
Fast Reconfiguration of Data Placement in Parallel Disks ∗

Srinivas Kashyap and Samir Khuller †and Yung-Chun (Justin) Wan
Department of Computer Science

University of Maryland
College Park, MD 20742

Email: {raaghav, samir, ycwan}@cs.umd.edu

Leana Golubchik ‡

Department of Computer Science / ISI / IMSC / CSDB
University of Southern California

Los Angeles, CA 90089
Email: leana@cs.usc.edu

1 Introduction

The “How much information?” study produced by the
school of information management and systems at the
University of California at Berkeley [10], estimates that
about 5 exabytes of new information was produced in
2002. It estimates that the amount of stored informa-
tion doubled in the period between 1999 and 2002. It is
believed that more data will be created in the next five
years than in the history of the world. Clearly we live
in an era of data explosion. This data explosion neces-
sitates the use of large storage systems. Storage Area
Networks (or SANs) are the leading [13] infrastructure
for enterprise storage.

A SAN essentially allows multiple processors to
access several storage devices. They typically access
the storage medium as though it were one large shared
repository. One crucial function of such a storage
system is that of deciding the placement of data within
the system. This data placement is dependent on
the demand pattern for the data. For instance, if a
particular data item is very popular the storage system
might want to host it on a disk with high bandwidth or
make multiple copies of the item. The storage system
needs to be capable of handling flash crowds [8]. During
events triggered by such flash crowds, the demand

∗This research was supported by NSF grant CCF-0430650.
†Department of Computer Science and UMIACS
‡The research has been funded in part by the NSF grant EIA-

0091474, the Okawa Research Award, and the Integrated Media
Systems Center, a National Science Foundation Engineering
Research Center, Cooperative Agreement No. EEC-9529152. Any
Opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect those of the National Science Foundation.

distribution becomes highly skewed and different from
the normal demand distribution.

It is known that the problem of computing an
optimal data placement1 for a given demand pattern is
NP-Hard [5]. However, polynomial time approximation
schemes as well as efficient combinatorial algorithms
that compute almost optimal solutions are known for
this problem [12, 11, 5]. So we can assume that a near-
optimal placement can be computed once a demand
pattern is specified.

As the demand pattern changes over time and
the popularity of items changes, the storage system
will have to modify its internal placement accordingly.
Such a modification in placement will typically involve
movement of data items from one set of disks to another
or requires changing the number of copies of a data item
in the system. For such a modification to be effective
it should be computed and applied quickly. In this
work we are concerned with the problem of finding such
a modification i.e., modifying the existing placement
to efficiently deal with a new demand pattern for the
data. This problem is referred to as the data migration
problem and was considered in [9, 6]. The authors
used a data placement algorithm to compute a new
“target” layout. The goal was to “convert” the existing
layout to the target layout as quickly as possible. The
communication model that was assumed was a half-
duplex model where a matching on the disks can be
fixed, and for each matched pair one can transfer a
single object in a round. The goal was to minimize
the number of rounds taken. The paper developed

1An optimal placement will allow a maximum number of users
to access information of their interest.



constant factor approximation algorithms for this NP-
hard problem [9]. In practice these algorithms find
solutions that are reasonably close to optimal. However,
even when there is no drastic change in the demand
distribution it can still take many rounds of migration
to achieve the new target layout. This happens since the
scheme completely disregards the existing placement in
trying to compute the target placement.

In this paper we consider a new approach to dealing
with the problem of changes in the demand pattern. We
ask the following question:

In a given number of migration rounds, can we obtain
a layout by making changes to the existing layout so

that the resulting layout will be the best possible layout
that we can obtain within the specified number of

rounds?

Of course, such a layout is interesting only if it is
significantly better than the existing layout for the new
demand pattern.

We approach the problem of finding a good layout
that can be obtained in a specified number of rounds
by trying to find a sequence of layouts. Each layout in
the sequence can be transformed to the next layout in
the sequence by applying a small set of changes to the
current layout. These changes are computed so that
they can be applied within one round of migration (a
disk may be involved in at most one transfer per round).

We show that by making these changes even for
a small number of consecutive rounds, the existing
placement that was computed for the old demand
pattern can be transformed into one that is almost as
good as the best layout for the new demand pattern.

Our method can therefore be used to quickly trans-
form an existing placement to deal with changes in the
demand pattern. We do not make any assumptions
about the type of demand changes – hence the method
can be used to quickly deal with any type of change in
the demands. We also show that the problem of find-
ing an optimal set of changes that can be applied in one
round is NP-hard (see Appendix A.1 for the proof). The
proof demonstrates that some unexpected data move-
ment patterns can yield a high benefit.

In the remaining part of the introduction, we
present the model and the assumptions made, and re-
state our result formally.

1.1 Model summary We consider the following
model for our storage system. There are N parallel
disks that form a Storage Area Network. Each disk has
a storage capacity of K and has a load handling capacity
(or bandwidth) of L.

