Algorithms for Non-Uniform Size Data Placement on Parallel Disks

Srinivas Kashyap * Samir Khuller f

Abstract

We study an optimization problem that arises in the context of data placement in a multimedia
storage system. We are given a collection of M multimedia objects (data items) that need to be
assigned to a storage system consisting of N disks dy,ds...,dy. We are also given sets Uy, Us, ..., Upys
such that U; is the set of clients seeking the ith data item. Data item ¢ has size s;. Each disk d; is
characterized by two parameters, namely, its storage capacity C; which indicates the maximum total
size of data items that may be assigned to it, and a load capacity L; which indicates the maximum
number of clients that it can serve. The goal is to find a placement of data items to disks and an
assignment of clients to disks so as to maximize the total number of clients served, subject to the
capacity constraints of the storage system.

We study this data placement problem for homogeneous storage systems where all the disks are
identical. We assume that all disks have a storage capacity of ¥ and a load capacity of L. Previous
work on this problem has assumed that all data items have unit size, in other words s; = 1 for all 4.
Even for this case, the problem is N P-hard. For the case where s; € {1,..., A} for some constant A,
we develop a polynomial time approximation scheme (PTAS). This result is obtained by developing
two algorithms, one that works for constant k¥ and one that works for arbitrary k. The algorithm for

arbitrary k guarantees that a solution where at least £=2 | 1 — -fraction of all clients are

k+A

1

VA

assigned to a disk (under certain assumptions). In addition we develop an algorithm for which we
. 3 _ % _ .

can prove tight bounds when s; € {1,2}. In fact, we can show that a (1 ar M)Q) fraction of

all clients can be assigned (under certain natural assumptions), regardless of the input distribution.

1 Introduction

We study a data placement problem that arises in the context of multimedia storage systems. In this
problem, we are given a collection of M multimedia objects (data items) that need to be assigned to a
storage system consisting of N disks di,ds...,dny. We are also given sets Uy, Us, ..., Ups such that U; is
the set of clients seeking the ith data item. Each data item has size s;. Each disk d; is characterized
by two parameters, namely, its storage capacity C; which indicates the maximum storage capacity for
data items that may be placed on it, and its load capacity L; which indicates the maximum number of
clients that it can serve. The goal is to find a placement of data items to disks and an assignment of
clients to disks so as to maximize the total number of clients served, subject to the capacity constraints
of the storage system.

The data placement problem described above arises naturally in the context of storage systems for
multimedia objects where one seeks to find a placement of the data items such as movies on a system of
disks. The main difference between this type of data access problem and traditional data access problems
is that in this situation, once assigned, the clients will receive multimedia data continuously and will

~ *Department of Computer Science University of Maryland, College Park, MD 20742. Research supported by a Senior Summer
Scholar Award and NSF Award CCR-0113192. E-mail : raaghav@cs.umd.edu.

TDepartment of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD
20742. Research supported by NSF Award CCR-9820965 and CCR-0113192. E-mail : samir@cs.umd.edu.

not be queued. Hence we would like to maximize the number of clients that can be assigned/admitted
to the system. We study this data placement problem for uniform storage systems, or a set of identical
disks where C; = k and L; = L for all disks d;.

In the remainder of this paper, we make the following assumptions: (i) the total number of clients
does not exceed the total load capacity, i.e., Y, |U;| < N - L, and (ii) the total size of data items does
not exceed the total storage capacity, i.e., Ef\il s; < N -k and (iii) If M, is the number of data items
of size p then M, < N [%J, since at most L%J items of size p can be stored on a single disk.

In [5, 9] this problem is studied with the assumption that all data items have unit size, namely s; = 1
for all data items, and even this case is N P-hard for homogeneous disk systems [5]. In this work, we
generalize this problem to the case where we can have non-uniform sized data items. For the previous
algorithms [5, 9] the assumption that all items have the same size is crucial.

For arbitrary k£ and when s; € {1,2} (this corresponds to the situation when we have two kinds of
movies - standard and large), we develop a generalization of the sliding-window algorithm [9], called
Multi-List-SW-Alg, using multiple lists, that has the following property. For any input distribution that
satisfies the size requirements mentioned above, we can show that the algorithm guarantees that at least

(1—- W)-fraction of the clients can be assigned to a disk. Note that (1— m) approaches

1 as k increases, and is at least %. This bound holds for & > 2. While this bound is trivial when k& is

even, the proof is quite complicated for odd k. In addition, we show that this bound is tight. In other

words there are instances where no placement of data items can guarantee a better bound as a function

of k. In fact, this suggests that when s; € {1,..., A} we should get a bound of (1 — ——~A——) (it is
28 i €4 } g ((it \/M)2) (

easy to extend the construction in [5] to see that this would be a tight bound). Our results for items of
sizes 1 and 2 suggests that such a bound should hold for any value A.

For the more general problem when s; € {1,...,A}. we develop a new method (Single-List-SW-Alg)
that works with a single list of all the items, sorted in non-decreasing density (ratio of |U;|/s;) order.

This algorithm has the property that at least f(k,A) = 1124_-—2 1- ﬁ -fraction of all clients

1/ &
are assigned. When s; € {1,..., A} for some constant A, we develop a polynomial time approximation
scheme (PTAS) as follows. For a given € > 0, if (1—¢) < f(k,A) then we can use Single-List-SW-Alg to
get the desired result. If (1 —€) > f(k,A), then k is a fixed constant (as a function of € and A) and we
can use an algorithm whose running time is polynomial for fixed k. In fact, this algorithm works when
s; € {a1,...,a.} for any fixed constant c. This generalizes the algorithm presented in [5], which is for
the case when all s; = 1. While the high level approach is the same, the algorithm is significantly more
complex in dealing with lightly loaded disks. For any fixed integer k, A and e > 0 this algorithm runs
in polynomial time and outputs a solution where at least (1 — €)-fraction of the clients in an optimal
solution are assigned.

At this point, it is worth noting that while there is a PTAS for the problem for a constant number of
distinct sizes (Section 7 of this paper, and the independent work in [8]), even for the simplest case when
the data items have unit sizes (for example the first PTAS in [5]), none of the approximation schemes
are actually practical since the running times are too high, albeit polynomial for a fixed e. The only
known algorithms that are practical, are the ones based on the sliding window approach. Hence even
though the bounds that one can derive using sliding window based methods can be improved by other
approaches, this still remains the best approach to tackling the problem from a practical standpoint.
Obtaining a practical PTAS remains an outstanding open problem.

1.1 Related Work. The data placement problem described above bears some resemblance to the
classical multi-dimensional knapsack problem [7, 2]. However, in our problem, the storage dimension
of a disk behaves in a non-aggregating manner in that assigning additional clients corresponding to a
data item that is already present on the disk does not increase the load along the storage dimension.
It is this distinguishing aspect of our problem that makes it difficult to apply known techniques for
multi-dimensional packing problems.

