
New Approximation Results for Resource
Replication Problems

Samir Khuller?1, Barna Saha2, and Kanthi K. Sarpatwar??1

1 Department of Computer Science
University of Maryland (College Park)

samir,kasarpa@cs.umd.edu
2 AT&T Shannon Research Laboratory

barna@research.att.com

Abstract. We consider several variants of a basic resource replication
problem in this paper, and propose new approximation results for them.
These problems are of fundamental interest in the areas of P2P net-
works, sensor networks and ad hoc networks, where optimal placement
of replicas is the main bottleneck on performance. We observe that the
threshold graph technique, which has been applied to several k-center
type problems, yields simple and efficient approximation algorithms for
resource replication problems. Our results range from positive (efficient,
small constant factor, approximation algorithms) to extremely negative
(impossibility of existence of any algorithm with non-trivial approxi-
mation guarantee, i.e., with positive approximation ratio) for different
versions of the problem.

1 Introduction

Problems related to data placement and replication are of fundamental interest
both in the area of large scale distributed networking systems as well as central-
ized storage systems. The performance of distributed systems such as P2P file
sharing systems, wireless ad hoc networks, sensor networks etc., where resources
are shared among clients, can be significantly impacted by placement of the
replicated resources [16, 17, 2]. On the other hand, centralized storage systems,
such as in netflix, might have data distributed across different data centers so
that it is necessary to keep data closer to the demand to prevent over loading
the network. Demand patterns for data can also vary widely, especially in the
context of video on demand distribution.

There is a lot of research on centralized storage systems [9] that addresses
the problem of data layout when all the storage units are centrally located in a
single location and thus the “distance” of each client from any storage unit is
the same. However, in modern storage management systems, this assumption is

? Supported by NSF Awards CCF-0728839 and CCF-0937865, and a Google Research
Award.

?? Supported by NSF Grant CCF-0728839.

not valid. Companies rent storage space all over the world from different data
centers in different locations. Since the most interesting objective functions are
NP-hard, it is of interest to consider efficient approximation algorithms.

The basic framework is the following: given a collection of k data items, we
wish to distribute the k data items to a collection of n nodes modeled by a
graph, where the vertices are embedded in a metric space. In the basic model,
each node wishes to access each of the k data items and the goal is to minimize
the maximum distance any node has to travel to access all k items. For this
problem, Ko and Rubenstein [16] give a distributed algorithm based on a local
search idea and also show that this algorithm delivers a solution with a worst
case approximation guarantee of 3. We note that the algorithm is not guaranteed
to run in polynomial time, however, in practice its convergence was reasonably
quick. In a followup piece of work [17], Ko and Rubenstein introduced a gen-
eralization of the basic problem in which each node only required a subset of
the items. For this problem, they develop a heuristic, however, for this heuristic,
unlike the other case, there is no approximation guarantee any more.

In this paper we consider both the questions described above, along with sev-
eral other generalizations and provide polynomial time approximation algorithms
for them. In particular we develop a simple algorithm with a 3-approximation
for the basic model, and this can be implemented in a distributed setting. We
also develop a more involved centralized 3-approximation scheme for the general
problem as well. However, we do not know how to implement this algorithm in a
distributed setting as yet. In addition, we consider further generalizations where
we need to provide excellent service to a given fraction of the clients and not all
the clients. This is motivated from the fact that there may be a few outliers, and
it may be extremely costly to provide all data items to the outliers. Here, the
two problems deviate in difficulty immediately. For the basic problem we can
still provide a constant approximation, but for the general problem, somewhat
surprisingly, it turns out that, assuming P 6= NP , there is no polynomial time
algorithm with any non-trivial approximation guarantee. We give a polynomial
time reduction of the densest k-subgraph [8] to the feasibility version of the
general problem.