The efficiency of the system depends crucially on

the data layout pattern that is chosen for the disks. This
data layout pattern or data placement specifies for each
item, which set of disks it is stored on (note that the
whole item is stored on each of the disks specified by
the placement, so these are copies of the item). The
next problem is that of mapping the demand for data
to disks. Each disk has an upper bound on the total
demand that can be mapped to that disk. A simple
way to find an optimal assignment of demand to disks,
is by running a single network flow computation in an
appropriately defined graph (see Section 2.1).

Different communication models can be considered
based on how the disks are connected. We use the same
model as in [2, 7] where the disks may communicate on
any matching; in other words, the underlying communi-
cation graph allows for communication between any pair
of devices via a matching (e.g., as in a switched storage
network with unbounded backplane bandwidth). This
model best captures an architecture of parallel storage
devices that are connected on a switched network with
sufficient bandwidth. This is most appropriate for our
application. This model is one of the most widely used
in all the work related to gossiping and broadcasting.
These algorithms can also be extended to models where
the size of the matching in each round is constrained
[9]. This can be done by a simple simulation, where we
only choose a maximal subset of transfers to perform in
each round.

Suppose we are given an initial demand pattern
I. We use this to create an initial layout LI . Over
time, the demand pattern for the data may change.
At some point of time the initial layout LI may not
be very efficient. At this point the storage manager
may wish to re-compute a new layout pattern. Suppose
the target demand pattern is determined to be T (this
could be determined based on the recent demand for
data, or based upon projections determined by previous
historical trends). Our goal is to migrate data from
the current layout to a new layout. We would like
this migration to complete quickly since the system
is running inefficiently in addition to using a part of
its local bandwidth for migrating data. It is therefore
desirable to complete the conversion of one layout to
another layout quickly. However, note that previous
methods completely ignored the current layout and fixed
a target layout LT based on the demand T . Is it possible
that there are layouts L′ with the property that they are
almost as good as LT , however, at the same time we
can “convert” the initial layout LI to L′ in very few
rounds (say compared to the number of rounds required
to convert LI to LT )? It is our objective to consider
this central question in this paper. In fact, we answer
the question in the affirmative by doing a large set of



experiments.
To do this, we define the following one round prob-

lem. Given a layout LP and a demand distribution T ,
our goal is to find a one round migration (a matching),
such that if we transfer data along this matching, we
will get the maximum increase in utilization. In other
words, we will “convert” the layout LP to a new layout
LP+1, such that we get the maximum utilization, and
the new layout is obtainable from the current layout in
one round of migration.

Now we can simply use an algorithm for the one
round problem repeatedly by starting with the initial
layout LI , and running � iterations of the one round
algorithm. We will obtain a layout LI+�, which could
be almost as good is the target layout LT .

Of course there is no reason to assume that repeat-
edly solving the one round problem will actually yield an
optimal solution for the � round version of this problem.
However, as we will see, this approach is very effective.

2 The problem

2.1 Example Since the formal definition of the
problem will involve a lot of notation, we will first
informally illustrate the problem and our approach
using an example. In this example, we will show an
initial demand distribution I; an initial placement for
this distribution LI ; we will then show the changed
demand distribution T . We will show why the initial
placement LI is inadequate to handle the changed
demand distribution T . We will then show how a small
change (a one-round migration) to the initial placement
LI results in a placement that is optimal for the new
demand distribution.

In this toy example, we consider a storage system
that consists of 4 identical disks. Each disk has storage
capacity of 3 units and load capacity (or bandwidth) of
100 units. There are 9 data items that need to be stored
in the system. The initial demand distribution I and
the new demand distribution T are as follows:

Item Initial demand New Demand
A 130 55
B 90 55
C 40 20
D 30 60
E 25 5
F 25 10
G 25 15
H 22 70
I 13 110

The placement LI (which in this case is also an
optimal placement) obtained using the sliding window

algorithm2 for the demand distribution above is as
follows (the numbers next to the items on disks indicates
the mapping of demand to that copy of the item):
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Figure 1: Optimal placement LI for the initial de-
mand distribution I, satisfies all the demand. Storage
capacity K=3, Bandwidth L=100. In addition to pro-
ducing the layout the sliding window algorithm finds a
mapping of demand to disks, which is optimal for the
layout computed.

To determine the maximum amount of demand
that the current placement LI can satisfy for the new
demand distribution T , we compute the max-flow in
a network constructed as follows. In this network we
have a node corresponding to each item and a node
corresponding to each disk. We also have a source and
a sink vertex. We have edges from item vertices to disk
vertices if in the placement LI , that item was put on
the corresponding disk. Capacities of edges from the
source to every item is equal to the demand for that
item in the new distribution. The rest of the edges have
capacity equal to the disk bandwidth. Using the flow
network above, we can re-assign the demand T using the
same placement LI as given in Figure 3. Figure 2 shows
the flow network obtained by applying the construction
described above, corresponding to the initial placement
LI and new demand T .