Shachnai and Tamir [9] studied the above data placement problem for unit sized data items, when all
s; = 1; they refer to it as the class constrained multiple knapsack problem. The authors gave an elegant
algorithm, called the sliding window algorithm, and showed that this algorithm packs all items whenever
Zévzl Cj > M + N — 1. An easy corollary of this result is that one can always pack a (1 — H%k)—fraction
of all items. The authors [9] showed that the problem is NP-hard when each disk has an arbitrary load
capacity, and unit storage. Golubchik et. al. [5] establish a tight upper and lower bound on the number
of items that can always be packed for any input instance to homogeneous storage systems, regardless
of the distribution of requests for data items. It is always possible (under certain assumptions) to pack
a(1— m)-fraction of items for any instance of identical disks. Moreover, there exists a family of
instances for which it is infeasible to pack any larger fraction of items. The problem with identical disks
is shown to be NP-hard for any fixed k > 2 [5].

In addition, packing problems with color constraints are studied in [4, 10]. Here items have sizes and
colors; and items have to be packed in bins, with the objective of minimizing the number of bins used.
In addition there is a constraint on the number of distinct colors in a bin. For a constant number of
colors, the authors develop a polynomial time approximation scheme. In our application, this translates
to a constant number of data items (M), and is too restrictive an assumption.

Independently, Shachnai and Tamir [8] have recently announced a result similar to the one presented
in Section 7. For any fixed € and a constant number of sizes s; € {a1,...,a.} and for identical parallel
disks they develop a polynomial time approximation scheme where the running time is polynomial in N
and M, the number of disks and data items. Since this does not assume constant k, they do not need a
separate algorithm when k is large. However, the algorithms and the ideas in their work are based on
a very different approach as compared to the ones taken in this paper.

1.2 Other Issues. Once a placement of items on the disks has been obtained, the problem of
assigning clients to disks can be solved optimally by solving a network flow instance. Our algorithm
computes a data placement and an assignment, however it is possible that a better assignment can be
obtained for the same placement by solving the appropriate flow problem. (For the unit size case this
is not an issue since we can show that the assignment is optimal for the placement that is produced by
the sliding window algorithm.)

Another important issue concerns the input size of the problem. The input parameters are N, the
number of disks, and M (< Nk) the total number of movies. Since only the cardinalities of the sets Uj;
are required, we assume each of these can be specified in O(log |U;|) bits. In other words, our algorithms
run in time polynomial in these parameters and are not affected by exceptionally large sets U;, assuming
we can manipulate these values in constant time.

1.3 Motivational Application. Recent advances in high speed networking and compression
technologies have made multimedia services, such as video-on-demand (VoD) servers, feasible. The
enormous storage and bandwidth requirements of multimedia data necessitates that such systems have
very large disk farms. One viable architecture is a parallel (or distributed) system with multiple
processing nodes in which each node has its own collection of disks and these nodes are interconnected,
e.g., via a high-speed network.

We note that disks are a particularly interesting resource. Firstly, disks can be viewed as
“multidimensional” resources, the dimensions being storage capacity and load capacity, where depending
on the application one or the other resource can be the bottleneck. Secondly, all disk resources are
not equivalent since a disk’s utility is determined by the data stored on it. It is this “partitioning” of
resources (based on data placement) that contributes to some of the difficulties in designing cost-effective
parallel multimedia systems, and I/O systems in general. In a large parallel VoD system improper data
distribution can lead to a situation where requests for (popular) videos cannot be serviced even when
the overall load capacity of the system is not exhausted because these videos reside on highly loaded
nodes, i.e., the available load capacity and the necessary data are not on the same node.

One approach to addressing the load imbalance problem is to partition each video across all the
nodes in the system and thus avoid the problem of “splitting resources”, e.g., as in the staggered striping
technique [1]. However, this approach suffers from a number of implementation-related shortcomings
that are detailed in [3]. An alternative system is described in [12] where the nodes are connected in
a shared-nothing manner [11]. Each node j has a finite storage capacity, C; (in units of continuous
media (CM) objects), as well as a finite load capacity, L; (in units of CM access streams). These nodes
are constructed by putting together several disks. In fact, in the paper we will mostly view nodes as
“logical disks”. For instance, consider a server that supports delivery of MPEG-2 video streams where
each stream has a bandwidth requirement of 4 Mbits/s and each corresponding video file is 100 mins
long. If each node in such a server has 20 MBytes/s of load capacity and 36 GB of storage capacity, then
each such node can support L; = 40 simultaneous MPEG-2 video streams and store C; = 12 MPEG-2
videos. In general, different nodes in the system may differ in their storage and/or load capacities.

In our system each CM object resides on one or more nodes of the system. The objects may be
striped on the intra-node basis but not on the inter-node basis. Objects that require more than a single
node’s load capacity (to support the corresponding requests) are replicated on multiple nodes. The
number of replicas needed to support requests for a continuous object is a function of the demand. This
should result in a scalable system which can grow on a node by node basis.

The difficulty here is in deciding on: (1) how many copies of each video to keep, which can be
determined by the demand for that video, as in [12], and (2) how to place the videos on the nodes so as
to satisfy the total anticipated demand for each video within the constraints of the given storage system
architecture. It is these issues that give rise to our data placement problem.

1.4 Main Results. When data items have size s; € {1, 2}, we develop a generalization of the Sliding
Window Algorithm (Multi-List-SW-Alg) using multiple lists, and prove that it guarantees that at least
(1- W)-fraction of clients will be assigned to a disk. Note that this function is always at least

% and approaches 1 as k goes to co. Moreover, we can show that this bound is tight. In other words

there are client distributions for which no layout would give a better bound. Developing tight bounds
for this problem turn out to be quite tricky, and much more complex than the case where all items have
unit size. This already allows for understanding the fragmentation effects due to imbalanced load as
well as due to non-uniform item sizes. We were able to develop several generalizations of the sliding
window method, but it is hard to prove tight bounds on their behavior.

In addition, we develop a new algorithm (Single-List-SW-Alg) for which we can prove that it

guarantees that at least f(k,A) = E;ﬁ 1—

L___ |-fraction of clients will be assigned to a disk,
(V%)
when s; € {1,...,A}.

As mentioned earlier, by combining Single-List-SW-Alg with an algorithm that runs in polynomial

time for fixed £ we can obtain a polynomial time approximation scheme. We develop an algorithm
(PTAS) that takes as input parameter two constants k and €, and yields a (1 — €')® approximation to
the optimal solution, in time that is polynomial for fixed ¥ and €. Pick € so that (1 —¢€')® > (1 —¢)
and € < & (we need this for technical reasons). In fact we can set ¢ = min(4,1 — (1 — e)%) Use the
PTAS with parameters € and k, both of which are constant for fixed e. This gives a polynomial time
approximation scheme.

2 Sliding Window Algorithm

For completeness we describe the algorithm [9] that applies to the case of identical disks with unit size
items.

At step j, we assign items to disk d;. For the sake of notation simplification, R[i] always refers
to the number of currently unassigned clients for a particular data item (i.e., we do not explicitly
indicate the current step j of the algorithm in this notation). We keep the data items in a sorted list
in non-decreasing order of the number of clients requiring that data item, denoted by R. The list,
R[1],...,R[m], 1 < m < M, is updated during the algorithm. At first, m = M and R[i| = |U;|. We
assign data items and remove from R the items whose clients are packed completely, and we move the
partially packed clients to their updated places according to the remaining number of unassigned clients
for that data item.