Following the works of Ko and Rubenstein [16, 17], in this paper, we consider
the “min-max” objective function for data placement problems. A different ob-
jective function of minimizing average data-access cost was studied by Baev et
al. [1, 2] under the assumption that each client only requires a particular data
item. A generalization of this problem with load and capacity constraints on
servers was considered by Guha et al. [11] and Meyerson et al. [20] (called the
page-placement problem). They developed bicriteria approximation algorithms
for this problem where load and/or capacity are violated by a small factor.
Our Contributions. The following is a summary of our results.

– In Section 2, we consider the basic replication problem where each client
needs all k data items (basic resource replication) and its generalization
where each client might need a subset of data items (subset resource repli-
cation). For the first problem, we give a distributed polynomial time 3-

2

approximation algorithm and show that there does not exist any polynomial
time algorithm achieving a 2 − ε (for any ε > 0) approximation (Theo-
rem 1 and Theorem 3). For the later, we give the first polynomial time
3-approximation algorithm (in a centralized setting) along with matching
hardness (Theorem 2 and Theorem 3).

– In Section 3, we consider the outlier version of the basic as well as sub-
set resource replication problem. For the former, we give a polynomial time
3-approximation algorithm while for the latter, somewhat surprisingly, we
show that there does not exist any non-trivial approximation guarantee (in
polynomial time). We also consider the case where each resource can be repli-
cated at most K times and give polynomial time 5-approximation algorithm
for it.

– In Section 4, we consider another natural generalization of the basic resource
replication problem where each node has an upper bound (load) on the
number of clients it can serve. We give polynomial time 4-approximation
algorithm for this version when load L ≥ 2k−1 (k is the number of resources).
A simple counting argument shows that this problem is infeasible if L < k.
This implies our 4-approximation algorithm is a bicriteria approximation
algorithm and the load capacity is not violated by more than a factor of 2.

2 Resource Replication Problem

2.1 Basic Resource Replication Problem

The following problem, which we call the Basic Resource Replication (BRR)
problem, was first studied by Ko and Rubenstein [16]. The input consists of:

– set of nodes or vertices, V = {v1, v2 . . . vn}
– a metric space defined by the function d : V × V → R+ ∪ {0}
– set of resources or colors C = {C1, C2, C3, . . . , Ck}.

We seek to find an optimal mapping φ : V → C of colors to vertices. The objective
function for optimality is defined in the following way. Define dr(v) to be the
shortest distance between a vertex assigned the color Cr

3 and the vertex v. The
goal of the Basic Resource Replication (BRR) problem is the following -

min
φ

max
v∈V
Cr∈C

dr(v).

This is the central problem of the work of Ko and Rubenstein [16] who give
a distributed algorithm with a 3-approximation guarantee. Unfortunately, their
algorithm has no proven polynomial running time bound. We give a simple
distributed polynomial time 3-approximation algorithm for this problem. All
the algorithms in this work use a technique called threshold graph construction

3 We may abuse the notation and use same expression, dr(v), when r represents a
color.

3

introduced by Edmonds and Fulkerson [7] and used extensively for k-center
type problems [10, 15, 14, 13]. We observe that the use of this approach enables
the design of very simple and efficient algorithms for several resource replication
problems. Given δ ∈ R+∪{0}, the threshold graph, denoted by Gδ, is constructed
by adding edges between every pair of vertices u, v which are at distance at most
δ. The algorithm for BRR works in the following way. For each vertex v, we
determine the distance of the (k − 1)th closest neighbor - and denote by δL the
maximum of these distances. We construct the threshold graph GδL which has
minimum degree at least k− 1. Also δL must be a lower bound on the optimal δ
(δOPT) - because δL is the least value such that the threshold graph has degree at
least k−1 and GδOPT

has minimum degree at least k−1. Now in the graph G2
δL

which is the graph formed by squaring GδL , we compute a maximal independent
set I. Finally, for each vertex in I, we color the vertex with C1 and pick k − 1
vertices from its list of neighbors in Gδ and assign them a distinct color from
the remaining k− 1 colors. Due to space restrictions, we defer the details of the
algorithm and discussion of this problem (along with a few other generalizations)
to full version4.