A small change can convert LI to an optimal
placement. In general, we would like to find changes
that can be applied to the existing placement in a single
round and get a placement that is close to an optimal
placement for the new demand distribution. In a round
a disk can either be the source or the target of a data
transfer but not both. In fact, in this example a single
change that involves copying an item from one disk to
another is sufficient (and does not involve the other two
disks in data transfers). This is illustrated in Figure 4.

We stress that we are not trying to minimize the
total number of data transfers, but simply find the best
set of changes that can be applied in parallel to modify
the existing placement for the new demand distribution.

We compare this approach to that of previous works
[9, 6] which completely disregard the existing placement

2The sliding window algorithm proposed by Shachnai and
Tamir [12] is currently the best practical algorithm for this
problem. For more on the sliding window algorithm and its
performance, see [5].
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Figure 2: Flow network to determine maximum
benefit of using placement LI with demand distribution
T . LI is sub-optimal for T and can only satisfy 350 out
of a maximum of 400 units of demand. Saturated edges
are show using solid lines.
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Figure 3: Maximum demand that placement LI can
satisfy for the new demand distribution T . LI is
sub-optimal for T and can only satisfy 350 out of a
maximum of 400 units of demand.

Disk 4

B

D

E

F H B

C

I A

G

A

I

10 70

15

15

40

25

35

20

60

85(I)20

5

Disk 1 Disk 2 Disk 3

Figure 4: Removing item B from disk 2 and replacing
it with a copy of item I from disk 4 converts LI to an
optimal placement L′ for the new demand distribution
T . The placement shown above is optimal for T and
satisfies all demand.

and simply try to minimize the number of parallel
rounds needed to convert the existing placement to an
optimal placement for the new demand distribution. In
Fig. 6, we show that using the old approach, it takes 4
rounds of transfers to achieve what our approach did

in a single round (and using just one transfer). In
Figure 5 an optimal placement LT is recomputed 3 for
the new demand distribution T . We show in Figure
6 the smallest set of transfers required to convert LI
to LT . Note that both placement L′ (obtained after the
transfer shown in Figure 4 is applied) and placement LT
shown in Figure 5 are optimal placements for the new
demand distribution T . Note that this is an optimal
solution that also addresses the space constraint on the
disk (this property is not actually maintained by the
data migration algorithms developed earlier [9]).
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Figure 5: Placement LT . Output of the Sliding
window algorithm for the new demand distribution T .

2.2 Formal definition The storage system con-
sists of N disks. Each disk has load-capacity of L
and a storage-capacity of K. We have m items, each
item j has size 1 and demand �j. This constitutes an
m-dimensional demand distribution � = (�1, . . . , �m).
An m-dimensional placement vector pi for a disk i is
(pi1, . . . , pim) where pij are 0− 1 entries indicating that
item j is on disk i. An m-dimensional demand vector di

for a disk i is (di1, . . . , dim) where dij is the demand for
item j assigned to disk i. Define V({di}) =

∑
i

∑
j dij

as the benefit of the set of demand vectors {di}. A set of
placement and demand vectors that satisfy the follow-
ing constraints is said to constitute a feasible placement
and demand assignment:

1.
∑

j pij ≤ K for all disks i. This ensures that the
storage-capacity is not violated.

2.
∑

j dij ≤ L for all disks i. This ensures that the
load-capacity is not violated.

3. dij ≤ pij�j. This ensures that the demand for an
item j is routed to disk i only if that item is present
on disk i.

4.
∑

i dij ≤ �j for all items j. This ensures that no
more than the total demand for an item is packed.

A one-round-migration is essentially a matching on
the set of disks. More formally, a one-round-migration is
a 0-1 function Δ(sd, si, td, ti) where sd, td ∈ {1, . . . , N}

3Using the sliding window algorithm for computing a place-
ment for a given demand.
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Figure 6: Transforming LI to LT takes 4 rounds.
Note that the disks here will need to be renumbered
to match the sliding window output. Final disk 2
corresponds to disk 3 in the sliding window output,
final disk 3 corresponds to disk 2 in the sliding window
output.

and si, ti ∈ {1, . . . , m}. Here sd is the source disk,
si is the source item, td is the target disk, ti is the
target item. Further, Δ(.) has to satisfy the following
conditions:

1.
∑

td

∑
si

∑
ti

Δ(sd, si, td, ti) ≤ 1 for all disks sd.
This ensures that a disk can be the source for at
most one transfer.

2.
∑

sd

∑
si

∑
ti

Δ(sd, si, td, ti) ≤ 1 for all disks td.
This ensures that a disk can be the target for at
most one transfer.

3.
(∑

sd

∑
si

∑
ti

Δ(sd, si, td, ti)
)

+(∑
td

∑
si

∑
ti

Δ(sd, si, td, ti)
)

≤ 1 for all disk
pairs sd = td. This ensures that a disk can
simultaneously not be both a source and a target.