The assignment of data items to disk d; has the general rule that we want to select the first
consecutive sequence of k or less data items, R[ul,..., R[v], whose total number of clients is at least the
load capacity L. We then assign items R[u],..., R[v] to d;. In order to not exceed the load capacity,
we will break the clients corresponding to the last data item into two groups (this will be referred to
as splitting an item). One group will be assigned to d; and the other group is re-inserted into the list
R. Tt could happen that no such sequence of items is available, i.e., all data items have relatively few
clients. In this case, we greedily select the data items with the largest number of clients to fill d;. The
selection procedure is as follows: we first examine R[1], which is the data item with the smallest number
of clients. If these clients exceed the load capacity, we will assign R[1] to the first disk and re-locate
the remaining piece of R[1] (which for R[1] will always be the beginning of the list). If not, we examine
the total demand of R[1] and R[2], and so on until either we find a sequence of items with a sufficiently
large number of clients (> L), or the first £ items have a total number of clients < L. In the latter case,
we go on to examine the next k data items R[2],..., R[k + 1] and so on, until either we find k items
with a total number of items at least L or we are at the end of the list, in which case we simply select
the last sequence of k items which have the greatest total number of clients.

3 Multi-List Sliding Window Algorithm for A =2

The proof of the tight bound in [5] involves obtaining an upper bound on the number of data items
that were not packed in any disk, and upper-bounding the number of clients for each such data item.
By using this approach we cannot obtain a tight bound for the case when the data items may have
differing sizes, by simply using the sliding window algorithm described above. One problem with such
an algorithm is that it may pack several size 1 items together, leaving out size 2 items for later, and
when K is odd, we may waste space on a disk simply because we are left with only size 2 items and
cannot pack them perfectly.

Let M7 be the number of size-1 items and Ms be the number of size-2 items. At any stage, let m’l
and ms, be the number of size-1 and size-2 items on the remaining items list (the list of items whose
clients have not been assigned completely). Here we only discuss the case when k is odd, since there is
a simple reduction of the case when £ is even to the unit size case (as will be shown later).

The algorithm constructs and maintains three lists R, Ry and auz-list. If M; < N, then note that

there are at least N — M; units of unused space in the input instance. In which case, the algorithm adds
N — M; dummy size-1 items with zero load. The algorithm then sorts the size-1 items and the size-2
items, in non-decreasing order of demand, in lists R; and Ry respectively. The top N size-1 items with
the highest demand are moved into auz-list. The remaining size-1 items are kept in R;. All the size-2
items are placed in the Ry list. From this stage on, the algorithm maintains the R;, Rs and aux-list
lists in non-decreasing order of demand.

For each disk (stage), the algorithm must make a selection of items from R;, R and auz-list. Assume
the lists are numbered starting from 1. Exactly one item for the selection is always chosen from auz-list
(see Fig. 1). The algorithm then selects w; consecutive items from R; and wsy consecutive items from
Ry such that the total utilized space of the selected items from R; and Ry is < k—1 (< k— 1 if we
have an insufficient number of items, or if the items have very high demand).

Define the wasted space of a selection to be the sum of the unused space and the size of the item
that must be split to make the selection load-feasible. At each stage the algorithm makes a list of
selections (S) by combining the following selections (one from Ry, one from R; and one from auz-
list). Tt selects wy, 0 < wy < min([%J,m;) consecutive size-2 items from Ry at each of the positions
1... (m'2 —wy + 1). It selects w1, 0 < wy < min(k — 2wy — 1,m'1) size-1 items from R; at each of the
positions 1. .. (m) —w; +1). Tt selects a size-1 item from auz-list at each of the positions 1. .. |auz-list|.

If Vs € S,load(s) < L the algorithm outputs the selection with highest load. If 3s € S where
load(s) > L, then let D be the set of all selections in S with load > L. Let D" C D be the set of all
the selections which can be made load-feasible by allowing the split of either the highest size-2 item in
the selection, or the highest size-1 item from R; in the selection, or the size-1 item from auz-list in the
selection.

The algorithm chooses d € D' with minimum wasted space. The algorithm outputs a selection of
items to be stored as follows: d = {py,...,p;} where load(p;) = load(p;)+load(p;), load(py,...,p;) > L
and load(py,... ,p;) = L. In the step above, the algorithm is said to split p;. If load(p;’) > 0 the
algorithm then reinserts p; (the broken off piece) into the appropriate position in the list from which
p; was chosen. If the broken off piece was reinserted into auz-list, the algorithm shrinks the length of
auz-list by one by moving the minimum demand item from auz-list into R;. The size-1 item that leaves
auz-list in the previous step is then reinserted into the appropriate position of the R; list. If the broken
off piece was reinserted into some other list (other than auz-list) then note that the size of auz-list
reduces by one anyway since the item from auz-list is used up completely.

4 Analysis of the Algorithm

For each disk in the system, the solution consists of an assignment of data items along with an assignment
of the demand (i.e., the clients for this item that are assigned to the disk) for each of the items assigned
to the disk. We will argue that the ratio of packed demand to total demand is at least (1 — m)

Furthermore, we will show that this bound is tight. This bound is trivial to obtain for even k as shown
next. Most of this section will focus on the case when k is odd. We denote the number of packed clients
by S and the number of unpacked clients by U.

4.1 Even K. Given an instance I create a new instance I' by merging arbitrary pairs of size-1 items
to form size-2 items. If M; (the number of size-1 items in I) is odd, then we create a size-2 item with
the extra (dummy) size-1 item. Size-2 items in I remain size-2 items in I'. Note that since k is even,
I' will remain feasible although M; may be odd. We now scale the sizes of the items in I' by 1/2 and
apply the sliding window algorithm described in Section 2. The basic idea is to view a capacity k disk
as a capacity k/2 disk since each item has size 2. From the result of [5], we get the desired bound of

L o | | R

||w2 | |R2

I | I ey

Figure 1: Lists used by Algorithm.

S 1
r+s 2 (0~ G-
1

It is easy to use the above approach to obtain a bound of (1 — ¢) when k is odd.

)(1 -1
(1++/1k/2])?

However, this bound is not tight.

4.2 0Odd K. The algorithm produces a set of load-saturated disks at first, where the total load is
exactly L. The number of such disks will be referred to as IN;. The number of disks with load less than L
will be Ny (non load-saturated disks). We will assume that the minimum load on a non load-saturated
disk is ¢L (in other words define ¢ appropriately, so that each non load-saturated disk has load at least
cL). We will refer to us(i) as the utilized space on disk d;. This is the total amount of occupied space
on a disk.

The algorithm works in stages, producing one combination of windows per stage which corresponds
to the assignment for a single disk. We know that, at any stage, if we have at least one load-saturated
window, then the algorithm selects the window with load > L that is:

e Load-feasible with one split (i.e. the load of the window becomes = L by splitting at most one
item).

e Minimizes wasted space

Auz-list is the list of N size-1 items with highest load. R; is the list of (M7 — N) size-1 items, Ry
is the list of size-2 items.

