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Abstract

In this work, we introduce the Cov-MECF framework,
a special case of minimum-edge cost flow in which the
input graph is bipartite. We observe that several im-
portant covering (and multi-covering) problems are cap-
tured in this unifying model and introduce a new heuris-
tic LPO for any problem in this framework. The essence
of LPO harnesses as an oracle the fractional solution in
deciding how to greedily modify the partial solution.
We empirically establish that this heuristic returns so-
lutions that are higher in quality than those of Wolsey’s
algorithm. We also apply the analogs of Leskovec et.
al.’s [25] optimization to LPO and introduce a further
freezing optimization to both algorithms. We observe
that the former optimization generally benefits LPO

more than Wolsey’s algorithm, and that the additional
freezing step often corrects suboptimalities while fur-
ther reducing the number of subroutine calls. We tested
these implementations on randomly generated testbeds,
several instances from the Second DIMACS Implemen-
tation Challenge and a couple networks modeling real-
world dynamics.

1 Introduction

Flow networks have played a pivotal role in the design
of algorithms, with an impact spanning several areas of
computer science and operations research, from network
design and computer vision to scheduling and routing
[1]. In particular, many important covering problems
are special cases of the fundamental minimum-edge cost
flow problem (MECF). Several of them have direct con-
nections to applications outside of computer science;
from understanding glycoprotein formation [17] to iden-
tifying galaxies and quasars via spectroscopic data [27],
the effects of good algorithms for covering problems
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are far-reaching. In this work, we investigate the re-
lationship between MECF and generalizations of well-
studied covering problems as well as batch scheduling
models motivated by energy efficiency in data centers;
in the process, we develop powerful heuristics and op-
timizations and empirically demonstrate their merits in
scheduling contexts and other covering settings.

Recall the minimum-edge cost flow problem: G is
a directed graph given by G = (V, A) with a specified
source s and sink t. Each arc a has a corresponding
integral capacity c(a) and price κ(a). Given a target
flow value f∗, the goal is to find a flow function
on G realizing at least f∗ units of flow from s to t

with minimum cost. The difficulty of MECF is that
it adheres to the fixed cost model, under which any
positive flow sent across arc a incurs the entire cost κ(a)
of the arc. In other words, if A′ is the subset of arcs
along which positive flow is sent, the total cost of the
flow is

∑
a∈A′ κ(a).

Our study pertains to the following framework of
MECF, henceforth denoted Cov-MECF. The graph G

is such that G − {s, t} is a bipartite graph (X, Y, E), s

has arcs only to X and t has arcs only from Y . (All
edges in E are oriented from X to Y .) In addition, the
capacities c(a) are unit for a ∈ E. The arcs (y, t) also
have costs κy for all y ∈ Y ; the prices of all other arcs
are zero. See Figure 1(a). For ease of notation, we will
denote the capacities for edges from s to x ∈ X as cx

and capacities from y ∈ Y to t as cy.
Several covering problems fit into this framework,

including the following canonical problem. In Set
Cover, there is a ground set U = {u1, . . . , un} of
elements and a collection S ⊆ 2U of subsets S1, . . . , Sm.
The goal is to find a minimum cardinality subset S′ ⊆ S
such that ∪i∈S′Si = U . An O(log n)-approximation
exists for Set Cover [19, 26, 8], that greedily selects
the set that minimizes the cost to marginal benefit
ratio until all ground elements are covered. Feige [12]
provides a matching lower bound. Wolsey extended
the O(log n)-approximation to a larger class of covering
problems to which all problems considered here belong
[32]. The connection between Cov-MECF and a
natural generalization of Set Cover called Capacitated
Set Cover follows.
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(b) Capacitated Set Cover.

Figure 1: Each edge is labeled with its capacity, followed
by its fixed cost.

Capacitated Set Cover. In Capacitated Set Cover
(CapSC), each set Sj has a capacity k(j) and the
goal is to find the smallest collection of sets, with
the additional requirement that set Sj covers at most
k(j) elements. This problem can be cast into the
Cov-MECF framework by creating the following graph
G′ (depicted in Figure 1(b)). There is an “element
node” xi for every ground element ui ∈ U , as well as a
“set node” yj for every set Sj ∈ S. In addition, there
is a source s and an edge (s, xi) for every xi, with unit
capacity and zero cost. Create a sink t, and insert edge
(yj , t) for every yj , with capacity k(j) and unit cost.
Finally, there is an edge (xi, yj) if and only if element
ui can be covered by set Sj in the original instance.
Identifying a capacity-respecting set cover of minimum
size amounts to finding in G′ a minimum edge-cost flow
of value equal to n.

As this problem generalizes Set Cover, the lower-
bounds on the approximation guarantee apply. Wolsey’s
greedy algorithm is an O(log n)-approximation [32]∗.
We highlight that unlike its uncapacitated counterpart,
computing the marginal benefit of adding a set to a par-
tial cover requires a flow computation.

Despite the dire state of affairs at the theoretical
level, in the real world, there remains an undeniable
need to solve problems of a set cover flavor. One

∗Wolsey proved, in fact, it is an O(log(maxj k(j))-
approximation.

commonly implemented algorithm for doing so is in fact
Wolsey’s greedy algorithm. Despite its tight O(log n)
guarantee, studies indicate that in practice, it fares
much better. For instance, in their widely-cited result,
Kempe et. al. [21] examine the influence function
in social networks, demonstrating that not only does
it exhibit submodularity, Wolsey’s greedy algorithm
in fact returns solutions that are much closer to the
optimal solution than its worst-case bound would imply.
The approach has since been applied to a plethora of
problems within the social networks literature, ranging
from outbreak detection in networks [25] to the spread
of information via the blogosphere [18].

