Thus, each training sample is a pair
(xt, yt) where xt is a graph parameterized by features on edges, and yt is the
desired output sub-structure (such as a spanning tree, or an arborescence, or a
matching depending on the application). The task is to learn a vector (of length
F ) of parameters θ such that when edge weights are computed as inner prod-
ucts between the θ and the edge’s features, the output obtained by computing
an optimal sub-structure (spanning tree, etc.) is the desired output with some
margin.

Algorithm 1 describes the generic online learning framework for structured
predcition. It is parameterized by an user-defined loss function `(yt, ŷ) that spec-
ifies the loss incurred by the prediction ŷ with respect to the training solution
yt. Algorithm 1 is an adaptation of the Passive-Aggressive MIRA algorithm [24]
for structured prediction.

Note that the minimization problem solved for each training sample is ex-
actly δ-inverse optimization where we minimize the perturbations to the feature
parameters instead of the edge weights. In this framework, the different inverse
optimization problems we considered have applications for different structured
predictions. For example, maximum weight arborescences are used to predict the
parse tree of a sentence [23, 21], while maximum weight matchings are used for
language translation and word alignments [25].

Since we have shown that we can efficiently solve the inverse optimization
problems for a variety of combinatorial structures, we can extend the error
bounds of the MIRA algorithm [24] to work for learning the corresponding



θ1 = 0
for t = 1 to T do

Obtain training example xt, yt
w ← weight function s.t. w(e) = θt · fe where fe is feature vector of edge e
ŷ ← optimal sub-structure for graph xt under weights w
Suffer loss δt = `(yt, ŷ)
Update θt+1 = argminθ′ ||θ′ − θt||22 such that

w′ ← weight function s.t. w′(e) = θ′ · fe where fe is feature vector of
edge e

yt is the δt-optimal sub-structure for graph xt under weights w′

end
Return θT+1

Algorithm 1: Generic online learning framework

structured prediction models. In this section, we present both convergence re-
sults and loss bounds for our generic online learning framework. The proofs for
these bounds closely follow those in Crammer’s Ph.D. dissertation [24] and are
relegated to Appendix C for clarity and brevity.

The statement of the convergence result depends on a set of dual variables
obtained from the optimization problem in the “Update” step of Algorithm 1.
This implicitly encodes constraints over all possible outputs; we denote the dual
variable for output y on the tth example by αty. We can show that the cumulative
sum of these dual variables is bounded by a constant independent of T , which
implies convergence of the learning algorithm.

Theorem 1 (Convergence). Let {(xt, yt)}Tt=1 be a sequence of structured ex-
amples. Let θ∗ be any vector that separates the data with a positive margin
δ∗ > 0. Assume the loss function is upper bounded: `(yt, ŷ) ≤ A. Then the
cumulative sum of coefficients is upper bounded by:

T∑
t=1

∑
y∈Yt

αty ≤ 2A

(
||θ∗||
δ∗

)2

. (20)

However, it is not enough to show that the algorithm converges: it could
converge to a useless solution! We wish to show that in the process of learning it
does not make too many errors. In particular, we show that Algorithm 1 incurs
a total hinge loss bounded by a constant also independent of T , which implies
that at some point it has exactly solved the learning problem.

Theorem 2 (Total Loss). Under the same assumptions as above, assume
further that the norm of the examples are bounded by R. Then, the cumulative
hinge loss (Hδt) suffered by the algorithm over T trials is bounded by:

T∑
t=1

Hδt(θt, (xt, yt)) ≤ 8A

(
R ||θ∗||
δ∗

)2

. (21)
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A Minimum Cost Maximum Flow

Certain problems in structured prediction can be solved using inverse minimum
cost maximum flow problems. Consider, for example, the task of assigning re-
viewers to papers. Suppose we would like to have R reviewers per paper, and at
most P papers assigned per reviewer. Such a scenario can be easily modelled as
a generalization of bipartite matching with non-unit supply and demands using
a minimum cost maximum flow problem. In order to learn the weights of such an
instance (suitability of a reviewer for a paper), we can use structured prediction
methods that require solving inverse minimum cost maximum flow problems.
Formally,