If at any stage, both the R; and R, lists are empty while there are some items remaining in the
aux-list, since the number of items in the aux-list is equal to the number of unpacked disks, they will
be packed completely (this actually follows from [9], see [5] for a simpler proof). Furthermore it is not
hard to show that if at any stage j, we have produced j — 1 load-saturated disks and the total size of
the objects in the Ry and R» lists is < k — 1, then all the items will be packed at the termination of the
algorithm. The running time of this algorithm is O(N*k3). We have N disks, a factor of N for auz-list,
a factor of O(mgqk) for the Ry list and a factor of O(mq) for the R list. We know m; is O(Nk) and mo
is O(Nk). (Binary search may be used in auz-list to speed up the algorithm.)

LEMMA 4.1. When the current window has us(w) = k—1 and a size 2 item is split, then every leftmost
window in the future of size k — 2 (not including the split piece) has load > L.

This lemma, argues that the split piece of size 2 along with a chosen window of size k — 2 will produce
a load-saturated disk. If again we split off a piece of size 2, then repeatedly we will continue to output
load-saturated windows, until we run out of items.

Proof. Assume not. Window w (the current window of size k — 1) has i items mi,...,m¢ from Ry, j
items m3, ..., mJ from Ry (j = 0 implies w has no items from Ry) and auz-item(1) from auz-list (this

8

item is mandatory). Consider a window (call it w') with size k& — 2 and with load < L chosen in the
future. (We will discuss the case when the window is chosen at the next step, however since the items
are sorted in non-decreasing order the same proof works for all such windows.) Supplose w has items
say m“ﬁ'l, eet ,mlﬁ'i’ from R, (z" = 0 implies w has no items from Ry), mgﬂ, e ,m%” from Ry (j’ =0
implies w' has no items from Ry) and auz-itern(2) from auz-list (this item is mandatory). Let 8 be the
number of clients for item m}.

Note the following:

i J
Zﬁlf + Zﬁg + auz-list(1) > L
p=1 p=1

i j—1
ZE’{ + ZE’; + auz-list(1) < L
p=1 p=1

Since we cannot reduce the load to L by splitting a size 1 item, we have

i—1 J
DA+ B+ aus-list(1) > L
p=1 p=1

Suppose the window of size k — 2 we select has load < L. This implies that

it i+i'
S B+ > B+ aus-list(q) < L
p=i+l p=j+1

Since the items of a list are in non-decreasing order, we can claim the following:

B '
it

i
DA+ B+ aus-list(1) < L
p=1 p=1

Call this window w”. It has size k — 2 and load < L. There are three cases based on the values of j and
-/

7

1. j = 4'. Since j = j' and i’ =i — 1, we obtain

i—1 J
Zﬂﬁ) + Zég + auz-list(1) < L
p=1 p=1

This is in direct contradiction to the assumption we made about w (see equation above).

2. j > j'. Add m} ™" to w". This window now has size k. If the load now is > L, we can find a
window of load > L with size k that is load-saturating. This is a contradiction to our choice of a
window of size k — 1 with a size 2 split. Otherwise the load is at most L and we keep adding items
from Ry and dropping items from R;, to maintain a size k window, until we obtain a window with
load > L.

(Certainly by the time we add m} we obtain a window of size k with total load > L.) As soon
as this happens we have found a window with size k that is load-saturating. This is a direct
contradiction to our choice of a window of size k — 1.

3. j < j'. Add mi*! and m! "2 to w”. If the load now is > L then we can load-saturate with a
window of size > k —1 and split a size 1 item. This is in contradiction to the choice that we made.

<!
Now assume that the total load is < L and the size is exactly k. We remove m} from w” and add

NI NI
mzl +3 i +4

and m] 7. Again if the load > L we are done. We keep doing this until the load exceeds

L. This must happen after we remove m%“.
LEMMA 4.2. When the current window has us(w) < k — 2 and an item is split, then every leftmost
window of the same size as the current window must have load > L

Proof. Assume not. Suppose w (the current window) has items say mi,...,m} from R; (i = 0 implies
w has no items from Ry), m3, ..., mJ from Ry (j = 0 implies w has no items from Ry) and auz-item (1)
from quz-list (this item is mandatory) Consider a leftmost window (call it w') of the same size as w

and with load < L. Suppose w’ has items say mi,. ml from R; (z — 0 implies w’ has no items from

Ry), mi, .. ,m2 from Ry (j' = 0 implies w’ has no items from Ry) and auz-item (1) from auz-list (this
item is mandatory). Since w has the same size as w but is different from w, one of the following must
be true:

1. j' < j. Since size(w') < k — 2, add in the items from R, starting from mJ, + 1 until size(w') = k
or until the load of w becomes > L. If the load of w' becomes > L and we have managed to
add in an item, then we have a contradiction since we have found a window larger than w that is
load-feasible within one split. Note that if we add in items upto m3, the load of w must become
> L and as before if we have managed to add in an item, then we have a contradlctlon. So now,
we have size(w') = k and the load of w' is < L and we have not yet added in m?, Now we drop
the two highest items in w’ from R; and add in the next higher 1tem (not already in w') from Ry
and repeat until we have either added in m% or until the load of w" becomes > L. In either case,

we have a contradiction since we have found a larger feasible window than the current window.

2. j' > j. Since size(w') < k — 2, add in the items from R1 starting from ml + 1 until size(w') = k
or until the load of w' becomes > L. If the load of w becomes > L and we have managed to
add in an item, then we have a contradiction since we have found a window larger than w that is
load-feasible within one split. Note that if we add in items upto m¢, the load of w must become
> L and as before if we have managed to add in an item, then we have a contradiction. So now,
we have size(w') = k and the load of w' is < L and we have not yet added in m}. Now we drop
the highest item in w’ from Ry and add in the next higher items (not already in w') from R; and
repeat until we have either added in m? or until the load of w becomes > L. In either case, we
have a contradiction since we have found a larger feasible window than the current window.

We next show that for each load-saturated disk we have at most two units of wasted space.

LEMMA 4.3. If at the termination of the algorithm there are unassigned clients then for every load-
saturated disk d; one of the following conditions must hold:

1. Disk d; has us(i) > k — 1 and a size-1 item is split, or

2. Disk d; has us(i) = k and a size-2 item is split.

Proof. We need to show that if we produce a load-saturated disk that violates conditions (1) and (2)
then all the items from all the lists (R;, Ro and auz-list) will be packed completely.

10

From Lemma 4.1, we know that if we waste three units of space by splitting an item of size 2 and
having us(i) = k — 1 then we will assign all clients to disks.

From Lemma 4.2 we know that when the current window has > 2 units of unused space and a size-1
item is split or a size-2 item is split, then every leftmost window of the same size as the current window
must have load > L.

Since we know that every leftmost window with the same size as the current window has load > L,
we also know that in the next stage there exists a window of the same size as the current window with
load > L. Further, since the current window has size < k — 2, the broken off piece from the current
window can be reused in the next stage. As a result, we will produce load-saturated disks until the total
load of the items remaining on R; and Ry is < L. However the total size of the items remaining on R;
and Ry is now < size(current-window) < k — 2. In this case, as mentioned previously, all the clients
will be packed in the following rounds.