The primary disadvantage of Wolsey’s algorithm is
that each iteration may involve computing the marginal
benefit for many candidate sets, requiring a high num-
ber of subroutine flow calls. For large instances, this can
render Wolsey’s algorithm unacceptably slow, limiting
the size of the input on which it can be run. This issue
has been the subject of considerable investigation within
the last decade. Leskovec et. al. [25] show that if sets
are considered in a particular order, irrelevant computa-
tions can be avoided, thereby reducing the total number
of flow calls. Their algorithm CELF maintains the spirit
of Wolsey’s greedy algorithm and was recently improved
to CELF++ by Goyel et. al. [16]. The concern is also
a focus of this study.

Interest in variations of the Set Cover problem ex-
tends to the Sloan Digital Sky Survey project, an effort
toward surveying the history of astronomy. Lupton et.
al. [27] studied a special geometric case of Capacitated
Set Cover in the context of collecting telescopic snap-
shots of the universe. The telescope may be pointed
to a “disc”-shaped area in the sky to capture a high-
resolution image for processing; the restriction is that
the number of galaxies per image that can be processed
cannot exceed a given constant. The goal is to pro-
cess each object of interest via the smallest number
of snapshots. Finding good solutions to this problem
has implications on the order of millions of dollars. For
this NP -hard problem, Lupton et. al. propose a fast,
greedy heuristic whose solutions are in general about
20 percent better than their near-uniform counterparts.
Their method is faster than standard IP approaches in
the operations research literature and in practice, yields
solutions of impressive quality.†

All of these problems are captured in the Cov-
MECF framework. Despite its wide array of applica-

†We note that significant theoretical attention has been
given to a special case of geometric set cover, in which ground
elements are points and sets are objects in Euclidean space
[28, 31, 5, 11, 3, 4]. Many of the results generalize to multicovering
variants, but under a different notion of capacitated sets.



tions, MECF is in general less understood compared to
its well-studied min-cost flow counterpart, even when
restricted to the special case considered here. MECF
is a classic NP -hard problem, listed as [ND32] in
[14]. Krumke et. al. [23] showed that unless NP ⊆
DTIME(nO(log log n)), there exists no (1 − ǫ) ln f∗-
approximation for any constant ǫ > 0. Even et. al.
[10] established that unless NP ⊆ DTIME(npolylog(n)),

there does not exist a 2log1−ǫ n-approximation, for any
constant ǫ > 0.

Despite the fact that it is a special case of MECF,
Cov-MECF still subsumes many central problems. One
benefit of this formation is that it captures multi-
set multi-cover problems. In other words, one can
demand that elements be covered multiple times. This
is an imperative aspect of many scheduling problems,
in particular, when jobs of non-unit length must be
scheduled.

Our concrete contributions are two-fold:

1. We introduce the LPO algorithm for problems
within the Cov-MECF framework. While Wolsey’s
approach builds a cover from the empty set, LPO

iteratively trims off sets from the initial feasible
cover C = S. The essence of LPO harnesses the
fractional optimal solution to guide the selection
of the next set to remove. We apply the analogs
of Leskovec et. al.’s [25] optimizations to LPO

and empirically compare the performance to that
of Wolsey’ greedy algorithm. We find that despite
its lack of theoretical bounds, on an overwhelm-
ing majority of instances, LPO returns solutions
that are closer to optimal than Wolsey’s algorithm.
We also discover that the performance verdict is
largely dictated by the specific covering problem.
In particular, for instances of Capacitated Vertex
Cover and Active Time Scheduling (discussed be-
low), LPO is faster than Wolsey’s algorithm. The
reverse is true for general Capacitated Set Cover;
however we find that on these instances, the op-
timization of Leskovec et. al. levels their perfor-
mances rather evenly.

2. We further propose an additional “freezing” step.
Before LPO (Wolsey’s algorithm, respectively) is
run, the LP relaxation of the covering problem is
solved. Any set variables that take on integral
values in the fractional solution are frozen to those
values (0 or 1, typically) prior to the invoking of the
algorithm proper. Our experiments indicate that
more often than not, freezing improves rather than
hurts the quality of the solution. More importantly,
freezing drastically reduces the number of flow
calls, since the majority of the variables attain

integral values in the fractional solution.

We note that on smaller-sized input, directly solving
for the optimal integral solution may be faster than exe-
cuting the heuristics mentioned above, given their itera-
tive nature. Thanks to the current technology of mixed
integer program solvers, it is not until the instance size is
rather large that we truly see the cost of computing the
optimal solution via exponential heuristics. Our discus-
sion on performance pertains to approaches that scale
and thus focuses on the comparison of the polynomial-
time heuristics and their optimizations.

The rest of this paper is outlined as follows. We
devote the remainder of this section to the delineation
of the covering problems considered in this study. In
Section 2, we revisit Wolsey’s algorithm, define LPO

and describe the optimizations applied. Section 3
addresses the implementation details and data sets.
Results, interpretation and discussion follow in Sec-
tion 4.

Covering Problems. Cov-MECF captures sev-
eral important covering problems. In addition to
Capacitated Set Cover, we consider two other problems
in this study, the first of which is a well-known classic
special case of Capacitated Set Cover. The second
application is motivated by data centers and the
growing need for an algorithmic understanding of
energy-related issues [15].