Theorem 1. There is a distributed, polynomial time, 3-approximation algo-
rithm for the problem of BRR.

2.2 Subset Resource Replication Problem

In BRR model each client requires all the data items. But in general each client
might be interested in a subset of resources instead of all the resources. The
servers might also have capacity to hold several data items. This substantially
more generalized version of resource replication problem, which we call Subset
Resource Replication Problem (SRR) was considered by Ko and Rubenstein in
a subsequent paper [17]. Formally, the problem has the following input

– a set of vertices V = {v1, v2 . . . vn}, a metric d : V × V → R+ ∪ {0} and a
set of colors C = {C1, C2 . . . Ck}.

– every vertex v ∈ V has a subset Cv ⊆ C of “required” colors and a non-
negative integer sv as the storage capacity - that is we can assign sv colors
to vertex v.

The goal is to assign a list of colors φ(v) ⊆ C to each vertex v, such that
|φ(v)| ≤ sv, with the following objective -

δ = min
φ

max
v∈V
r∈Cv

dr(v)

where dr(v) is the shortest distance from v to a vertex having Cr on its list of
colors. Ko and Rubenstein [17] extended their basic approach to this problem but
had no guarantee on either the approximation ratio or the running time. We give
the first centralized polynomial time 3-approximation algorithm (Algorithm 1)

4 http://www.cs.umd.edu/∼samir/grant/approx12-full.pdf

4

for the problem. Later, in Theorem 3, we will prove that this is the best possible
approximation one can expect, assuming P 6= NP .

We again use the threshold graph technique. The optimal distance δ has to
be the distance between one of the O(n2) pairs of vertices. Hence, it has only
polynomial number of possible values and we can assume that the value of δ is
known (trying out all possible values of δ will only add a polynomial factor).
Assuming δ is known, we construct the threshold graph Gδ. We now square the
graph Gδ to obtain G2

δ , i.e., add an edge between two vertices u, v ∈ V if they
are at a distance at most two in Gδ. Consider a color r and let Hr ⊆ G2

δ be the
induced subgraph on vertices that need color r (among possibly other colors).
Let Ir be a maximal independent set in the subgraph Hr. The following is a key
observation about an optimal solution.

Observation. For every vertex v ∈ Ir, the optimal solution must assign a
unique copy of r in the neighborhood of v in Gδ. (†)

Indeed, in Gδ the neighborhoods corresponding to vertices in Ir must be mu-
tually disjoint. If neighborhoods corresponding to vertices u, v ∈ Ir intersect,
then there must exist an edge between u, v in G2

δ - which is impossible, as Ir
forms an independent set in this graph. Since, every vertex must be satisfied by
some copy in its neighborhood in Gδ, our observation holds. If for every vertex
v ∈ Ir, dr(v) ≤ δ then every vertex u ∈ Hr has dr(u) ≤ 3 × δ. Thus to find
a 3-approximation, we focus on satisfying vertices of such independent sets Ir,
for each color r ∈ C. We cast this as a b-matching problem [6] on the graph
B = (X,Y) - where X is the union of independent sets Ir, ∀r ∈ C (i.e., if a ver-
tex belongs to s independent sets of the form Ir, we add s copies of the vertex to
X) and Y is a copy of V with b−matching bounds sv on each vertex v ∈ V . We
add an edge across the partitions, if its end points are at distance at most δ from
each other. From observation (†), there must exist a b-matching that saturates
all the vertices of X.

Algorithm 1 A 3-approximation algorithm for SRR

1: Guess the optimal value δ. Construct the graph G2
δ

2: for all colors c do
3: Let Hc be the subgraph of G2

δ induced by the set of vertices that require color c.
4: Compute Ic, any maximal independent set of Hc.
5: end for
6: Let X denote the union of copies of each Ic (i.e., if a vertex is contained in s

independent sets of form Ic, we add s copies of that vertex to X). Let Y be a copy
of set of vertices in V with non-zero storage capacities.