4. (sd = td) ⇒ Δ(sd, ∗, td, ∗) = 0. This ensures that
there are no self loops in the transfer graph.

5.
∑

td

∑
ti

Δ(sd, si, td, ti) ≤ psdsi for all disks sd and
items si. This ensures that a disk sd can be source
of an item si only if that item is on that disk (i.e.
psdsi = 1).

We can apply this function to an existing place-
ment to obtain a new placement as follows. If
Δ(sd, si, td, ti) = 1, then set ptdti = 0 and ptdsi = 1.
We compute the optimal demand assignment for the
new placement using max-flow.

ONE-ROUND-MIGRATION: When given an initial
demand distribution �initial, a corresponding set of fea-
sible placement vectors {pi}, and demand vectors {di}
and a final demand distribution �final, the problem asks
for a one-round-migration Δ(.) that when applied to the
initial placement yields placement vectors {p∗i } and de-
mand vectors {d∗i } such that V({d∗i }) is maximized.

We show that this problem is NP-Hard (See Ap-
pendix A.1 for a proof).

3 Algorithm for one round migration
For any disk d, let I(d) denote the items on that disk.

Corresponding to any placement {pi} (a placement
specifies for each item, which set of disks it is stored
on), we define the corresponding flow graph Gp(V, E)
as follows. We add one node ai to the graph for each
item i ∈ {1 . . .m}. We add one node dj for each disk
j ∈ {1 . . .N}. We add one source vertex s and one sink
vertex t. We add edges (s, ai) for each item i. Each of
these edges have capacity demand(i) (where demand(i)
is the demand for item i). We also add edges (dj , t) for
each disk j. These edges have capacity L (where L is the
load capacity of disk j). For every disk j and for every
item i ∈ I(j), we add an edge (ai, dj) with capacity L.

The algorithm starts with the initial placement and
works in phases. At the end of each phase, it outputs a
pair of disks and a transfer corresponding to that disk
pair.

We determine the disk and transfer pair as follows.
Consider a phase r. Let {pi}r be the current placement.
For every pair of disks di and dj , for every pair of items
(ai, aj) in I(di)× I(dj), modify the placement {pi}r to
obtain {p′

i}r by overwriting aj on dj with ai. Compute
the max-flow in the flow graph for the placement {p′

i}r.
Note down the max-flow value and revert the placement
back to {pi}r. After we go through all pairs, pick the
(ai, aj) transfer pair and the corresponding (di, dj) disk
pair that resulted in the flow-graph with the largest
max-flow value. Apply the transfer (ai, aj) modifying
placement {pi}r to obtain {pi}r+1 - which will be the
starting placement for the next phase. We can no longer
use disks di and dj in the next phase. Repeat until there
is no pair that can increase the max-flow or till we run



out of disks.

4 Speeding up the algorithm
The algorithm described in Section 3 recomputes max-
flow in the flow graph from scratch when evaluating each
move. Recall that the algorithm proceeds in phases and
at the end of each phase, it identifies a pair of disks
(di, dj) and a (ai ∈ I(di), aj ∈ I(dj)) transfer for that
pair of disks.

We can speed up the algorithm by observing that
the max-flow value increases monotonically from one
phase to the next and therefore we need not recompute
max-flow from scratch for each phase. Rather, we
compute the residual network for the flow graph once
and then make incremental changes to this residual
network for each max-flow computation. All max-
flow computations in this version of the algorithm are
computed using the Edmonds-Karp algorithm (see [1]).
Let Gi denote the residual graph at the end of phase i.
Let G0 be the residual graph corresponding to the initial
graph. All max-flow computations in phase i + 1, we
begin with the residual graph Gi and find augmenting
paths (using BFS on the residual graph) to evaluate
the max-flow. After each transfer pair in phase i + 1 is
considered, we undo the changes to the residual graph
and revert back to Gi. At the end of phase i + 1, we
apply the best transfer found in that phase, recompute
max-flow and use the corresponding residual graph as
Gi+1.

Even with the speedup, the algorithm needs to
perform around 415,000 max-flow computations even
for one of the smallest instances (N=60, K=15) that
we consider in our experiments. Since we want to
quickly compute the one-round migration, too many
flow computations are not acceptable. We therefore
consider the following variants of our algorithm. In our
experiments, we found these variants to yield solutions
that are as good as the algorithm described above.

Variant 1: For every pair of disks di and dj ,
let I+(di) be the set of items on disk di that have
unsatisfied demand. For every pair of items (ai, aj) in
I+(di)× I(dj), overwrite aj on dj with ai, compute the
max-flow. Pick the (ai, aj) pair that gives the largest
increase in the max-flow value. Repeat till there is no
pair that can increase the max-flow or until we run out
of disks.