Capacitated Vertex Cover (CapVC). In the stan-
dard Vertex Cover problem, we are given a graph
G = (V, E) with weights w(v) on the vertices. The goal
is to find a subset S ⊆ V of minimum weight such that
every edge is incident to a vertex in S. This is a special
case of Set Cover in the sense that each element can be
covered by only two sets.

In the capacitated version, vertex v has capacity
k(v), i.e. an upperbound on the number of edges that
can be assigned to it. The goal is to find a minimize size
cover that respects the capacities. When the capacities
are soft, then multiple copies of a vertex v may be
selected; each copy is permitted to cover up to k(v)
edges, and the cost w(v) is incurred for each copy of v

in the vertex cover. This problem is NP-hard. Guha
et. al. [17] give a primal-dual 2-approximation for the
soft capacities case. For the unweighted hard capacities
version, a 2-approximation was given by Gandhi et. al
[13], improving upon the initial bound of three given
by Chuzhoy and Naor [7]; the weighted case is Set
Cover-hard. Extensions to hypergraphs were made
by Khuller and Saha [30]. As far as we know, there
is no experimental research suggesting heuristics with
performance better than twice the optimal solution.



Active Time Scheduling (ATS). Classical schedul-
ing theory has traditionally focused on objectives that
capture interests of the scheduler (e.g. makespan) or of
individual jobs (e.g. max tardiness, flow time). How-
ever, more and more commonly, the most monetarily
expensive computations are executed over massive
corpora residing at data centers. Between facility
maintenance, cooling requirements and powering
hardware, the energy consumption of a data center
translates into a budget on the order of millions of
dollars. Understanding the extent to which this cost
(as well as the carbon footprint) can be mitigated is an
area of ongoing research within the systems community.

The considerable bulk of the power consumed by a
data center is shared between cooling components and
the energy requirements of the memory storage units;
the power consumed by the processors of a data center
accounts for less than two percent of the total power
cost [2]. However, changes in scheduling policies at
the processor level “have a dramatic impact in data
center efficiency defined as the amount of ‘useful work’
done, or performance delivered per watt consumed”
[15]. As highlighted in the following quote, this calls for
scheduling algorithms expressly tailored toward energy
efficiency, in contrast to the classical objectives studied
in the past.

“Potential benefits include increased data
center capacity and reduced capital expen-
ditures as well as reduced power and cool-
ing costs with power-aware job scheduling
. . . However, current batch job scheduling al-
gorithms and configurations are tuned only
to optimize performance; energy efficiency has
been ignored” [15].

In an effort to address this concern, the following
scheduling model was introduced by Chang et. al.
[6]. Given is a batch machine that can work on up
to B different jobs simultaneously as well as a memory
storage unit holding the data that each job must access.
Each job Ji has a set of time intervals Ti during
which the processor may work on it. Ti being a single
interval corresponds to the standard setting in which
the job has a release time and deadline; in this case,
we denote its feasible region by its release time and
deadline. (In practice, it is often the case that jobs
are periodic in nature; there is a sizeable research
effort in periodic scheduling. Moreover, a job’s feasible
region may depend on irregular constraints, e.g. the
availability of an external resource or a user’s schedule.
The model proposed is general enough to capture jobs of
this nature.) The processor must devote pi slots to Ji,

during which time, the memory storage unit should be
“on”. The active time is the total time that memory is
on. The notion of active time hinges on the assumption
that whenever the storage unit is on, a constant power
cost is incurred, whether the processor is working on B

jobs or a single job, i.e. that the power consumed by
the processor is negligible to that of the storage unit, as
commonly observed in data centers [2, 15].

The goal is to find a schedule that minimizes
active time subject to all jobs being completed by
their deadlines and the processor’s batch capacity re-
spected. Within the scope of this paper, jobs have a
single feasible interval (i.e. a release time and dead-
line) and preemption is allowed only at integer time
points. We call this problem active time schedul-
ing. In Graham’s notational convention, the problem is
P |rj , dj , pj , pmtn+|

∑
t at, where at is 1 whenever mem-

ory storage unit is on at time unit t, and 0 otherwise.
This problem fits into the Cov-MECF framework in the
following way: the left side X = J consists of job nodes
which must be “covered” multiple times, according to
their lengths. The right side Y = T is the set of time
slots, each of which can be assigned at most B jobs.
The parameter f∗ is

∑
i pi. Notice that subgraph (J, T )

is convex‡.
In general, classic scheduling algorithms, e.g. Earli-

est Deadline First policies, do not immediately minimize
active time. When jobs have unit length and a single
release time and deadline, minimum active time can be
achieved via a 2-pass linear time algorithm. For arbi-
trary feasible regions and B = 2, there is also an ex-
act algorithm based on identifying degree-constrained
subgraphs[6]. For arbitrary B, minimizing active time
becomes trivially NP -complete via a reduction from
Vertex Cover. On the other hand, the complexity of
minimizing active time for arbitrary length jobs that
have a single feasible interval (i.e., a release time and
deadline) remains unclear. All of these problems fit
within the Cov-MECF framework.

Demaine and Zadimoghaddam [9] recently consid-
ered a different scheduling problem of minimizing cumu-
lative energy consumption for unit-length jobs over mul-
tiple processors, demonstrating that the coverage func-
tion is submodular, i.e. that the greedy algorithm yields
an O(log n)-approximation.