7: Construct the bipartite graph B = (X,Y) : add an edge between x ∈ X and y ∈ Y
if the nodes they represent are at distance at most δ.

8: Compute a maximum b-matching in B with bounds : 1 on vertices of X and re-
spective storage capacities on the nodes of Y .

9: For every node v ∈ Y , let Sv ⊆ X be matched subset of nodes, assign the list of
colors Lv of nodes of Sv to v.

5

Theorem 2. Algorithm 1 is a 3-approximation for the Subset Resource Repli-
cation problem.

Proof. We start by proving that (assuming δ is the optimal solution), the max-
imum b-matching, found in step 7 of Algorithm 1, completely saturates X. It
is sufficient to show that there exists of b-matching which saturates X (which
implies the maximum matching also does so). In the optimal coloring, which
satisfies every vertex within distance δ, let Loptv denote the list of colors placed
on v ∈ V (for feasibility, |Loptv | ≤ sv, where sv is the storage capacity of v). For
a color i and a vertex v, we denote the copy of v in Ii by vi. We note that for
every v requiring a color i, there exists a vertex u ∈ Y which is within distance δ
of v and has i in its list of colors Loptu . We now claim that the following edge set
forms a b-matching which saturates X. The edge set, denoted by bM , consists
one edge for each vi ∈ X, namely viu, where u is some vertex within distance δ
of vi such that i ∈ Loptu . We only have to show that bM is a feasible b-matching,
because it saturates X by its definition.

In order to prove that bM is a feasible b−matching, we show that the number of
edges incident on each vertex is within the allocated bounds - sv for v ∈ Y and 1
for vi ∈ X. The latter bound is trivially verified. To prove that the bounds sv are
not violated, we observe that no two vertices of X with same color index i, say
vi and wi, are matched to the same vertex u ∈ Y with respect to bM . Indeed,
this would imply that v and w are adjacent in G2

δ , which is a contradiction to the
fact that they belong to a maximal independent set (in some induced subgraph
of G2

δ). Thus the number of edges of bM incident on u, is at most |Loptu | ≤ su.
Hence, bM is a valid b-matching which saturates all the vertices of X.

To finish the proof, we now show that every node v requiring a color i finds a
node hosting i at distance at most 3δ. Indeed, there exists some ui ∈ X, such
that u is a neighbor of v in Hi (note that the distance between such u and v is
at most 2δ). Now, if uiw ∈ bM , w is the vertex hosting i at distance at most
3δ. Hence, Algorithm 1 is a 3-approximation algorithm for the subset resource
replication problem.

2.3 Hardness of BRR and SRR

We now prove some lower bounds on the above problems. The following theo-
rem shows that Algorithm 1 provides the best possible guarantee for the SRR
problem, while there is a small gap between the algorithm and the lower bound
proven for the BRR problem. We state the theorem here; for lack of space, the
proof is given in full version.

Theorem 3. Assuming P 6= NP , for any given constant ε > 0, there is no
polynomial time algorithm which guarantees an approximation ratio better than

– (2− ε) for basic resource replication problem.

– (3− ε) for subset resource replication problem.

6

3 Robust Resource Replication Problem

The objective of minimizing the maximum distance over all vertices may result
in a much larger distance if there are few distant “outliers”. Even a good ap-
proximation algorithm, in this case, will raise δ to a very high value and many
nodes could get a bad solution. It is therefore natural to study outlier version
of such problems. In such a model, the objective remains the same but we are
allowed to ignore a few far away vertices (the outliers). Several well known prob-
lems have been studied under the “outlier” model like outlier versions of k-center
problem [5] (called robust k-centers), scheduling with outliers [4, 12, 21], outlier
versions of facility location type problems [5, 19]. In this section, we initiate the
problem of robust basic resource replication (RBRR) or the resource replication
problem with outliers. In the RBRR problem, the input is the same as the BRR
problem along with a lower bound M - which is the number of vertices that
have to be satisfied. Formally, the input instance I = (V, C,M, d) is defined as
following.