Variant 2: For every pair of disks di and dj ,
let I+(di) be the set of items on disk di that have
unsatisfied demand and I−(dj) be the items with
lowest demand on disk dj . For every pair of items
(ai, aj) in I+(di) × I−(dj), overwrite aj on dj with ai,
compute the max-flow. Pick the (ai, aj) pair that gave
the largest increase in the max-flow value. Repeat till

there is no pair that can increase the max-flow or until
we run out of disks.

All the experimental results that we present in Sec-
tion 5 are obtained using the second variant (described
above). To solve4 even the largest instances in our ex-
periments, a C (gcc 3.3) implementation of the second
variant took only a couple of seconds while the brute
force algorithm took on the order of several hours.

5 Experiments

In this section, we describe the experiments used to
evaluate the performance of our heuristic and compare it
to the old approach to data migration. The framework
of our experiments is as follows:

1. (Create an initial layout) Run the sliding window
algorithm [5], given the number of user requests for
each data object.

2. (Create a target layout) To obtain a target layout,
we take one of the following approaches.

(a) Shuffle method 1: Initial demand distribution
is chosen with Zipf (will be defined later in
this section) parameter 0.0 (high-skew). To
generate the target distribution, pick 20% of
the items and promote them to become more
popular items.

(b) Shuffle method 2: Initial demand distribution
is chosen with Zipf parameter 0.0 (high-skew).
To generate the target distribution, the lowest
popularity item is promoted to become the
most popular item.

(c) Shuffle method 3: The initial demand dis-
tribution is chosen with Zipf parameter 1.0
(uniform-distribution). The target distribu-
tion is chosen with Zipf parameter 0.0 (high-
skew).

(d) Shuffle method 4: The initial demand dis-
tribution is chosen with Zipf parameter 0.0
(high-skew). The target distribution is
chosen with Zipf parameter 1.0 (uniform-
distribution).

3. Record the number of rounds required by the old
data migration scheme to migrate the initial layout
to the target layout.

4. Record the layout obtained in each round of our
heuristic. Run 10 successive rounds of our one
round migration starting from the initial layout.

4Experiments were run on a 2.8Ghz Pentium 4C processor with
1GB RAM running Ubuntu Linux 5.04.



The layout output after running these 10 successive
rounds of our heuristic will be considered as the
final layout output by our heuristic.

We note that few large-scale measurement studies
exist for the applications of interest here (e.g., video-on-
demand systems), and hence below we are considering
several potentially interesting distributions. Some of
these correspond to existing measurement studies (as
noted below) and others we consider in order to explore
the performance characteristics of our algorithms and to
further improve the understanding of such algorithms.
For instance, a Zipf distribution is often used for
characterizing people’s preferences.
Zipf Distribution The Zipf distribution is defined as
follows:

Prob(request for item i) = c
i1−θ

∀i = 1, . . . , M
and

0 ≤ θ ≤ 1

where c = 1

H1−θ
M

and H1−θ
M =

∑M
j=1

1
j1−θ

and θ determines the degree of skewness. For in-
stance, θ = 1.0 corresponds to the uniform distribu-
tion, whereas θ = 0.0 corresponds to the skewness in
access patterns often attributed to movies-on-demand
type applications. See for instance the measurements
performed in [3]. Flash crowds are also known to skew
access patterns according to Zipf distribution [8]. In
the experiments below, Zipf parameters are chosen ac-
cording to the shuffle methods described earlier in the
section.

We now describe the storage system parameters
used in the experiments, namely the number of disks,
space capacity, and load capacity (the maximum num-
ber of simultaneous user requests that a disk may serve).

In the first set of experiments, we used a value of
60 disks. We tried three different pairs of settings for
space and load capacities, namely: (A) 15 and 40, (B)
30 and 35, and (C) 60 and 150.

In the second set of experiments, we varied the
number of disks from 10 to 100 in steps of 10. We
used a value of K=60, L=150 (this is the 3rd pair of
L,K values used in the first set of experiments).

We obtained these numbers from the specifications
of modern SCSI hard drives. For example, a 72GB
15,000 rpm disk can support a sustained transfer rate
of 75MB/s with an average seek time of around 3.5ms.
Considering MPEG-2 movies of 2 hours each with
encoding rates of 6Mbps, and assuming the transfer
rate under parallel load is 40% of the sustained rate,
the disk can store 15 movies and support 40 streams.
The space capacity 30 and the load capacity 35 are

obtained from using a 150GB 10,000 rpm disk with a
72MB/s sustained transfer rate. The space capacity 60
and the load capacity 150 are obtained by assuming that
movies are encoded using MPEG-4 format (instead of
MPEG-2). So a disk is capable of storing more movies
and supporting more streams. For each tuple of N,L,K
and shuffle method we generated 10 instances. These
instances were then solved using both our heuristic as
well as the old data migration heuristic. The results for
each N,L,K and shuffle method tuple were averaged out
over these 10 runs.