A more general scheduling model is considered by
Khuller et. al. [22], in which jobs must be assigned
to machines, each machine has an associated cost and
capacity, and subject to staying within a budget, the

‡A bipartite graph (X, Y ) is convex means that there is an
order y1, y2, . . . of the elements in Y such that for any node x ∈ X,
if x is adjacent to yi and yj , then x is also adjacent to yk for all
k ∈ [i, j].



goal is to purchase a set of machines and assign jobs to
them to minimize the maximum load on any machine.
This problem is clearly Set Cover-hard. Khuller et.
al. give a greedy algorithm achieving twice the optimal
makespan, when it is permitted to violate the budget
by a factor of O(ln n).

2 Algorithms for Covering

We begin this section with a review of Wolsey’s greedy
algorithm. Then we introduce the LPO heuristic.
Finally, we describe the optimizations applied to both
algorithms. Even though for simplicity’s sake, the
discussion is given in the context of Capacitated Set
Cover, the algorithms and optimizations can be applied
to other covering problems within this framework.

2.1 Wolsey’s Algorithm Wolsey’s greedy algo-
rithm begins with the empty cover C and iteratively
adds sets to it until all ground elements can be covered.
In each iteration, it selects the set that minimizes the
cost to marginal benefit ratio. More formally, it adds to
C the set S that minimizes w(C, S), with

w(C, S) =
c(S)

f(C ∪ {S})− f(C)

for f(C∪{S})−f(C) > 0 and unbounded otherwise, and
where c(S) is the cost of S and f(C′) is the maximum
number of elements that can be covered by C′.

2.2 LPO While Wolsey’s algorithm starts with the
empty solution and greedily adds sets to it until it
becomes feasible, the LP oracle algorithm (LPO) begins
with the feasible solution C′ = S and greedily removes
sets until C′ is a minimal cover, i.e. no more sets can be
removed without violating feasibility.

At the heart of LPO is an LP solver that provides
“hints” as to which sets should be closed. Over the
course of the algorithm, LPO maintains a cover C
of sets that have not yet been closed, i.e. removed.
In iteration i, it determines the set Si of sets where
Si = {S ∈ C : C\{S} is feasible }. In other words, Si is
the sets that are candidates for being removed from C.
LPO closes the set S′ such that

S′ ∈ arg min
S∈Si

ℓ(C\{S})

where ℓ(C′) is the fractional cost of the instance in which
only sets in C′ can be open (even partially open). The
value ℓ(C\{S}) can be interpreted as the fractional cost
of removing set S from C. Intuitively, LPO performs
well when ℓ(C\{S}) corresponds to the effect of closing
S on the integral solution. LPO repeats these steps
until there are no more open sets that can be closed.

The intuition behind this is that the LP oracle gives
warning when closing a set might impose a heavy cost
in later iterations. In some sense, it gives an idea of
which sets are more important than others.

As an example, consider the following instance of
active time scheduling of unit jobs with batch parameter
B = 5 (Figure 2). There is a block of four rigid jobs,
each of length four, which must be scheduled in slots six
through nine. These slots each have room for one more
job unit. What does the rest of the optimal solution
look like? If the last slot is open, then one can achieve
an active time of 6 (or B+1 in general). However, if the
last slot is closed, then the unit jobs are forced to occupy
the remainder of the otherwise rigid block, which will
then force the long chain of 5 (or B) to be scheduled
earlier, for a total active time of 9 (or 2B − 1). This is
suboptimal, and LPO can detect this suboptimality. It
cannot feasibly close slots six through nine. If it closes
the last slot, the cost of the scheduling will necessarily
go up; the fractional solution subject to slot 10 being
closed reflects this.

B = 5

5
4
4
4
4

1
1
1
1

1
1
1
1

t = 1 2 3 4 5 6 7 8 9 10

Figure 2: An example of Active Time Scheduling,
highlighting the strength of LPO.

One can identify instances on which LPO performs
poorly. Figure 3 is such an instance. The optimal
cover is {S1, S2, S5} and has a total cost of seven:
S1 covers {e1, e4, e5}, S2 covers {e3}, and S5 covers
{e2, e6}. However, LPO can return a cover of cost
eight: in its first iteration, it computes the values
ℓ = (7.0, 8.0, 7.0, 7.0,∞), where ℓi is the fractional cost
subject to the removal of set Si. At this point, LPO has
a choice between removing sets S1, S3 and S4. Removal
of set S3 or S4 will result in an optimal solution. On the
other hand, removing set S1 is a mistake, leading to the
cover {S3, S4, S5} of cost eight. Unfortunately, LPO

can select any set Si of minimum ℓi value, breaking ties
arbitrarily. For example, as in our implementation, it
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Figure 3: An example of Capacitated Set Cover on
which LPO can perform suboptimally. Sets are labeled
by their capacities, followed by their costs.

may favor sets of lower index. The issue extends beyond
tie-breaking conventions. Even though LPO views sets
S1, S3 and S4 as equally good candidates for removal, ℓ3

and ℓ4 can be achieved via integral assignments, while
no such assignment exists for ℓ1. In this regard, the
values ℓi can misguide LPO; they are not always good
estimates of the cost to the integral solution. Despite
this, our results empirically demonstrate that LPO

performs very well in general, frequently beating out
Wolsey’s algorithm and often achieving optimality itself.

2.3 Optimizations The primary disadvantage
of Wolsey’s algorithm is that it can require Θ(m2)
computations of w(C, S), each being quite costly. In
particular, for problems involving hard capacities, a
maximum flow computation is necessary to determine
w(C, S); it may be that the elements in S can be
covered by sets already in C, but that due to the
capacity constraints, the addition of S to C would
still increase the total number of elements that can
be covered. LPO is plagued by a similar affliction,
in that it can necessitate several computations of
ℓ(C′), especially on instances for which there are many
feasible covers of small cardinality. The following
optimizations were designed to reduce the number of
such flow computations without compromising solution
quality.