– A set of vertices V = {v1, v2, . . . vn}, a metric d : V × V → R+ ∪ {0} and a
set of colors C = {C1, C2 . . . Ck}.

– A lower bound M ∈ N.

The objective function of the Robust Basic Resource Replication problem is
defined as-

min
φ

S⊆V
|S|≥M

max
v∈S

max
Cr∈C

dr(v)

A simple extension to the BRR algorithm results in a 3-approximation algorithm
for this problem. Due to space restrictions, we defer our discussion to full ver-
sion. Instead, we focus on a more interesting generalization of the Robust Basic
Resource Replication problem called the K-Robust Basic Resource Replication
(K-RBRR) problem. In this problem we only allow K copies of each resource,
while the rest of input and output structure remains the same as RBRR. This
problem is a natural generalization of the robust K-center problem- the former
problem has k resources and latter has only one. The robust K-center problem
is the outlier version of K-center problem and was studied, along with several
other outlier variants of facility location type problems by Charikar et al. [5].
One variant of particular interest to our work is the robust K-supplier problem,
for which [5] gives a 3 -approximation algorithm. The robust K-supplier is the
outlier variant of K-supplier problem. In the K-supplier problem, we have a set
of suppliers and a set of clients, embedded in a metric. The goal is to choose
K suppliers which can hold a resource (there is only one resource here) such
that the maximum “client to nearest resource distance” is minimized over all
clients. In the robust K-supplier problem, we have the same objective but we
may satisfy only M clients. We use the 3-approximation algorithm of [5] as a
sub-routine and obtain a 5-approximation algorithm for K-RBRR problem. For
the sake of completeness, we briefly describe the algorithm from [5] here.

7

For a given value δ, the algorithm of [5] proceeds in the following way.

– For each supplier v, construct Gv as the set of clients within distance δ and
Ev as the set of clients within distance 3δ of v.

– Repeat the following steps k times:
• Greedily pick a supplier v as a center whose set Gv covers most number

of yet uncovered clients. (†)
• Mark all the clients in Ev as covered.

– If at least M vertices are not satisfied return NO, or else return the set of
centers.

For a proof on why this algorithm guarantees a 3-approximation, we refer the
reader to [5]. We make a small modification to the above algorithm before using
it as a sub-routine. In the step (†), if there are no more clients to be covered
we can stop (this will clearly not affect the performance or feasibility of the
algorithm). Otherwise, there is at least one new uncovered client which is now
covered by v. We pick one such newly covered client arbitrarily and label it U(v).
Note that this process assigns a distinct client to each supplier.

We can now describe our Algorithm 2 to solve the K-RBRR problem. We
make the following claims about Algorithm 2 but defer the proofs to full version.

Claim. If δ is optimal distance value for an instance of K-RBRR, it is a feasible
distance for the K-supplier instance in the step 2 of Algorithm 2.

Claim. The set I formed in the step 3 of Algorithm 2 is an independent set in
G2
δ .

Algorithm 2 A 5-approximation for K-RBRR

1: Guess optimal distance value δ and construct Gδ. Mark the nodes of degree ≥ k−1.
Let these “high” degree vertices form a set Vc.

2: With Vc as the set of clients, Vs = V as the set of suppliers, distance between
copies remaining the same as the original vertices, we solve the robust K-supplier
problem [5] with δ as the input distance. Let S ⊆ Vs be the set of centers returned.
By Claim 3, S is well defined.

3: Let I = {U(v) : v ∈ S}. By Claim 3, I is an independent set such that each
member has degree ≥ k − 1 in Gδ.

4: for v ∈ I do
5: Pick k − 1 neighbors of v in Gδ. Assign each of these vertices along with v, one

color each of the k colors.
6: end for

Theorem 4. Algorithm 2 is a 5-approximation for the K-RBRR.

Proof. We defer the proof to full version.