Definition 6 (Inverse Min Cost Max Flow Problem). Given a directed
graph G = (V,A), a capacity function on edges c : E → R+, a cost function
w : E → R, and a feasible maximum flow f : E → R+, the inverse minimum
cost maximum flow problem is to find a new cost function w′ such that ||w−w′||2
(L2 norm) is minimized and f is δ-optimal under w′.

Using Lemma 5, we can easily formulate the inverse min cost max flow prob-
lem as a convex optimization problem if we can characterize a minimum cost
flow in terms of small cycles in an auxiliary graph. Indeed, the following lemma
is well-known.

Lemma 7. Given an instance of a minimum cost maximum flow problem G =
(V,E, c, w), and a maximum flow f , f is δ-optimal if and only if the residual
graph Gf has no cycle having weight less than δ.

B Shortest Path Trees

Suppose we are given a directed graph G = (V,E) with a weight function w
on edges, a subtree Tspt rooted at r, and a margin δ. The inverse shortest path
tree problem is then to minimally modify the edge weights so that Tspt becomes
the δ-optimal shortest path tree, i.e., for every vertex v(6= r) in G, the path
prescribed by Tspt is the δ-optimal shortest path from r to v.

To solve this problem we define variables dv representing distance labels for
each vertex and generate the following quadratic program.

min
w′

∑
e∈E

(w′(e)− w(e))2 subj. to: (22)

dr = 0 (23)

da + w′(a, b) = db ∀e = (a, b) ∈ Tspt (24)

da + w′(a, b) ≥ db + δ ∀e = (a, b) /∈ Tspt (25)

In other words, our claim is that we can require the distance labels to be the
length of the unique path in the shortest path tree. For every other edge e =
(a, b), we would like the path to b coming via a to be longer by at least δ. We
now prove that these conditions are necessary and sufficient.



Proof. Sufficient: Suppose we find a solution to the convex program. The length
of the path from r to v via Tspt is exactly dv due to the equality constraints.
Consider any other path P ′(r, v) = [r = v0, v1, . . . , vk = v] from r to v. The

length of this path is exactly
∑k−1
i=0 w

′(vi, vi+1) ≥
∑k−1
i=0 (dvi+1 − dvi + δ′) where

δ′ = 0 if the edge (vi, vi+1) belongs to Tspt and δ otherwise. Adding, we see that
this is at least dv + δ since at least one edge on P ′ does not belong to Tspt.

Necessary: Let w′ be a feasible weight function, i.e., Tspt is δ-optimal under
w′. Let dv denote the distance of vertex v from r under weights w′. Since Tspt
forms a shortest path tree, its easy to see that constraints (23) and (24) are
satisfied. Now suppose that an edge e′ = (a, b) /∈ Tspt does not satisfy constraint
(25). Then we have db + δ > da + w′(a, b). Since there is a path from r to a of
length da, we now have a path to b of length shorter than db + δ which violates
δ-optimality. Hence, we have a contradiction.

C Proofs of Learning Theory Results

Theorem 1 (Convergence). Let {(xt, yt)}Tt=1 be a sequence of structured
examples. Let θ∗ be any vector that separates the data with a positive margin
δ∗ > 0. Assume the loss function is upper bounded: `(yt, ŷ) ≤ A. Then the
cumulative sum of coefficients is upper bounded by:

T∑
t=1

∑
y∈Yt

αty ≤ 2A

(
||θ∗||
δ∗

)2

. (20)

Proof. Let Lt(α) denote the lagrangian dual of the optimization problem solved
in the update step of Algorithm 1. We have