LEMMA 4.4. If at the termination of the algorithm there are unassigned clients then either
1. All the non load-saturated disks are size-saturated.

2. Only size-2 items are remaining and there is at most one non load-saturated disk with exactly one
unit of unused space and all the other non load-saturated disks are size-saturated.

Proof. If at the termination of the algorithm, R; is not empty then all the non load-saturated disks
must also be size-saturated; otherwise the algorithm would have found a selection with higher load by
adding in another item from Rj.

Now consider the case where R; is empty and Ry is not empty. Since Ry is not empty, for each
non-load saturated disk i we have us(i) > k — 1. Now assume (for contradiction) that there are two non
load-saturated disks ¢ and j (say 7 < j) s.t. us(i) = us(j) =k — 1. If we have us(i) = k — 1 then R;
must become empty after this selection has been assigned to 7; otherwise, the algorithm could just have
added in another item from R; and would have found a selection with higher load. Since us(i) =k — 1,
the Ry list becomes empty after the current selection has been assigned to disk i. Now Ry is empty and
exactly one item from auz-list will be forced onto j, so for all future disks j > 4, us(j) must be odd.
Since k is odd and we have us(j) > k — 1, it follows that us(j) = k and we have a contradiction.

THEOREM 4.1. It is always possible to pack a (1 — ————)-fraction of items for any instance.
ys p p (o \/@)2) f f for any

Proof. As a result of Lemmas 4.3 and 4.4, we know that at the termination of the algorithm if there
are unassigned clients then either:

1. At most 2N; + 1 units of space are wasted in the packing and only size-2 items are remaining, or

2. At most 2NN; units of space are wasted in the packing.

We will show that in both cases the total load of the remaining items (U) is < %
2
We first see how to prove the theorem using this bound. The number of satisfied clients (S) is at
least L x N; + ¢ X Ng x L. Subtracting this quantity from the upper bound on the load of the input
instance (N x L) gives us U < (1 — ¢) x Ny x L where U is the unassigned clients. Hence the ratio of

unpacked (U) to packed (S) items can be bounded as follows.

min(MXEXL (1 — ¢) x N, x L)

151
LxNy4+¢cx NgxL

WS

<

11

Since

s 1
U+S 1+Y¢

the claimed bound now follows from the method outlined below to upper bound %
The ratio of unpacked (U) to packed (S) items is at most

U min(%,(l—c) x Ng x L)
Z < 2
S

- Lx Ny +¢cxNgxL

Let y = N and thus 1 — y = Nz Simplifying the upper bound above we obtain.
N N g
min(g37, (1 - ¢)(1 —)
y+c(l—y)
<y
5] (1—®U—y%
yt+el-y) y+ec(l-y)

The first term is strictly increasing as ¢ or y increases, while the second term is strictly decreasing as ¢
or y increases. So in order to maximize the expression, we need to set the two terms equal, which means

] = (-a-v)

INESERVARS

< min(

1-c¢
VS T
Substituting for y gives us that the upper bound for U/S is at most ﬁgcﬂz This achieves its
maxima when ¢ = (1 — ﬁ) The fraction of all the items that are packed is
S 1
U+S ~ 1+¢ (1)
S

1

v+s = U gy

NjcL
5]
1. If at most 2N; + 1 units of space are wasted in the packing and only size-2 items are remaining,
then we can have at most NV; size-2 items on the remaining items list. Let the load on the lightest
loaded non load-saturated disk be cL. Since any non load-saturated disk must have at least ng
size-2 groups (i.e. either two size-1 items or a single size-2 item), the load on the lowest size-2

group is at most % (average load of an assigned item). The load of any size-2 item on the

2

remaining items list must be < %
2

packing by swapping the size-2 item on the remaining items list with this lowest size-2 group.

Therefore, the total load of the remaining items is < %
2

We now prove that U <

since otherwise, the algorithm could have obtained a better

2. Let m) be the number of size-1 items on the remaining items list, and let m, be the number of
size-2 items on the remaining items list. We know that all the non load-saturated disks have k
units of utilized space. This disk has L%J size-2 groups (i.e. either two size-1 items or a single
size-2 item) and a size-1 item. Let the load on this size-1 item be z.

12

o If m'1 = 0, then the same reasoning as for case 1 gives us the desired bound.

o If m’l = 1. Since we know that all the non load-saturated disks are size-saturated, we have

at least ng + 1 objects (both size-1 and size-2 items) on the lightest loaded disk. Therefore,
the maximum load of the smallest object on the lightest loaded disk is < [&CJL+ T The load
2

of the single size-1 item on the remaining items list must be at most x and must also be

< [—CJL+ - < ka_J since otherwise, the algorithm would have obtained a better packing by
2 2

swapping the size-1 item on the remaining items list with the lowest object (a size-1 or size-2

item) on the lightest loaded disk.

. /CL—.’E
U < min(z, LJ) (W)
CL 2Nl—1 cL —x

< min(z, ﬁ) (N — 1)

cl—zx

5]

)

NycL

5]

If ml1 > 2. Let L} be the remaining load of the i** size-1 item and let Lg be the remaining

load of the 5™ size-2 item. Since mll > 2, we must have that load of any unpacked size-2
group be less than the load of the smallest size-2 group on the lightest loaded disk. We

<

can thus obtain a bound for szlll LY as follows. Consider all pairs of size 1 items with load
Lt + LJ with ¢ # j. The total load for this pair cannot exceed ¢ B Jw, which is the load for

the minimum size 2 group that was packed. Summing over all pairs gives

> (i H) = D30

(4,9)i#7

+ 1) =

Thus
ml —1)cL -z

5]

1-1) ZLZ

Simplifying yields

U <
1 cL —zx rcL—x
< mimin(z, 5 () + my(——)
13 13]

(m} +2my) cL

< TR

2 13]

S NlCL

13

5 Tight Example for s; € {1...A}

The tight example in this section is for the case where s; € {1,..., A} and is an extension of the tight
example presented in [5] for the uniform size sliding window algorithm. The tight example instances
will only consist of size-A items.

We give an example to show that the bound of (1 — ———~——) on the fraction of packed demand

(i.e. the fraction of assigned clients) is tight. In other words, there are instances for which no solution

can pack more than a (1 — m)-fraﬂtion of the total demand. Assume that |£| is a perfect

square, where k is the storage capacity of a disk. Let N the number of disks be 1 + [%J and let
L=|%]+./|%]. Thereare |£] size-A items with a large demand (call them “large items”). Say these

items are Uy, ..., U\/m each with demand 2 + (/[£ |. There are also (| £| —1)(1+ /[£]) +1 size-A
A

items with a small demand (call them “small items”). Say these items are U VIE[+D UL Ej4y/1E])
A A A

We will show that at least Lﬁj demand will never get packed. In this case, the fraction of unpacked

.) %] o 1 . .
items is at least N which is exactly ——————. This proves the claim.
v/ IED(LE 1t/ TED Y /15D P

First consider the 4/ L%J large items. An unsplit item U; has all its demand allocated to a single
disk. A split item U; has its demand allocated to several disks. For a disk that contains at least one
large unsplit item, the available load capacity is at most [%J — 2. Note that after packing one large
unsplit item, the available load capacity is smaller than the storage capacity. Even is there is no single
large unsplit item on a disk, we can obtain the same configuration without losing any packed demand
by swapping the demand of this item with the demand of the other items on the disk. The disks now
have one large unsplit item and at most [%J — 2 small items. The remaining disks have only large split
items. Assume that there are exactly p(0 < p < L%J) large items that do not get split Uy, ..., U, with
disk d; containing Uj;.