Optimization: Ordering sets [25]. The fol-
lowing observation can reduce Wolsey’s number of
computations, without affecting the cost of the solu-
tion, up to tiebreaking. Due to the submodularity of f ,
the value of w(C, S) for a given set S can only increase

as C grows. Therefore one can delay recomputing
w(C, S) for sets S that already had high values in
previous iterations, since they are guaranteed not to
be selected in the current iteration. More formally,
let Ci be the partial cover at the beginning of the ith
iteration. Suppose that S1, S2, . . . , Sm is the order
by which the algorithm computes w(Ci, ·). Given a
particular set Sj , let Bj denote the minimum w(C, ·)
value among the first j sets, i.e.

Bj = min
S∈{S1,...,Sj}

w(Ci, S)

If, for set Sj+1 and some earlier iteration i′ < i,
Bj < w(Ci′ , Sj+1), then it follows that Bj < w(Ci, Sj+1)
as well, since w(Ci′ , Sj+1) ≤ w(Ci, Sj+1). Thus we
know that Sj+1 will not be the next set added to Ci,
and there is no need to compute w(Ci, Sj+1) explicitly.
This observation holds regardless of the order by which
the algorithm iterates over sets. Thus, if it considers
sets in increasing order of their most recently computed
w(·, Sj) value, the number of computations can only
further decrease while the solution cost remains the
same (again, up to tiebreaking).

As observed in [25], applying this optimization to
Wolsey’s algorithm yields a significant improvement in
performance; we demonstrate this independently in our
results. Since the the spirit of the original algorithm is
preserved, the O(log n) guarantee still holds. However,
as before, this bound is somewhat irrelevant since, as
with the naive implementation, the solution quality is
often much better.

One can apply the analogous optimization to LPO,
since for any set S, ℓ(C\{S}) can only increase as C
gets smaller with each passing iteration. We omit the
details since they are a straightforward modification of
the optimization as applied to Wolsey’s algorithm.

Optimization: Freezing set variables. We
say a set is closed if it is not in the cover and open
otherwise. Simply stated, the following preprocessing
step is done prior to the execution of the (original
or otherwise optimized) algorithm: first solve the LP
relaxation (see Appendix B). Any sets having values
0 or 1 in the fractional optimal solution are frozen to
being closed or open, respectively. Then run Wolsey’s
algorithm (LPO, respectively) on the remaining un-
frozen sets, until a feasible solution is attained (until
no more unfrozen sets can be closed, respectively).
Note that for this optimization applied to Wolsey’s
algorithm, the theoretical bounds no longer hold. In
spite of this, we empirically demonstrate that Wolsey
and LPO with both modifications return solutions
that are still quite close to optimal. In particular,
not only does the freezing optimization frequently



correct suboptimal solutions, it also severely reduces
the number of flow evaluations that would have been
necessary otherwise.

3 Implementation

All implementations were developed in Java, invok-
ing CPLEX (version 12.4) wherever a flow or LP call
was needed. Experiments were performed on a shared
machine with eight 2.29gHz quad-core processors and
256gb RAM, the unoptimized heuristics taking any-
where from several hours to days to compute over the
heavier data sets.

3.1 Data Sets We generated several structured ran-
dom instances of CapSC and ATS. For notational con-
venience, we describe CapSC in the context of jobs and
slots, rather than ground elements and sets. Given pa-
rameters (N1, N2, M1, M2, B), instances of n jobs for
N1 ≤ n ≤ N2 random and T slots for M1 ≤ T ≤ M2

random were created. For a CapSC instance, capacities
bounded by B were independently and randomly chosen
for each slot, and each job randomly selected the slots
that could cover it. If the instance was that of ATS,
a single capacity B′ < B was randomly selected, and
each job randomly chose its release time, a deadline af-
ter its release time, and a job length no more than the
length of its feasible window. Infeasible instances were
dropped and replaced with feasible ones.

Fifteen CapSC instances and fifteen ATS instances
were generated with parameters (25, 50, 30, 60, 6).
These data sets are denoted “small” sets. The
“medium” data set consisted of five CapSC instances
and five ATS instances, generated with parameters
(50, 100, 75, 180, 7). For the CapVC testbed and pa-
rameters (N1, N2, P1, P2), a random graph G(n, p) was
created where n was uniformly selected at random
from [N1, N2] and with p similarly selected from the
range [P1, P2]. Then, capacity k(v) was computed as
k(v) ∼ U(0, d(v)). Infeasible instances were dropped
and replaced with feasible ones. Twenty instances were
generated from each of the following parameter vectors:
(15, 50, 0.2, 0.95) and (80, 130, 0.2, 0.6).

Our heuristics were also tested on modified graph
instances taken from the public testbed given by the
DIMACS Implementation Challenge [20]. Some graphs
were originally intended to test Clique algorithms and
are quite dense. Others were intended to test heuristics
for the k-coloring problem and are less so. Finally,
we evaluate our heuristics on two instances that model
large-scale social interaction and connectivity structure,
respectively. Newman’s NetSci graph is a collaboration
graph between authors publishing in Network Science
[29]. It contains 1589 vertices and 2,742 edges. We

also consider a network of peer-to-peer file sharing
connections; it contains 6,301 vertices, one per Gnutella
host, and 20,777 edges denoting observed connection
between two hosts [24].