8

Let us now consider the Robust Subset Resource Replication (RSRR) problem.
In this problem, we are provided with the input for the SRR problem along with
a lower bound M on the number of vertices that must be satisfied with their
requirement. The objective function is -

min
φ

max
S⊂V
|S|≥M

max
v∈S
r∈Cv

dr(v)

Given that the outlier version of BRR and its extension with bound on each
color has simple constant factor approximation algorithms, it is a natural ques-
tion to ask whether similar bounds can be obtained for Robust SRR. But, quite
surprisingly, we show not only there does not exist any constant factor approx-
imation algorithm for Robust SRR, but in fact, assuming P 6= NP , there is no
polynomial time algorithm that provides any nontrivial approximation guaran-
tee. In Theorem 5, we prove that deciding if a given instance of RSRR is feasible,
is NP hard. We give a polynomial time reduction of the well-studied densest k
subgraph [8] problem to the problem of deciding the feasibility of RSRR. In the
decision version of the densest k-subgraph problem, we have an instance of the
form I = (G, k, L) and the goal is to decide if there is a subgraph of G with
exactly k vertices and at least L edges.

Theorem 5. Assuming P 6= NP , there is no polynomial time algorithm which
gives a positive approximation ratio for Robust Subset Resource Replication prob-
lem.

Proof. Reduction. Given an instance of densest k-subgraph problem I = (G =
(V,E), k, L), |V | = n, |E| = m where the problem is to decide if there is a
subgraph on k vertices with at least L edges - we construct an instance of
RSRR, I ′ = (G′,M, C, {Cv : ∀v ∈ G′}) as follows. First, color the vertices in
V with distinct colors c1, c2 . . . cn. The vertex set of G′ has 3 parts - V1, V2, V3.
V1 has k vertices and V2 has m vertices corresponding to the edges of G. The
distance between any two vertices u ∈ V1, v ∈ V2 is 1. Each vertex v ∈ V2 has a
set of m2 vertices, Gv, associated with itself. The distance between any vertex
pair of v ∪Gv is 1. Rest of the distances are computed using the shortest path
metric. The set {Cv : ∀v ∈ G′} is specified in the following way - Each vertex
u ∈ V1 requires 0 colors and hence are trivially satisfied. Each vertex v ∈ V2
requires colors {av, ci, cj} where av is a color associated uniquely with vertex
v and ci, cj are the colors of the end points of the edge in G associated with
v. Each vertex w ∈ Gv requires colors {av, biv : i ∈ [1 : m2]}. Each one of
av, b

i
v : v ∈ V2, i ∈ [1,m2] is a distinct color. Set M = m3 + L + k, the lower

bound of the number of vertices that must be satisfied.

Claim: I is an YES instance of densest k subgraph problem if and only if I ′ is a
feasible solution of Robust Subset Resource Replication problem. In other words,
we prove that the feasibility question of Robust Subset Resource Replication
problem is NP-hard. This would imply that there is no approximation algorithm
for this problem.

9

Proof of the Claim. Let I be an YES instance of the densest subgraph problem
and let H = {v1, v2 . . . vk} be the k vertices that induce L edges in G. We present
a feasible coloring for I ′ as following -

– The k vertices of V1 are colored with the k colors of H
– Each vertex v ∈ V2 is colored with its associated color av.
– For each vertex v ∈ V2, its m2 associated vertices Gv are colored with m2

colors of type biv.

It is straightforward to check that the above coloring satisfies M = m3 + k + L
vertices - all the vertices of V3 are satisfied, all the vertices of V1 are satisfied and
at least L vertices of V2 are satisfied. Now, we consider the other direction. Let
there be a coloring of vertices of G′ which certifies that I ′ is a feasible instance.
We first observe that, all the m3 colors of type biv and the m colors of type av
must be used - otherwise, there will be at least m2 vertices out of m3 + m + k
vertices which go unsatisfied and hence the bound M is not met. Since, we are
only interested in the feasibility question, we can assume that m2 vertices of Gv
are colored with m2 colors of type biv and the m vertices v ∈ V2 are colored with
color av. Now at least L vertices of V2 must be satisfied and the k vertices of V1
must be colored with k colors from {c1, c2 . . . cn} - say {c1, c2 . . . ck}. We observe
that the union of colors required by the L vertices, apart from their associated
colors, must be {c1, c2 . . . ck}. Hence, the L edges in G corresponding to these L
vertices in V2 must be completely incident on the vertices in V corresponding to
these k colors. This implies the existence of k vertices in G that induce L edges.
Hence the theorem.