Consider the remaining N —p disks; we are left with at least | £ | x N—p(|£|—1) = [£|x (N—p)+p
items, but we only have |£] x (N — p) storage capacity left. Since the remaining | %] — p large
items are all split, this generates an additional [%J — p instances of items. Thus we have at least

| £] x (N —p)+p+ | %] — p items. This will create an excess of | £ | items that we cannot pack.

6 Generalized Sliding Window Algorithm (Single-List-SW-Alg)

The sizes of the items in our instance are chosen from the set {1,...,A}. In this section, we present
algorithm Single-List-SW-Alg that guarantees to pack a 2;—2 1-— L -fraction of clients for

()

any valid problem instance.

The algorithm works in two phases. In the first phase it produces a solution for a set of IV disks each
with storage capacity k+ A — 1 and load capacity L. In the second phase, the algorithm makes the solu-
tion feasible by dropping items from these disks until the subset of items on each disk has size at most k.

In the first phase of the algorithm, the algorithm keeps the items in a list sorted in non-decreasing order
of density p;, where p; = i—i, I; and s; are the load and size of item i. At any stage of the algorithm,
this list will be referred to as the list of remaining items.

For each disk, the algorithm attempts to find the first (from left to right in the sorted list) “minimal”

14

consecutive set of items from the remaining items list such that the load of this set is at least L and
the total size of the items in the set is at most ¥ + A — 1. We call such a consecutive set of items a
“minimal” load-saturating set. The set is “minimal” because removing the item with highest density
(i.e., the rightmost item) from this set will cause the load of the set to become less than L. Say the items
in such a “minimal” set are some z,...,z,. We have >;_ [; > L, E;’;& i <L, Yj ,si<k+A-1
and w is the first index where such a load-saturating set can be found. If a “minimal” load-saturating
set is found, then the algorithm breaks the highest density item in this set (i.e., z,) into two pieces
and z,» such that [, + Z;’;} l; = L. The piece z,» is reinserted into the appropriate position on the
remaining items list.

If the algorithm is unable to find such a “minimal” load-saturating set, then it outputs the last (from
left to right) “maximal” consecutive set of the highest density items from the remaining items list. We
call such a set a “maximal” non load-saturating set. Say the items in this “maximal” set are some
Tp,-..,Tq (Where x4 is the last item on the list of remaining items at this stage). The set is “maximal”
in the sense that s, + Eg:p s; > k+ A —1 (if z, is not the first item in the list of remaining items)
and Z;I:p $; < k+ A —1. Since we know that the set was not a load-saturating set we have Z;-I:p l; < L.

The algorithm outputs these sets as follows. Let the items on the remaining items list be z1, ..., 4.
For each disk, add item z; to the current selection. Repeat the following steps until we find either a
“minimal” load-saturating set or a “maximal” non load-saturating set: Say the next item, that is the
item on the remaining items list after the last item in current selection, at any stage is z;. If load(current
selection) < L and s; + size(current selection) < k 4+ A — 1, then add z; to current selection. Else if
load(current selection) < L and s; + size(current selection) > k + A — 1, drop the lowest density items
from current selection as long as s; + size(current selection) > k + A — 1, and then add z; to current
selection. Note that if load(current selection) > L or z; = (), then we have found either a “minimal”
load-saturating set or a “maximal” non load-saturating set. If the algorithm finds a “minimal” load-
saturating set then it breaks off the highest density item in current selection (as described above),
reinserts the broken-off piece into the appropriate position on the remaining items list and outputs the
modified current selection. If the algorithm finds just a “maximal” non load-saturating set, it simply
outputs the current selection. After the algorithm outputs a selection, these items are removed from
the list of remaining items. At the end of the first phase of the algorithm, each disk is assigned either
a “minimal” load-saturating set of items or a “maximal” non load-saturating set of items.

In the second phase, for each disk, the algorithm drops the lowest density items assigned to the disk
until the size of the packing is at most k. Since the load of the packing was feasible to begin with, at
the end of this phase the algorithm produces a feasible solution.

It is easy to implement the algorithm in time O(M log M + M N). (We first sort all the items, and
then assign items to each disk. Each disk can choose its selection in time O(M).)

THEOREM 6.1. It is always possible to pack a ﬁ_—ﬁ 1— —2L | -fraction of clients for any valid

(/)

LEMMA 6.1. If us(i) < k — A for any load-saturated disk i at the end of phase I of the algorithm, then
all items are packed at the end of phase I of the algorithm.

input instance.

Proof. Suppose that the items assigned to a load-saturated disk 4 are z1, ..., z, (in non-decreasing order
of density). Then we have >27_, s; <k — A, 3% _,1; > L and E?;l l; < L.

If the items in our current selection are not the first p items, then clearly some items were dropped.
Since some items were dropped, adding in another item to the current selection must have made

15

Remaining Items List:
1,1,1,1,1)1,5/5/5,5,5,30,30 Load=5
4,4,3,3,3/3,3,3,2,2,2, 4, 4 Sze=17
Remaining Items List:
1,(1,1,1,1,1)5/5,5,5,5,30,30 Load =
4\4,3.3,3,3)3:3.2,2,2, 4, 4 Size=16

ist:
1,1,1,1, 1,155, 55,5 30)30 Load =50 (w/split)
443333033222 4 4 Sze=16

............. 5 65 5.5 25 - Loa = 45
............. 3B 225 4] Size=13

Figure 2: We illustrate stages of the single list algorithm. We have & = 15, A = 4 and L = 50. The
top row in each figure shows the demand and the bottom row in each figure shows the size. The first
two figures show the first two steps in making a selection for the current disk during phase I. The third
figure shows the final selection for phase I. The last figure shows the final selection for phase II.

16

size(current selection) > k + A — 1. In phase II the algorithm will more drop items to make the
current selection size feasible. Since each item has size at most A, this operation cannot decrease us(%)
below k. We have a contradiction since we assumed us(z) < k — A. So the only way for the selection to
have size < k — A is for the selection to consist of some p items where these p items are also the first p
items in the list of remaining items.

As a result, before reinsertion of the broken off piece, every consecutive subset of items of size at
least k— A has load > L. Since the algorithm permits every disk to pack items of total size upto k+A—1
in phase I, note that the broken off piece (which has size < A) from the previous load-saturated disk
can be accomodated in the next load-saturated disk. In this way, the algorithm produces load-saturated
disks until there are no more items in the remaining items list.

LEMMA 6.2. At the end of phase I of the algorithm, at least a | 1 — -fraction of clients are

(O]

packed.