We note that for instances G = (V, E) of CapVC,
the X side of the Cov-MECF framework has |X | = |E|,
while the Y side has |Y | = |V |. The out-degree of each
node x ∈ X is two, since each edge can be covered only
by its two incident nodes.

3.2 Inducing Capacities The DIMACS graphs and
the real world graphs are instances of standard Vertex
Cover; we aggressively imposed capacities that were as
low as possible, without rendering the instance infeasi-
ble in the following way. For a given instance, assign to
vertex v a capacity that is selected independently and
uniformly from the range [⌈λd(v)⌉, d(v)], where d(v) is
the degree of vertex v and 0 < λ < 1 is a constant.
The subsequent procedure was followed to ensure that
feasibility was maintained: for each candidate λ, as-
sign capacities until feasibility is achieved or the fifth
attempt has been made. If the instance is infeasible,
increase λ by 0.05 and repeat. This process is guaran-
teed to return feasible capacity assignments as long as
the uncapacitated version is feasible. In our case, λ was
initialized to 0.8.

3.3 Additional Perspective Two LP rounding al-
gorithms, SD and SR, were implemented to provide ad-
ditional perspective to the solution qualities returned by
LPO and Wolsey’s algorithm. Let uy denote the value
of the indicator variable for the set Sy corresponding
to y ∈ Y in the fractional solution. SD adds Sy to the
cover if uy ≥ 1

2 . If the cover is still not feasible, SD
greedily adds the remaining sets in decreasing order of
their uy’s. SR adds each set Sy to the cover indepen-
dently with probability py = min{1, 2uy}. If the cover
is feasible, it returns; otherwise, it repeats.

4 Results and Discussion

In this section, we discuss the results of the various
implementations of Wolsey’s algorithm and LPO. We
evaluate them on solution quality and efficiency of com-
putation perspectives. For the latter, the primary met-
ric considered is the total number of flow (or LP) eval-
uations made. We draw no conclusions based on tim-
ing constructs since the experiments were executed on a

§One instance failed to complete computation. Its contribu-
tion is omitted from the relevant statistics.



Num. Inst. LPO LPO/OO LPO/OOF Wol Wol/OO Wol/OOF SD SR
ATS 20 0 0 0 3 5 0 0 0

CapVC 23 0 1 1 7§ 6 1 6 11
CapSC 20 1 1 1 5 6 5 12 18

Table 1: Number of suboptimal instances for all implementations of LPO and Wolsey’s algorithm on random
testbeds. The total number of instances in each testbed is also given in the first column.

LPO LPO/OO LPO/OOF Wol Wol/OO Wol/OOF SD SR
ATS 1.000 1.000 1.000 1.003 1.005 1.000 1.000 1.000

CapVC 1.000 1.001 1.001 1.012§ 1.009 1.001 1.027 1.045
CapSC 1.013 1.013 1.013 1.073 1.085 1.068 1.250 1.760

Table 2: Average ALG:OPT ratio for all implementations of LPO and Wolsey’s algorithms on the random
testbeds.

shared machine. However, we note that Wolsey’s algo-
rithm involves max flow computations while LPO calls
the relaxation of min-edge cost flow computations. On
some of the larger graphs, the vanilla implementations
of Wolsey and LPO did not complete, and only the
results of their optimized versions are reported. For
the sake of notational convenience, ALG/OO will re-
fer to the algorithm ALG with optimization by order.
ALG/OOF refers to ALG with both optimization by
order and optimization via freezing.

4.1 Solution Quality On the scheduling instances
(line 1 of Table 1), LPO, SD and SR returned optimal
solutions every time. On the other hand, Wolsey’s
algorithm was suboptimal on several instances, even
with intelligent ordering of the sets. In some cases,
intelligent ordering even hurt Wolsey’s solution due to
the change in tie-breaking. On the bright side, all
of Wolsey’s suboptimalities were corrected by freezing.
On CapVC instances, LPO underperformed on one
instance while Wolsey’s algorithm was suboptimal on
seven (six of which were corrected with freezing). While
this is comparable to the number of instances on which
SD and SR were suboptimal, Table 2 demonstrates that
Wolsey’s solutions were on average significantly closer to
optimal than those of SD and SR: Wolsey’s algorithm
attained an average 1.009-approximation (1.001 with
freezing), while SD and SR were on average within 1.027
and 1.045 of optimal. LPO and Wolsey’s algorithms
maintained similar performance on the CapSC testbed,
though the freezing optimization did little to improve
the solution.

For the DIMACS and real world graphs, the opti-
mized version of LPO achieved optimality on all but
one of them while Wolsey’s algorithm underachieved on
at least two graphs, failing to complete on one other.

Nevertheless, the performance is reasonable, relative to
the performance of SD and SR on those graphs. See
Tables 8, 9 and 10 in Appendix A for more.

It is clear that though there exist no worst-case
guarantees for LPO, it returns optimal solutions signif-
icantly more often than Wolsey’s implementations. On
all implementations, whenever any of the implementa-
tions were suboptimal, they were never so by much; this
is in stark contrast to SD and SR solutions (see Table 2)
and only confirms what has already been long accepted
in practice: Wolsey’s algorithm on the whole performs
much better than its theoretical bound would suggest.

We point out that the freezing optimization did
not hurt the quality of solution in any of the random
instances. At least for LPO, this is not surprising. The
LPO’s subroutine involves solving the LP relaxation of
the problem; this is the exact LP relaxation that the
freezing step solves, and the variables that are frozen to
zero are in fact the sets that LPO would have discarded
first anyway.