4 Capacitated Basic Resource Replication Problem

Another desired quality of an assignment scheme in client-server type problems
is load balancing [18, 15, 3]. In this setting, we are not allowed to “overload” a
server by assigning more than a bounded number of clients. Bar-Ilan, Kortsarz
and Peleg [3], Khuller and Sussman [15] study the load balancing version of the
k-center problem which is called the capacitated k-center problem. Khuller and
Sussman [15] provide the current best approximation ratio of 5 for this problem.
We initiate the study of basic resource replication problem in the load balancing
setting. We call it the capacitated basic resource replication problem (CBRR). In
this problem, the input instance is defined as I = (V, C = {C1, C2 . . . Ck}, d, L)
and the goal is the same as the basic resource replication problem with an addi-
tional restriction that a vertex with a certain color is not allowed to serve more
than L other vertices (including itself). We give a 4-approximation algorithm
(Algorithm 3) for this problem, provided L ≥ 2k − 1. We prove in the full ver-
sion that, for a feasible solution, L has to be ≥ k. By using this fact, we observe
that Algorithm 3 is in fact a bicriteria approximation algorithm - it gives an
approximation guarantee of 4 while exceeding the load by a factor of 2 at most.

Algorithm 3 starts by guessing the optimal δ and constructs the threshold
graph Gδ. Let I be some maximal independent set of G2

δ . We divide all the

10

vertices into three levels - level 0, level 1 and level 2. All the elements in I are at
level 0. All vertices not in I but adjacent (with respect to Gδ) to some element
in I are at level 1. Finally all the vertices not in level 0 or level 1 are in level 2.
For each element v at level 0, its empire Empire(v) consists of itself along with
all the adjacent(with respect to Gδ) level 1 vertices. Since I is independent in
G2
δ , all the empires defined so far are mutually disjoint. Finally, all the level 2

vertices are adjacent to at least one level 1 vertex. For each level 2 vertex, we
pick one such level 1 vertex arbitrarily and assign the former to the same empire
as the latter. Thus we have assigned every vertex to exactly one empire.

In the next step, we consider one empire at a time and split it into “blocks” of
vertices. Every block consists of exactly k vertices, except the last block which
might have less than k vertices. A key property of vertices in a block is the
following - any two vertices are at a distance of at most 4δ from each other. We
now color each block of size exactly k using all k colors (since the degree of each
vertex is at least k− 1 in Gδ, every empire has at least one block of size exactly
k). A vertex in a block only serves other vertices in the same block, hence the
load is not more than k currently on any vertex. The vertices of the final block
(which might have ≤ k vertices) are now served by some block of size exactly
size k. Thus the load on each vertex is at most 2k − 1.

Algorithm 3 A 4-approximation for CBRR

1: Guess the optimal value δ. Construct the graph Gδ and G2
δ.

2: Let I be a maximal independent set in G2
δ.

3: for all v ∈ V do
4: if v ∈ I then
5: Empire(v) = {v}
6: end if
7: if v /∈ I then
8: if v has a vertex u ∈ I at distance δ. then
9: Such a vertex is unique owing to the property that I is an independent set.

Add v to the empire of u, Empire(u) = Empire(u) ∪ {v}.
10: else if v has a vertex in I at distance 2δ. then
11: Pick one such vertex u arbitrarily and add v to the empire of u.
12: end if
13: end if
14: end for
15: for all v ∈ I do
16: Each vertex v has degree at least k − 1 in Gδ. Hence, |Empire(v)| ≥ k. Divide

Empire(v) into blocks, all of which have size exactly k - except possibly the last
one which has size at most k.