Proof. We will argue that the total unassigned load at the end of phase I is less than QA% where N,
is the number of load-saturated disks in the assignment and cL denotes the load of the lightest loaded
non load-saturated disk in the assignment. The bound will then follow from the method outlined in the
proof of Theorem 4.1. (Note that the bound we use there is ELIECTL) Observe that at the end of phase
I of the algorithm, every item that has unassigned load (i.e., evéry item on the list of remaining items
at the end of phase I of the algorithm) will have density less than that of the lowest density item on
lightest loaded disk. This is because when we are unable to produce any more load-saturated disks,
the algorithm effectively outputs the largest possible consecutive set of the highest density items. Let
items z1,...,xp be assigned to the lightest loaded non load-saturated disk. Since the load of the lightest
loaded disk is cL, we also have }-F_, load(x;) = cL. Since in phase I we allow each disk to be filled upto
size k + A — 1, we have k < 3P | size(z;) < k+ A, unless all the items have been packed. Let pmin
denote the density of the lowest density item assigned to the lightest loaded disk. Then we have:

P P
Prmin Z size(x;) < Z pi - size(x;) = cL
i=1 i=1
< cL
Pmin = P | size(z;)
cL
Pmin < ?

Now for each item y; on the remaining items list, since the density of y; is less than p,;,, we have
load(y;) < pmin-size(y;)- So the total load of the items on the remaining items list is < ppin - > size(y;)-
Since at the end of phase I the remaining items list was not empty, from Lemma 6.1, we know that each
load-saturated disk is filled to size > k — A. Further, we know that each non load-saturated disk is filled
to size > k, otherwise we can add an item to this disk. Since our instance was feasible, the total size of
all the items in the instance is Nk. Every time we create a load-saturated disk we might split at most
one item and this item can have size at most A. As a result, the size of the unpacked items is:

> size(y) < Nk+ NiA — N (k — A) — Nk = 2N,A

where each y; is an item on the remaining items list, IV; is the number of load-saturated disks and N;
is the number of non load-saturated disks. So the total unassigned load (i.e. the total load of the items
on the remaining items list at the end of phase I of the algorithm) is < ppin - 2AN; < ﬂ,\glc—L.

17

Let S be the total load of items packed at the end of phase II and let S’ be the total load of items
packed at the end of phase I.

LEMMA 6.3. At the end of phase II of the algorithm, i, > A

Proof. Say the items assigned to a disk are zi,...,z, (these items are labeled in non-decreasing
order of density). Suppose Zp_l size(z;) > k. Say items z1,...,2, need to be dropped from the
selection to make E =g+l szze(wj) < k. Since the largest smed item in our instance has size A,
Z]_l size(z;) < 2A — 2 and Zz_q+1 si > k — A. Let p be the density of item z441. Since the
items z1,...,z, are labeled in non-decreasing order of density, for each disk we can lower bound the
remaining load (after dropping items z1,...,z, to make it size-feasible) as follows:

Further, for each disk we can upper bound the lost load as follows:

q
> pisi < p(2A -2).
i=1

Therefore, the ratio of total lost load to total remaining load is at most kZAA 4?1 and the fraction of total

load remaining after phase IT is at least & A 2 (using Equation 4.1).

Using these two lemmas, we easily obtain the proof of Theorem 6.1.

7 Polynomial Time Approximation Schemes (PTAS)

From Theorem 6.1 we know that when the sizes of our items are chosen from the set {1... A}, algorithm
Single-List-SW-Alg guarantees to pack a f(k, A)-fraction of clients for any valid problem instance.

Note that
k—A 1 kE—A 1
F(kA) > (1 _> (1 j>.
kE+ A .. kE+A sz

Thus algorithm Single-List-SW-Alg can definitely pack a k A (1 = A) -fraction of items for any valid
oA

problem instance. Note that ’,g +§ (1 —

2A

)tendstolask—)oo

If1-e< =% (1 }A> then we can use Algorithm Single-List-SW-Alg and get a solution within
2A

the desired error bounds. If 1 — e > k A (1 — k—_A—> then k is a constant (k < @) and we develop
2A

a PTAS for this case. This scheme is a generalization of the scheme developed in [5]. Algorithm PTAS
takes as input parameters k,c and € and produces a solution that has an approximation factor of
(1 — €)3, in time that is polynomial for fixed ¢ > 0 and integers k,c. The sizes of the items are in the
set {a1,...,a.} with a; > 1. (If the sizes are chosen from {1,...,A} for some constant A, then this is
easily seen to be the case.) To get a (1 —¢) approximation, we simply define ¢ =1 — (1 — e)%

For technical reasons we will also need to assume that € < 1 . If this is not the case, we simply lower
the value of € to =. Since k is a fixed constant, lowering the value of € only yields a better solution,
and the running tlme is still polynomial.

The approximation scheme involves the following basic idea:

1. Any given input instance can be approximated by another instance I’ such that no data item in
I' has an extremely high demand.

18

2. For any input instance there exists a near-optimal solution that satisfies certain structural
properties concerning how clients are assigned to disks.

3. Finally, we give an algorithm that in polynomial time finds the near-optimal solution referred to
in step (2) above, provided the input instance is as determined by step (1) above.

We now describe in detail each of these steps. In what follows, we use OPT(I) to denote an optimal
solution to instance I and « to denote 1/€’. Also, for any solution S, we use |S| to denote the number
of items packed by it.

7.1 Preprocessing the Input Instance. We say that an instance I is B-bounded if the size of each
set U; is at most B. We omit the proof of the following lemma as it is the same as in [5].
LEMMA 7.1. For any instance I, we can construct in polynomial time another instance I' such that

e I' is (aL)-bounded,

e any solution S’ to I' can be mapped to a solution S to I of identical value, and

e [OPT(I")| > (1 —€)|OPT(I)].

7.2 Structured Approximate Solutions. Let us call a data item j unpopular if |U;| < ¢ %, and
popular otherwise. For a given solution, we say that a disk is light if it contains less than € L clients,
and it is called heavy otherwise. The lemma below shows that there exists a (1 — ¢’)-approximate
solution where the interaction between light disks and popular data items and between heavy disks and
unpopular data items, obeys some nice properties. The proof of the following lemmas is in [5].

LEMMA 7.2. For any instance I, there exists a solution S satisfying the following properties:
e at most one light disk receives clients from a set Uj.
e a heavy disk is assigned either zero or all clients that require an unpopular item.
e S packs at least (1 — ¢')OPT(I) items.

For a given solution S, a disk is said to be d-integral w.r.t. to a data item Uj if it is assigned S[dL]
clients from U;, where 0 < § <1 and f is a non-negative integer.

LEMMA 7.3. Any solution S can be transformed into a solution S’ such that
e cach heavy disk in S is (e /k)-integral in S' w.r.t. each popular data item, and
o S’ packs at least (1 — €')|S| items.
e cach heavy disk packs (1 — €')L items corresponding to popular items.