Lt(α) = −1

2
||
∑
y∈Yt

αtyφ
t
∆y||2 +

∑
y∈Yt

αty(δt − θtφt∆y) (26)

Here φt∆y
= φ(xt, yt)−φ(xt, y) is shorthand for the difference in feature vectors,

while δt is the specified margin which is taken to be the current loss incurred.
Define ∆t = ||θt − θ∗||2 − ||θt+1 − θ∗||2. We will establish a bound on the cu-
mulative sum of the dual coeffecients by bounding the sum of ∆ts above and
below.
Upper bounding:

T∑
t=1

∆t = ||θ1 − θ∗||2 − ||θT+1 − θ∗||2 (27)

= ||θ∗||2 − ||θT+1 − θ∗||2 (28)

≤ ||θ∗||2 (29)

Equation 28 is obtained by substituting θ1 = 0



Lower bounding:

∆t = ||θt − θ∗||2 − ||θt+1 − θ∗||2 (30)

= ||θt − θ∗||2 −

∣∣∣∣∣
∣∣∣∣∣θt +

∑
y

αtyφ
t
∆y − θ

∗

∣∣∣∣∣
∣∣∣∣∣
2

(31)

= ||θt − θ∗||2 −

[
||θt − θ∗||2 +

∣∣∣∣∣
∣∣∣∣∣∑
y

αtyφ
t
∆y

∣∣∣∣∣
∣∣∣∣∣
2

+ 2(θt − θ∗) ·
∑
y

αtyφ
t
∆y

]
(32)

= −

∣∣∣∣∣
∣∣∣∣∣∑
y

αtyφ
t
∆y

∣∣∣∣∣
∣∣∣∣∣
2

− 2θt ·
∑
y

αtyφ
t
∆y + 2θ∗ ·

∑
y

αtyφ
t
∆y

(33)

Substituting for Lt(α) from Eq. (26), we get

∆t = 2

[
Lt(α) +

∑
y

θ∗ · αtyφ
t
∆y −

∑
y

αtyδt

]
(34)

As α = 0 is dual feasible and Lt(0) = 0, we have Lt(α) ≥ 0

≥ 2

[∑
y

θ∗ · αtyφ
t
∆y −

∑
y

αtyδt

]
(35)

≥ 2

[∑
y

αtyδ
∗ −

∑
y

αtyδt

]
(36)

≥ 2
∑
y

αty(δ∗ − δt) (37)

≥ 2(δ∗ −A)
∑
y

αty (38)

In the last step, we used the bound on the instantaneous loss. In the previous,
we used the assumption on the margin achieved by θ∗. The rest is algebra.

Summing over all t we get

T∑
t=1

∆t ≥ 2(δ∗ −A)

T∑
t=1

∑
y

αty (39)



Combining the bounds in Equations (29) and (39)

2(δ∗ −A)
∑
t

∑
y

αty ≤ ||θ
∗||2 (40)

Now, fix c = 2A
δ∗ and scale θ∗ and δ∗ by c. Rearrange to get the desired bound.

Lemma 8. Under the same assumptions as before, and writing Φt∆} to denote
a |Yt|×F matrix whose rows are the feature vectors for all possible outputs, and
where p and q are dual (i.e., 1

p + 1
q = 1), the optimal dual variables αty satisfy:

δt − θt · φt∆y
≤
∣∣∣∣αt∣∣∣∣

p

∣∣∣∣Φt∆}φ
t
∆y

∣∣∣∣
q

(41)

Proof. By the enforced δt - optimality conditions, we know that for all t and
y ∈ Yt -

θt+1 · φt∆y
≥ δt (42)

Substituting for θt+1 in terms of θt using the dual optimality conditions

(θt +
∑
z∈Yt

αtzφ
t
∆z

) · φt∆y ≤ δt (43)

δt − θt · φt∆y
≤
∑
z∈Yt

αtzφ
t
∆z · φ

t
∆y

(44)

= αt ·Φt∆}φ
t
∆y

(45)

≤
∣∣∣∣αt∣∣∣∣

p
×
∣∣∣∣∣∣Φt∆}φ

t
∆y

∣∣∣∣∣∣
q

(46)

The first equality is rewriting things in terms of the matrix Φ, the final step is
Hölder’s inequality.