17: Color each block of size exactly k using k colors, arbitrarily. The final block,
whose size is at most k, has its color requirement satisfied from one such block.
Since there is at least one block of size exactly k, such an assignment is valid.

18: end for

11

Theorem 6. Algorithm 3 is a 4-approximation algorithm for the problem of
Capacitated Basic Resource Replication problem where the allowed load L ≥
2k − 1.

Proof. We defer the proof to full version.

To conclude, we study several variants of the resource replication problem
and prove that most of them are approximable within a small constant. A strik-
ing anomaly is the problem of RSRR, which somewhat surprisingly is hard to
approximate within any non-trivial bound. Our work leaves several open prob-
lems. It would be interesting to close the gap between the approximation factor
and the lower bound of the BRR problem. Extending the capacitated version
to SRR, obtaining a true approximation factor for CBRR for all values of load,
improving the approximation factor for K-RBRR etc. are few other future di-
rections to consider.

References

1. Ivan D. Baev and Rajmohan Rajaraman. Approximation algorithms for data
placement in arbitrary networks. In SODA, pages 661–670, 2001.

2. Ivan D. Baev, Rajmohan Rajaraman, and Chaitanya Swamy. Approximation al-
gorithms for data placement problems. SIAM J. Comput., 38(4):1411–1429, 2008.

3. Judit Bar-Ilan, Guy Kortsarz, and David Peleg. How to allocate network centers.
J. Algorithms, 15(3):385–415, 1993.

4. Moses Charikar and Samir Khuller. A robust maximum completion time measure
for scheduling. In SODA, pages 324–333, 2006.

5. Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algo-
rithms for facility location problems with outliers. In SODA, pages 642–651, 2001.

6. Jack Edmonds. Paths, trees, and flowers. In Ira Gessel and Gian-Carlo Rota,
editors, Classic Papers in Combinatorics, Modern Birkhuser Classics, pages 361–
379. Birkhuser Boston, 1987.

7. Jack Edmonds and Delbert R. Fulkerson. Bottleneck extrema. Journal of Combi-
natorial Theory, 8(3):299 – 306, 1970.

8. Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Al-
gorithmica, 29(3):410–421, 2001.

9. Leana Golubchik, Sanjeev Khanna, Samir Khuller, Ramakrishna Thurimella, and
An Zhu. Approximation algorithms for data placement on parallel disks. ACM
Transactions on Algorithms, 5(4), 2009.

10. Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theor. Comput. Sci., 38:293–306, 1985.

11. Sudipto Guha and Kamesh Munagala. Improved algorithms for the data placement
problem. In SODA, pages 106–107, 2002.

12. Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Danny Segev.
Scheduling with outliers. In APPROX-RANDOM, pages 149–162, 2009.

13. Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center
problem. Mathematics of Operations Research, 10(2):180–184, 1985.

14. Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation
algorithms for bottleneck problems. J. ACM, 33(3):533–550, 1986.

12

15. Samir Khuller and Yoram J. Sussmann. The capacitated k-center problem. SIAM
J. Discrete Math., 13(3):403–418, 2000.

16. Bong-Jun Ko and Dan Rubenstein. Distributed, self-stabilizing placement of repli-
cated resources in emerging networks. In ICNP, pages 6–15, 2003.

17. Bong-Jun Ko and Dan Rubenstein. Distributed server replication in large scale
networks. In NOSSDAV, pages 127–132, 2004.

18. Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman. Analysis of
a local search heuristic for facility location problems. In SODA, pages 1–10, 1998.

19. Ravishankar Krishnaswamy, Amit Kumar, Viswanath Nagarajan, Yogish Sabhar-
wal, and Barna Saha. The matroid median problem. In SODA, pages 1117–1130,
2011.

20. Adam Meyerson, Kamesh Munagala, and Serge A. Plotkin. Web caching using
access statistics. In SODA, pages 354–363, 2001.

21. Barna Saha and Aravind Srinivasan. A new approximation technique for resource-
allocation problems. In ICS, pages 342–357, 2010.

13