5.1 Results and Discussion Figures 7, 8, 9, 10
and Tables 1, 2, 3 correspond to the first set of
experiments. Figures 12, 13, 14, 15, 11 and Tables 4, 5,
6, 7 correspond to the second set of experiments.

Figures 8, 9, 10, 12, 13, 14, 15 compare the solution
quality of our heuristic with that of the old approach.
Tables 1, 2, 3, 4, 5, 6, 7 and Figure 7 compares the
number of rounds taken by our approach with the
number of rounds taken by the old approach to achieve
similar solution quality.

We highlight the following observations supported
by our experimental results:

• In all our experiments, our heuristic was able to get
within 8% of the optimal solution using 10 rounds.
This can be seen in all the figures and tables. For
instance, see Figure 7.

• In comparison (see Figure 7 and Tables 1, 2, 3, 4,
5, 6, 7), the old scheme took a significantly larger
number of rounds. For example, in the case of
K=60, L=150 (corresponding to storing video as
mpeg-4) the old scheme took over 100 rounds for
every shuffle method and for every value of N we
used, while our scheme was able to achieve similar
solution quality within 10 rounds.

• Response to change in demand distribution: The
experiments reveal an interesting behavior of the
heuristic. When the target demand distribution
is highly skewed, the heuristic’s response or the
amount of improvement made in successive rounds
is linear. In contrast, when the demand is less
skewed (i.e. the demand distribution is significantly
different from the initial distribution but still the
target distribution is not very skewed), the response
is much sharper. For example in Figure 11, consider
the response curve for shuffle methods 4 and 2 (low-
skew) and contrast it with the flat response curves
for shuffle methods 1 and 3 (high-skew).

– Sharp response or diminishing returns: For a
concrete example; in Figure 12 the improve-



ment obtained by our heuristic in the first
round is almost as high as 10%, but successive
improvements taper off quickly. This probably
happens because we use a greedy algorithm
and most of the gains are made in the first
round and since this type of behavior is ob-
served mainly when the demand is less skewed,
there are presumably several items that need
to replicated.

– Flat response: For a concrete example; in
Figure 14 the improvement obtained by our
heuristic for N=100 in the first two rounds
(1 and 2) is just about twice the benefit
obtained in the last two rounds (9 and 10).
This is probably because most of the load
is concentrated on a few items and there is
a large amount of unsatisfied demand. In
each round we make more copies of these
high popularity items and see almost the same
benefit in each round.

• The case for this type of approach (that of making
small changes to existing placement in consecutive
rounds) is best supported by results from Table 7.
This is an example of a case where the existing
placement is already very good for the target
distribution. The storage manager may wish to do
a few rounds of migration to recover the amount
of lost load. Our scheme lets the storage manager
do such a quick adaptation. In contrast the old
scheme takes over 150 rounds on average to achieve
comparable results. This is especially unacceptable
given that we already start off with a pretty good
placement. In fact, shuffle method 4 seemed to
consistently trigger expensive migrations in the old
scheme while our scheme was able to get close
to optimal within a couple of rounds. This is
not surprising since the old scheme completely
disregards the existing placement.

• Shuffle method 3 seemed to produce “harder” in-
stances for our heuristic compared to the other
shuffle methods we tried. This is not surprising
since shuffle method 3 makes a drastic change to
the demand distribution (moving it from uniform
to highly skewed Zipf).

• It is very promising that our scheme performs
particularly well for shuffle methods 1 and 2 (which
is the type of demand change we expect to see in
practice).
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Figure 7: Plot compares the number of rounds that
the old migration scheme took to reach within 5% of
the optimal solution. We used N=60 and tried each of
the shuffle methods for every pair of K and L shown in
the plot. Every data point was obtained by averaging
over 10 runs. In each of the experiments shown above,
our scheme was set to run for 10 consecutive rounds.
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Figure 8: Plot shows improvement obtained by our
scheme when presented with instances generated using
the different shuffle methods. We used N=60, K=15,
L=40 for each experiment. Every data point was
obtained by averaging over 10 runs. SW is the solution
value achieved by the old method.
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Figure 9: Plot shows improvement obtained by our
scheme when presented with instances generated using
the different shuffle methods. We used N=60, K=30,
L=35 for each experiment. Every data point was
obtained by averaging over 10 runs. SW is the solution
value achieved by the old method.
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Figure 10: Plot shows improvement obtained by our
scheme when presented with instances generated using
the different shuffle methods. We used N=60, K=60,
L=150 for each experiment. Every data point was
obtained by averaging over 10 runs. SW is the solution
value achieved by the old method.
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Figure 11: Plot comparing the response of our heuris-
tic to the various shuffle methods. The response to shuf-
fle 3 and shuffle 2 is much flatter than the diminishing
returns type of response for shuffle 4 and shuffle 1. We
used N=100, K=60, L=150 for each experiment. Every
data point was obtained by averaging over 10 runs.
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Figure 12: Performance of our scheme with varying
number of disks for shuffle method 1. The number
of disks N varied from 10 to 100. K=60, L=150
for each experiment. Every data point was obtained
by averaging over 10 runs. SW is the solution value
achieved by the old method.
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Figure 13: Performance of our scheme with varying
number of disks for shuffle method 2. The number
of disks N varied from 10 to 100. K=60, L=150
for each experiment. Every data point was obtained
by averaging over 10 runs. SW is the solution value
achieved by the old method.
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Figure 14: Performance of our scheme with varying
number of disks for shuffle method 3. The number
of disks N varied from 10 to 100. K=60, L=150
for each experiment. Every data point was obtained
by averaging over 10 runs. SW is the solution value
achieved by the old method.
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Figure 15: Performance of our scheme with varying
number of disks for shuffle method 4. The number
of disks N varied from 10 to 100. K=60, L=150
for each experiment. Every data point was obtained
by averaging over 10 runs. SW is the solution value
achieved by the old method.