4.2 Computational Efficiency On the ATS,
CapVC and DIMACS instances, the vanilla implemen-
tation of LPO required significantly fewer subroutine
calls than its Wolsey counterpart; the reverse is true
for the CapSC instances. This is to be expected,
since by design, LPO and Wolsey’s algorithm are
complementary in their approaches. On instances
for which LPO’s final solution consists of a small
number of sets, LPO will make many calls. Similarly,
on instances where feasible covers tend to be large,
Wolsey’s algorithm will involve many more iterations.
The multicover property of the ATS instances results
in higher cardinality solutions. The sparsity of the
CapVC instances, i.e. that each edge can be covered
by at most two vertices, leads to a similar effect.



See Appendix A for tables on the actual average
number of subroutines required by each implementation
for each random testbed. It also contains statistics on
the DIMACS graphs, the NetSci graph and the Gnutella
graph, specifically, the actual solution values acquired as
well as the number of subroutine calls required by each
of the implementations.

4.2.1 Optimization: Ordering sets This partic-
ular optimization yields significant improvement in
the number of calls, though the extent of its ef-
fect varies from testbed to testbed. On instances
where Wolsey’s vanilla algorithm performed better than
LPO’s, intelligently ordering sets leveled the playing
field. The reverse is not true; on instances where vanilla
LPO already involved fewer calls than vanilla Wolsey,
LPO/OO continued to excel.

Table 3 contains the average percentage reduc-
tion per implemention, per generated testbed. On
ATS instances, LPO enjoyed greater improvement than
Wolsey. For example, on the medium set, the optimiza-
tion reduced LPO’s average number of calls from 3700
to 271, while it only reduced Wolsey’s average number
of calls from 9699 to 1110. We point out that Wolsey’s
vanilla implementation did not finish on one instance of
the medium CapVC set, so its percentage reductions are
not reported. On all CapSC instances, this optimization
in some sense leveled the playing field for LPO. LPO

observed an average 91 percent reduction in the num-
ber of calls while Wolsey witnessed only a 34 percent
reduction. However, this reduction is misleading; it is
only because vanilla LPO involved so many more calls
than vanilla Wolsey. For example, on the medium data
set, the optimization reduced LPO’s average number of
calls from 7880 calls to 314 calls and Wolsey’s from 475
calls to 331. See Tables 5 and 6 in Appendix A for more.

On each DIMACS instances on which both vanilla
implementations completed, the number of calls invoked
by LPO was at least fifty percent less than the number
of calls made by Wolsey. Intelligently ordering the
sets yielded an average 58 percent reduction in LPO’s
number of calls and a 67 percent reduction in that
of Wolsey’s. Because each edge can be covered by
at most two vertices, the final solution for both LPO

and Wolsey tended to be of higher cardinality, relative
to the total number of vertices. This explains why
LPO on average made fewer calls than Wolsey, even
with optimizations applied. On the other hand, the
number of calls made by Wolsey is significantly less on
the NetSci graph than that of LPO, at least on their
optimized implementations.

4.2.2 Optimization: Freezing set variables By
and large, the freezing optimization further improved
the performance of LPO and Wolsey, giving LPO the
edge over Wolsey. In fact, for most of the random
testbeds, LPO/OOF involved on average fewer subrou-
tine calls than Wolsey/OOF (see Tables 5 and 6 in Ap-
pendix A). The discussion that follows pertains to the
percentage reduction in number of calls.

For each ATS instance, freezing yielded a feasible
integral solution, resulting in identical performances
by LPO/OOF and Wolsey/OOF. Though there exist
scheduling instances for which the fractional solution
is not integral, these examples may be few in number;
none of them were present in the random testbed. On
the CapVC testbed, freezing witnessed an additional
44 percent reduction in LPO’s performance, for a
combined 93 percent reduction in tandem with the
ordering optimization. Wolsey’s algorithm saw a total
97 percent reduction in the number of calls, 22 percent
attributed to the freezing optimization. For the CapSC
instances, the freezing step further reduced LPO’s
number of calls to 98 percent that of vanilla LPO.
While intelligently ordering the sets reduced Wolsey’s
number of subroutine calls by about 34 percent, the
freezing step additionally reduced it by another 45,
for a combined 79 percent reduction in the number
of calls. This suggests that the impact of freezing
on Wolsey’s algorithm, lack of theoretical guarantee
notwithstanding, is comparable to that of imposing an
intelligent orders on sets, at least for Capacitated Set
Cover.

Freezing had negligible effect on most of the DI-
MACS instances, since the fractional solutions had few
integral values. However, the opposite was true for both
the NetSci graph and the Gnutella peer-to-peer net-
work, the fraction solution of the latter achieving inte-
grality. Thus, frozen implementations of both LPO and
Wolsey’s algorithm were impressive, in contrast to their
less-optimized counterparts, all of which timed out after
several hours. See Tables 9 through 12 in Appendix A.

5 Conclusions

In this work, we introduce the Cov-MECF framework
and study several important covering problems in the
context of this model. We introduce the heuristic LPO,
which queries the fractional solution to guide the iter-
ative removal of sets from a working cover. We em-
pirically demonstrate that LPO returns solutions that
are closer to optimal than those of Wolsey’s algorithm,
while the required number of subroutine calls is largely
dictated by the nature of the input. However, with
the freezing optimization, LPO almost unilaterally re-
quires fewer subroutine calls than Wolsey’s algorithm,



LPO/OO LPO/OOF Wol/OO Wol/OOF
ATS 0.812 0.996 0.777 0.998

CapVC 0.492 0.932 0.747§ 0.967
CapSC 0.912 0.977 0.338 0.792

Table 3: Average percentage reduction in the number of subroutine calls.

though the latter still enjoys heavy benefits from freez-
ing. These results solidly establish LPO as a competi-
tive (if not superior) alternative to Wolsey’s greedy al-
gorithm. In general, we find that freezing yields a signif-
icant reduction in the number of calls, while very rarely
harming the quality of the solution.