Theorem 2 (Total Loss). Under the same assumptions as above, assume
further that the norm of the examples are bounded by R. Then, the cumulative
hinge loss (Hδt) suffered by the algorithm over T trials is bounded by:

T∑
t=1

Hδt(θt, (xt, yt)) ≤ 8A

(
R ||θ∗||
δ∗

)2

. (21)

Proof. On a round t with non-zero hinge loss, take the y in Eq (46) that has
maximal hinge loss (numerator). Take p = 1 and q =∞. Then:∑

t

Hδt(θt, (xt, yt)) ≤
∑
t

(δt − θt · φt∆y
) (47)

≤
∑
t

∣∣∣∣αt∣∣∣∣
1

∣∣∣∣Φt∆}φ
t
∆y

∣∣∣∣
∞ (48)

=
∑
t

(
∑
z

∣∣αtz∣∣)(max
z
φt∆z · φ

t
∆y) (49)



Using Hölder’s inequality again with p = q = 2

≤
∑
t

(
∑
z

∣∣αtz∣∣)(max
z

∣∣∣∣φt∆z∣∣∣∣2 ∣∣∣∣φt∆y∣∣∣∣2) (50)

By assumption the norm is bounded,

≤
∑
t

(
∑
z

∣∣αtz∣∣)(max
z

(2R)(2R)) (51)

≤ 4R2
∑
t

∑
z

∣∣αtz∣∣ (52)

Bounding the cumulative sum using Theorem 1, we get

≤ 4R22A

(
||θ∗||
δ∗

)2

(53)

= 8A

(
R ||θ∗||
δ∗

)2

(54)

D Experimental Analysis

We perform preliminary experiments to demonstrate the efficacy of the online
learning framework. We consider two structured prediction tasks: dependency
parsing and word alignment for language translation. In dependency parsing, the
input is a sentence, and the goal is to find its dependence parse, i.e. evaluate how
words in a sentence relate to one-another, forming a tree starting with an empty
root node. Figure 4 shows an example of a dependency parse tree of a sentence.
The input sentence is considered as a complete graph with a vertex for each word
and each edge parameterized by features. The task now is to learn feature weights
so that the maximum weight spanning tree in the graph corresponds to the parse
tree of the sentence. In word alignment for language translation, we are given two
equivalent sentences in two languages and the task is to identify corresponding
words. The input instance in this case is considered to be a complete bipartite
graph, and the output would be an assignment (matching). Once again given
features on edges, the task is to learn feature weights so that the maximum
weight perfect matching in the graph would correspond to the correct word
alignment.

D.1 Maximum Spanning Trees

Although dependency parsing is better modelled by directed arborescences, for
the sake of simplicity we consider only spanning trees in directed graphs in our
experiments. For these experiments we used the CoNLL shared task English
treebank [26] in order to predict undirected dependency arcs in English sen-
tences. Each word only depends on one word, but can have many dependents.



Fig. 4. Example dependency parse tree. The tree describes the relations between head
words and their dependents in the sentence

We use a 1500-sentence subset of the training data (36k words) and the test data
consists of 3800 sentences (90k words). We train for undirected unlabeled de-
pendencies and evaluate in the same manner. We use standard features: words,
word suffixes, position, edge length and predicted part of speech tags.

An averaged structured perceptron baseline obtains an accuracy of 82.7% on
the test data. One-best MIRA achieves an accuracy of 84.2%, which is very close
to the performance of a structured SVM trained by stochastic gradient descent
(accuracy of 84.4%). Our approach achieves a significant improvement on this
of 85.1%.