7.3 The Approximation Scheme. Start by preprocessing the given input instance I so as to create
an (aL)-bounded instance I' as described in Lemma 7.1. We now give an algorithm to find a solution S
to I' such that S satisfies the properties described in Lemmas 7.2 and 7.3 and packs the largest number
of clients. Clearly,

S| > (1= €)?JOPT(I")| > (1 - €)*|OPT(I)|.

Let O be an optimal solution to the instance I’.Assume w.l.o.g. that we know the number of heavy
disks in O, say N'. Let H be the set of disks d; through dy+ and let £ be the remaining disks, dy/;1
through dy. The algorithm consists of two steps, corresponding to the packing of disks in ‘H and £
respectively.

19

Packing items in H: We first guess a vector (l1,la,...,Ix’) such that I; = (I},...,I) where lzj
denotes the number of unpopular size a; data items whose clients are assigned (completely) to a disk
d; € H.

Since all disks are identical, we can guess each such vector in O(N (k+1)c) time by guessing a compact
representation of the following form. First note that the number of possible distinct /; vectors is upper-
bounded by (k+ 1)¢, simply because each I} value is chosen from the set {0,1,...,k}. (Note that better
bounds can be derived since to be a feasible packing we require that > j lf aj <k.) Let 7O 7@ T
be distinct feasible vectors. We guess a vector {qo,q1,**,qy) such that 37 ;¢ = N’ where ¢; denotes
the number of disks in # that are of type 7). It is easily seen that any such vector can be mapped to
a vector of the form (l1,1y, ...,I5’) and vice versa. Now proceeding from 1 through N’, we assign to disk
d; the largest size I} size a; unpopular data items that remain.

Next we develop a dynamic program moving across the disks from 1 through N’ so as to find an
optimal (€”2/k)-integral solution for packing the largest number of clients from the popular data items.

For the purpose of this packing, the capacity of each heavy disk is restricted to be (1 —€’)L and the
number of data items allowed in disk d; is given by k — 3°;l]a;, since we already packed I unpopular
items of size a; in d;.

Let 8 = k/€® and ¢ = [(¢”L)/k]. The dynamic program is based on maintaining a S-tuple
7 = (v},vl, ...,vé,v%,v% ... ,vg, .., 0§, 5, ..., v5) where v} denotes the number of size a; popular data
items that have i - ¢ clients available in them.

Proceeding from i = 1 through N’, we compute a table entry T'[7, 4] for each possible state vector .
The entry indicates the largest number of clients that can be packed in the disks d; through d; subject
to the constraint that the resulting state vector is #. Since there are at most Nk items, the total number
of state vectors is bounded by (Nk)*/ ¢* which is polynomial for any fixed €.

Packing items in £: We know that our solution need not assign clients corresponding to a popular
data item to more than one disk in £. Moreover, at most €'L clients from any popular data item are
packed in a disk in £. So at this stage we can truncate down the size of each popular data item to |[€'L].
Together with the unpopular items, we have c lists of items, L} (i = 1...c)where L} has both popular
and unpopular items of size a;. The popular items are truncated as mentioned above.

We have exactly N — N’ disks that are light disks, and we wish to obtain an optimal packing of
these light disks using the c¢ lists mentioned above. First note that if ¢ < % then no subset of data
items of total size at most k can ever load saturate a disk. This essentially implies that we can ignore
the load dimension, only worrying about the storage capacity constraint. However, at the same time
we wish to pack a set of data items that yield the maximum number of assigned clients.

Our approach is based on the following idea. For each ¢ = 1...c¢ we guess n;, the number of data
items from L! that are chosen to be packed in light disks. Since there are O(M¢) such choices, this is a
polynomially bounded search space. For each such 1, we can easily compute the “yield” of this guess,
namely the number of clients that can be assigned if we can pack n; data items from each list L} in the
N — N' light disks. Note that within each list L} we will always choose the most profitable set of n;
items (with the maximum number of clients).

We still need an algorithm to verify if it is possible to pack n; items from each list L}. This is done
as follows. We can characterize each disk by a vector (z1, %2, ...z.) where z; is the number of items of
size a; packed in this disk. For this to be feasible, it must satisfy the property that Y _; a;z; < k. Note
that this immediately upper bounds the value of z; by [(%J The number of possible vectors is thus at
most O(k€), in other words a constant for fixed k and c. Hence we obtain the fact that each light disk
is characterized by a constant number of (feasible) types T, ..., T(® where TU) = (z1,...,).

Let N; be the number of disks of type T(). Clearly, we are looking for a solution to the following
Integer Program (IP):

20

o
> Nj=N-N
7j=1

¢
Z:EfNj :niVi: l...¢c
j=1

The first constraint simply specifies that the total number of disks of each type is exactly the total

number of light disks. The second constraint says that exactly n; items of each size a; are packed. Since
this is an integer program with a constant number of variables, we can use the algorithm by Lenstra
[6] to solve it, or we can use the fact that each N; is upper bounded by N — N’ to obtain a polynomial
time algorithm.

Acknowledgements: We thank Moses Charikar, Leana Golubchik and An Zhu for useful

discussions.

References

[1]

S. Berson, S. Ghandeharizadeh, R. R. Muntz, and X. Ju. Staggered Striping in Multimedia Information
Systems. ACM SIGMOD Conference, pages 79-90, 1994.

C. Chekuri and S. Khanna. On multidimensional packing problems. In ACM/SIAM Symp. on Discrete
Algorithms, pages 185-194, 1999.

C.-F. Chou, L. Golubchik, J.C.S. Lui, and I.-H. Chung. Design of Scalable Continuous Media Servers.
Special issue on QoS of Multimedia Tools and Applications, 17(2-3):181-212, 2002.

M. Dawande, J. Kalagnanam, and J. Sethuraman. Variable Sized Bin Packing With Color Constraints.
Technical report, IBM Research Division, T.J. Watson Research Center, 1999.

L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, and A. Zhu. Approximation algorithms for data
placement on parallel disks. In ACM/SIAM Symp. on Discrete Algorithms, pages 223-232, 2000.

H. W. Lenstra. Integer programming with a fixed number of variables. Math. of Oper. Res., pages 538—548,
1983.

P. Raghavan. Probabilistic construction of deterministic algorithms: approximating packing integer
programs. Journal of Computer and System Sciences, 130-143, 1988.

H. Shachnai and T. Tamir. Approximation schemes for generalized 2-dimensional vector packing with
application to data placement. In Workshop on Approzimation Algorithms (APPROX), LNCS, Springer-
Verlag, pages 238-249, 2003.

H. Shachnai and T. Tamir. On two class-constrained versions of the multiple knapsack problem.
Algorithmica, 29(3):442-467, 2000.

H. Shachnai and T. Tamir. Polynomial time approximation schemes for class-constrained packing problems.
In Workshop on Approzimation Algorithms (APPROX), LNCS, Springer Verlag, pages 238-249, 2000.

M. Stonebraker. A Case for Shared Nothing. Database Engineering, 9(1):4-9, 1986.

J. Wolf, H. Shachnai, and P. Yu. DASD Dancing: A Disk Load Balancing Optimization Scheme for Video-
on-Demand Computer Systems. In ACM SIGMETRICS/Performance Conf., pages 157-166, 1995.