It remains to further explore the value of LPO and
the freezing optimizations for other covering problems,
for example the unrelated machine activation problem
introduced by Khuller et. al. [22]. It is also unclear
whether these contributions extend beyond covering
problems, e.g. to probabilistic models which exhibit
similar graph structure to Cov-MECF.
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A Appendix: Additional Graphs and Charts

This section contains statistics regarding solution qual-
ity and percentage reductions in the number of flow eval-
uations. What follows is a description of the size of the
randomly generated testbeds. Tables 5 and 6 contain
the actual average number of calls (as opposed to the
percentage reductions that were reported in Table 3 in
Section 4). Following that are statistics regarding the
larger graphs. The first five instances are taken from
the DIMACS 2nd Implementation Challenge. The sixth
graph is one of author collaborations for Network Sci-
ence [29], and the last is one of connections in a peer-
to-peer graph [24].

num instances avg n avg m

ATS
small 15 39 43

medium 5 77 136

CapVC
small 20 229 30

medium 3 8492 191

CapSC
small 15 36 47

medium 5 74 121

Table 4: Descriptions of the generated testbeds.

LPO LPO/OO LPO/OOF

ATS
small 440.07 85.40 2.00

medium 3700.80 271.00 2.00

CapVC
small 118.20 47.20 8.53

medium 617.33 206.00 14.25

CapSC
small 1141.53 108.73 26.13

medium 7880.20 313.60 84.40

Table 5: LPO’s average number of calls on randomly
generated testbeds.

Wol Wol/OO Wol/OOF

ATS
small 968.73 243.00 2.00

medium 9699.20 1109.80 2.00

CapVC
small 534.73 120.60 13.60

medium 6366.00 568.00 24.25

CapSC
small 182.80 118.80 39.07

medium 474.60 330.60 82.60

Table 6: Wolsey’s average number of calls for randomly
generated testbeds.

¶Computing the optimal solution timed out. Freezing revealed
that the fractional solution was integral.



n m Num Frozen
johnson8-2-4 210 28 0
hamming6-4 704 64 0
hamming6-2 1824 64 0

mulsoli4 3946 185 11
school1 19095 385 23
NetSci 2742 1589 1300

Gnutella 20777 6301 6301

Table 7: Descriptions of DIMACS, NetSci and Gnutella
instances. The right column gives the number of
variables that would be frozen to 0 or 1 if the freezing
optimization were applied.

OPT SD SR
johnson8-2-4 21 28 28
hamming6-4 52 64 64
hamming6-2 62 64 64

mulsoli4 99 111 161
school1 344 376 379
NetSci 944 1022 1020

Gnutella 4434¶ 4434 4434

Table 8: Optimal solutions and performance of scaling
algorithms for DIMACS, NetSci and Gnutella graphs.
The scaling algorithms provide additional perspective
on the solution quality of LPO and Wolsey.

B Cov-MECF Program

The integer program capturing Cov-MECF is straight-
forward and is given below.

min.
∑

y∈Y κyuy

s.t.
∑

y∈δ(x) fx,y = fs,x ∀ x ∈ X

∑
x∈δ(y) fy,t = fy,t ∀ y ∈ Y

fs,x ≤ cx ∀ x ∈ X

fy,t ≤ cyuy ∀ y ∈ Y

fx,y ≤ 1 ∀ (x, y) ∈ E
∑

x fs,x ≥ f∗

fx,y ≤ uy ∀ (x, y) ∈ E

uy ∈ {0, 1} ∀ y ∈ Y

uy, fs,x, fx,y, fy,t ≥ 0 ∀ x ∈ X, y ∈ Y

LPO LPO/OO LPO/OOF
johnson8-2-4 21 21 21
hamming6-4 52 52 52
hamming6-2 62 62 62

mulsoli4 99 99 99
school1 – – 347
NetSci – 944 944

Gnutella – – 4434

Table 9: Value of LPO’s solutions on DIMACS, NetSci
and Gnutella graphs.

Wol Wol/OO Wol/OOF
johnson8-2-4 23 24 24
hamming6-4 56 56 56
hamming6-2 62 62 62

mulsoli4 – 99 99
school1 – – –
NetSci – 947 944

Gnutella – – 4434

Table 10: Value of solutions returned by Wolsey’s
algorithm on DIMACS, NetSci and Gnutella graphs.

LPO LPO/OO LPO/OOF
johnson8-2-4 196 56 58
hamming6-4 754 200 202
hamming6-2 189 132 134

mulsoli4 12354 452 430
school1 – – 1603
NetSci – 13178 8697

Gnutella – – 2

Table 11: Number of flow computations made by LPO

on DIMACS, NetSci and Gnutella graphs.

Wol Wol/OO Wol/OOF
johnson8-2-4 437 179 181
hamming6-4 2156 399 401
hamming6-2 2201 902 904

mulsoli4 – 754 742
school1 – – –
NetSci – 5508 1295

Gnutella – – 2

Table 12: Number of flow computations made by
Wosley’s algorithm on DIMACS, NetSci and Gnutella
graphs.