Algorithm Averaged θ

SVM 84.4
Perceptron 82.7

1-Best MIRA 84.2
Our Algorithm 85.1

Table 1. Accuracy results for undirected dependency parsing over the various baselines
and our algorithm.

D.2 Bipartite Matching

We are considering German/English alignment at the word level. Given two
equivalent sentences in their respective languages, we want to choose an align-
ment that best fits the “equality” of the respective words in each sentence.

Our data is comprised of 217 manually word-aligned sentences from [27],
with many-to-many matchings possible. Since we are restricted to one-to-one
alignment (matching) ,we enforce this restriction here by pruning extra edges
until we have 1-to-1 matchings only.

The graph structure is as follows: Given a German sentence of length n
and an English sentence of length m, we construct a complete bipartite graph



G = (Xm, Yn, E), where Xm is the German sentence of length m. Yn is an En-
glish sentence of length n. E are the possible alignments for the two sentences,
which are currently fully connected. Further, to ensure that the induced match-
ing will be perfect(as required from our problem definition), we add n extra
vertices(referred to as dummy vertices) to the German sentence and m dummy
vertices to the English sentence, resulting in G′ = (Xm ∪X ′n, Yn ∪ Y ′m, E′).

Next we will describe the structure of E′ in the graph G′. Each vertex of the
original G is fully connected with every other vertex in G as before. Each dummy
vertex x′i ∈ X ′n is fully connected to each dummy node y′j ∈ Y ′m,∀j. In addition,
each dummy vertex x′i ∈ X ′n is also connected to its single, respective real word
vertex yi ∈ Yn, and similarly Y ′m to Xm. If an alignment for a particular word
in Xm or Yn is not present in Mg due to the nature of word alignment being
somewhat sparse, we designate the truth edge to be the one connected to its
corresponding dummy vertex and add this to Mg ⊂ E, giving us M ′g ⊂ E′. This
will allow us a perfect matching for any two sentences we are given, fitting this
particular problem’s framework.

Each edge of the graph G′ corresponds to a set of feature values for the corre-
sponding words. These include features such as their Dice Coefficient (computed
from Europarl corpus), relative word positioning in the sentence, string match
without vowels, and others detailed in [25]. We also created slack features and
weights, one for each viable edge in the graph. For example, the feature “4 10”
means “this edge connects node 4 to node 10”. These features are very small
valued (the result being that making these features important is expensive), and
are used to ensure feasibility during training time for each example presented.
The edges corresponding to dummy vertices will only have these slack features,
which will make certain this perfect matching problem is feasible. After each
example is learned, we immediately forget these slack weights.

Algorithm Averaged θ

Dice=1 36.40
Perceptron 40.52

1-Best MIRA 13.76
Struct SVM 30.42

Our Algorithm 44.00

Table 2. Accuracy results for 1-to-1 matching with 10 passes over data with 80-20
train-test split

Results One simple baseline we are testing against is the use of only DICE
values. This is being used as a sanity-check for other algorithms’ performance.
This simple baseline obtained an accuracy of 36.4%. Averaged MIRA performs
quite poorly on this dataset with these features, at 13.76%. In our experiments
we are only comparing our algorithm with 1-best MIRA, which is unfair as it



only constructs the constraints based on the single best matching based on our
old weight vector w. Limited to optimizing against one matching appears to be
insufficient to learn anything of value. Again however, our algorithm supersedes
any k chosen for MIRA, as we ensure our matching beats every single other pos-
sible matching. Averaged Perceptron performs better on this dataset, at 40.52%.
The variance from run to run was very small compared to the other baselines.
Our algorithm obtains an accuracy of 44.0%. This failure of 1-Best MIRA is
analogous to a corresponding failure of structured SVMs optimized with cutting
plane(30.42%) [5, 28]: when the problem is “hard” (in the sense that θ∗ has high
loss), this approach appears to perform quite poorly in practice [29, 30].
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