Shuffle method Our Scheme Old Scheme
Rounds Demand % Rounds (avg) Demand %

1 10 99.10 41.8 99.92
2 10 98.86 39.1 99.92
3 10 97.26 43.7 98.91
4 10 99.04 54.2 100

Table 1: Comparison of old scheme with our scheme
for N=60, K=15, L=40

Shuffle method Our Scheme Old Scheme
Rounds Demand % Rounds (avg) Demand %

1 10 98.50 54.2 99.83
2 10 97.72 41.6 99.79
3 10 97.02 71.8 98.99
4 10 98.57 89.9 100

Table 2: Comparison of old scheme with our scheme
for N=60, K=30, L=35

Shuffle method Our Scheme Old Scheme
Rounds Demand % Rounds (avg) Demand %

1 10 99.41 130.3 99.98
2 10 98.54 127.3 99.99
3 10 94.41 150.4 99.68
4 10 99.30 170.5 100

Table 3: Comparison of old scheme with our scheme
for N=60, K=60, L=150

6 Conclusion
We proposed a new approach to deal with the prob-
lem of changing demand. We defined the one-round-
migration problem to aid us in our effort. We showed
that the one-round-migration problem is NP-Hard and



N Our Scheme Old Scheme
Rounds Demand % Rounds (avg) Demand %

10 10 99.64 104.8 99.98
20 10 99.52 111.8 99.99
30 10 99.50 121 99.99
40 10 99.53 121.9 99.98
50 10 99.51 125.9 99.99
60 10 99.41 128.2 99.98
70 10 99.46 128.5 99.99
80 10 99.42 135.4 100
90 10 99.45 138.6 99.99
100 10 99.43 136.2 99.99

Table 4: Comparison of old scheme with our scheme
for various number of disks N=10 to 100. Shuffle
method 1. K=60, L=150.

N Our Scheme Old Scheme
Rounds Demand % Rounds (avg) Demand %

10 10 95.12 103.3 99.98
20 10 96.82 109.4 99.98
30 10 97.96 119.4 99.97
40 10 98.31 119.7 99.98
50 10 98.26 124.7 99.99
60 10 98.37 127.4 100
70 10 98.57 129.3 100
80 10 98.67 135.3 100
90 10 98.81 134.4 100
100 10 98.82 137.5 100

Table 5: Comparison of old scheme with our scheme
for various number of disks N=10 to 100. Shuffle
method 2. K=60, L=150.

N Our Scheme Old Scheme
Rounds Demand % Rounds (avg) Demand %

10 10 98.89 126.2 99.75
20 10 98.46 133 99.71
30 10 97.03 138.8 99.7
40 10 96.22 144.1 99.68
50 10 94.45 146.5 99.69
60 10 93.89 149.4 99.67
70 10 93.29 149.8 99.68
80 10 92.69 154.6 99.66
90 10 92.29 152.8 99.65
100 10 91.63 155.9 99.66

Table 6: Comparison of old scheme with our scheme
for various number of disks N=10 to 100. Shuffle
method 3. K=60, L=150.

that unexpected data movement patterns can yield high
benefit. We gave heuristics for the problem. We gave ex-
perimental evidence to suggest that our approach of do-
ing a few rounds of one-round-migration consecutively
performs very well in practice. In particular, in all our
experiments they were able to quickly adapt the existing

N Our Scheme Old Scheme
Rounds Demand % Rounds (avg) Demand %

10 10 99.33 128.3 100
20 10 99.31 139.6 100
30 10 99.22 148.9 100
40 10 99.30 159.2 100
50 10 99.29 166.6 100
60 10 99.32 170.8 100
70 10 99.29 178.7 100
80 10 99.25 183.6 100
90 10 99.29 190.3 100
100 10 99.32 196.1 100

Table 7: Comparison of old scheme with our scheme
for various number of disks N=10 to 100. Shuffle
method 4. K=60, L=150.

placement to one that is close to the optimal solution
for the changed demand pattern. We showed that, in
contrast, previous approaches took many more rounds
to achieve similar solution quality.
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A Appendix

A.1 Hardness proof Recall that the Subset-Sum
Problem is known to be NP -complete [4]. The Subset-
Sum problem is defined as follows: Given a set S =
{a1, . . . , an} and a number b, where ai, b ∈ Z+. Does
there exist a subset S′ ⊂ S such that

∑
aj∈S′ aj = b?

Let sum(S) =
∑

ai∈S ai.
The One-Round Migration problem is defined as

follows. We are given a collection of identical disks
D1, . . .DN . Each disk has a storage capacity of K, and
a load capacity of L. We are also given a collection
of data objects M1, . . .MM , and a layout of the data
objects on the disks. The layout specifies the subset of
K data objects stored on each disk. Each data object
Mi has demand ui. The demand for any data object
may be assigned to the set of disks containing that
object (demand is splittable), without violating the load
capacity of the disks. For a given layout, there may be
no solution that satisfies all the demand. Is there a one-
round migration to compute a new layout in which all
the demand can be satisfied?

A one-round migration is a matching among the
disks, such that for each edge in the matching, one
source disk may send an item to a disk that it is matched
to (half-duplex model).

We show that the One-Round Migration problem is
NP -hard by reducing Subset-Sum to it. We will create
a set of N = 3n + 4 disks, each having capacity two
(K = 2). There are 4n + 6 items in all. We will assume
that L is very large. The current layout is shown in
Figure 16.

The demand for various items is as follows: Demand
for Gi is L − ai. Demand for Ci = L

2 + ai. Demand for
Ei = L

2 . Demand for Fi = L − ai.
Demand for A = sum(A) + L

2 . Demand for H =
sum(A) + L

2 . Demand for X = L
2 . Demand for

Y = L−b. Demand for Z = L− (sum(A)−b). Demand
for W = L

2 .
If we assume that the demand for Ci is L

2 then the
assignment shown can satisfy all the demand. We will
assume that all but two of the disks are load saturated
(total assigned demand is exactly L). If the demand
for Ci increases by ai, then we have to re-assign some
of this demand. The claim is that all of the demand
can be handled after one round of migration if and only
if there is a solution to the subset-sum instance. It is
clear that a given solution (a matching) can be verified
in polynomial time.

(⇒) Suppose there is a subset S′ ⊂ S that adds
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Figure 16: Reduction from SUBSET-SUM to
ONE-ROUND-MIGRATION. Shaded portion indicates
empty space. Number within brackets following item
name indicates the amount of load assigned to the item.

exactly to b. We copy H (from the disk containing H
and W ) to the disk containing Z, and A (from the disk
containing X and A) to the disk containing Y . If ai ∈ S′

then we copy Ci to the disk containing Gi, and over-
write the copy of A on that disk. All clients for A from
this set of disks can be moved to the disk containing A
and Y . If ai /∈ S′ then we copy Ci to the disk containing
Fi and over-write the copy of H on that disk. All clients
for H from this set of disks can be moved to the disk
containing H and Z.

(⇐) First note that the total demand is 3nL + 4L.
Since there are 3n + 4 disks, all disks must be load
saturated for a solution to exist. We leave it for the
reader to verify that with the current layout there is
no solution that meets all the demand. Suppose there
exists a one-round migration that enables a solution
where all of the demand can be assigned. A new copy
has to be created for each Ci, or Ei since the total load
for Ci and Ei is L + ai, and exceeds L. Assume w.lo.g
that a copy of Ci will be made to handle the excess
demand of ai on this disk. We also assume without
loss of generality that ai < b so moving Ci to one of
the disks containing Y or Z would not be of much use
in load saturating those disks. The only choice is to
decide whether this new copy is made at the expense
of a copy of H or at the expense of a copy of A. Note
that Ci cannot overwrite any of the other items since
only a single copy of these items exists in the system.
Since this is a one-round migration, we cannot move
a single copy of an item to another disk, and then re-
write it subsequently. Note that Ci has to overwrite

the corresponding A disk or H disk, otherwise we will
be unable to recover all the demand. Since the disks
containing Y and Z are also load saturated, we will
copy an item onto those disks. Moreover we have to
move one item (either A or H) to the disk containing
Y . Suppose that A is copied to the disk containing Y
and H is copied to the disk containing Z. (The reverse
case is similar.) When we shift b amount of demand of A
to the disk containing Y , we have to completely remove
the demand from a disk containing A, otherwise we will
lose some demand. If Ci is moved to a disk containing
A then ai ∈ S′. If Ci is moved to a disk containing H
then ai /∈ S′. Since Ci over-writes A (H), all of the
demand of A (H) is moved out of the disk. Clearly, the
total size of S′ must be exactly b.
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