
An Optimal Incremental Algorithm for
Minimizing Lateness with Rejection

Samir Khuller?1 and Julián Mestre??2

1 University of Maryland, College Park, MD 20742, USA.
2 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany.

Abstract. This paper re-examines the classical problem of minimizing
maximum lateness which is defined as follows: given a collection of n
jobs with processing times and due dates, in what order should they
be processed on a single machine to minimize maximum lateness? The
lateness of a job is defined as its completion time minus its due date.
This problem can be solved easily by ordering the jobs in non-decreasing
due date order. We now consider the following question: which subset of
k jobs should we reject to reduce the maximum lateness by the largest
amount? While this problem can be solved optimally in polynomial time,
we show the following surprising result: there is a fixed permutation of the
jobs, such that for all k, if we reject the first k jobs from this permutation,
we derive an optimal solution for the problem in which we are allowed to
reject k jobs. This allows for an incremental solution in which we can keep
incrementally rejecting jobs if we need a solution with lower maximum
lateness value. Moreover, we also develop an optimal O(n log n) time
algorithm to find this permutation.

1 Introduction

Scheduling problems arise in many contexts in computer science and op-
erations research. Let us begin by defining the problem of scheduling jobs
to minimize maximum lateness. Given a set of jobs A, each having a pro-
cessing time and a due date, we want to schedule the jobs on a single
machine. A job is considered to be late if it finishes after its due date,
in which case its lateness is the difference between its finishing time and
its due date; if a job finishes on time, its lateness is 0. Our objective is
to find a schedule on a single machine minimizing the maximum lateness
among all jobs.

More formally, let A = {1, . . . , n} be a set of jobs and let pi and
di denote the processing time and due date of job i. Without loss of
generality, we can assume that in an optimal solution the machine is never
? Research supported by NSF grant CCF 0728839.

?? Research supported by an Alexander von Humboldt Fellowship.

idle and that the schedule is non-preemptive. Thus a schedule is specified
with a permutation σ on n elements, where σ(j) denotes position of job
j ∈ A in our schedule. Then the lateness of the ith job can be defined as

Li =
∑

j:σ(j)≤σ(i)

pj − di. (1)

Our objective is to find a permutation σ minimizing maxi Li. It is well-
known [6] that scheduling the jobs in non-decreasing due date order yields
an optimal solution.

For the problem of scheduling jobs to minimize maximum lateness
with rejection, in addition to the n jobs, we are given a budget k. Our
objective is to identify a set of k jobs to reject, so as to minimize the
maximum lateness of the remaining jobs. An incremental solution for the
problem is a list of the jobs such that for any k, the first k jobs in the list
form an optimal solution for minimizing lateness with k rejections. Our
main contribution is to show that such a list always exists and that it can
be computed in O(n log n) time. Not only does the incremental approach
let us develop a faster algorithm, it also uncovers some surprising struc-
tural properties of the underlying problem. Moreover, if all due dates are
identical then we need to order the jobs in non-increasing processing time
order, since this is an optimal rejection order, so the problem is at least
as hard as sorting.
Previous Work: Scheduling to minimize maximum lateness with rejec-
tion was studied by Sengupta [11]. In fact, he considered a more general
formulation where each job j has a rejection penalty of ej , and there is a
bound on the total penalty of rejected jobs. In this case Sengupta shows
that the problem is actually NP-complete. However, he also gives a simple
dynamic programming solution that runs in time O(nk + n log n) when
all ej = 1, and there is a budget k on the number of jobs we can reject.
This algorithm computes the optimal set of k jobs to reject, to get the
maximum possible reduction in the maximum lateness. Of course, it may
happen that the optimal set of k jobs to reject chosen by the algorithm
is not a subset of the optimal set of k + 1 jobs to reject chosen by the
algorithm.

Other scheduling problems with rejection have been considered as
well, both in the offline setting [3, 7, 10, 1] and in the online setting [4,
1]). To the best of our knowledge, none of these works have considered
incremental solutions for scheduling with rejection.
Related Work on Incremental Algorithms: Perhaps the earliest ex-
ample of an incremental algorithm is Gonzalez’s algorithm for the K-

center problem [5], which yields a 2 approximation. Mettu and Plaxton
[9] defined the online median problem and showed that there is a way
to choose centers incrementally, such that selecting the first K centers,
gives a constant factor approximation to the K-median problem. Even
though several constant factor approximations were developed for the
basic K-median problem, there is no mechanism to enforce that the solu-
tion using K medians would be a subset of the solution using K ′ medians
when K ′ > K. Mettu and Plaxton’s work then led to several subsequent
improvements and simpler proofs [8, 2].

For the problem of minimizing maximum lateness with rejection, we
develop an optimal solution for the rejection problem and moreover prove
that the optimal solution can be computed incrementally. As a conse-
quence it follows that there is an optimal rejection set of i jobs, that is a
subset of the an optimal rejection set of (i+1) jobs. However, in choosing
an optimal rejection set of size i one has to be extremely careful, since
there are many optimal solutions and not all of them have the incremental
property.

2 Alternative Problem Formulation and Notation

Before presenting the algorithms, it is convenient to modify the problem
formulation slightly. The fact that a job’s lateness (1) is allowed to be
negative can make the analysis cumbersome. A standard way [6] to avoid
this issue is to add a sufficiently large constant to the right hand side of
(1) so that the lateness of every job is always positive.

Mi =
∑

j:σ(j)≤σ(i)

pj +
(

max
h∈A

dh − di

)
. (2)

There is a natural interpretation of measure (2): After the machine
finishes processing job i, the job must be delivered ; only once the job is
delivered we considered the job to be completed. The delivery time of the
ith job is given by si = maxh∈A dh− di. Although our single machine can
process only one job at a time, any number of jobs can be delivered in
parallel (see Figure 1.) The objective is to minimize the makespan of the
schedule, that is, the maximum completion time over all jobs. The two
formulations are equivalent since a schedule with makespan maxh∈A dh+δ
under (2) has lateness δ under (1), and vice versa.

Another way to deal with negative lateness is to minimize tardiness,
which is defined as Ti = max {0, Li}. Clearly, if we have an optimal al-
gorithm for minimizing lateness with rejection, we immediately get an

algorithm for minimizing tardiness with rejection: Once the lateness be-
comes negative we can stop rejecting jobs for the tardiness objective.
Notation: When talking about a set A, we use A− j and A+ i to denote
A\{j} and A∪{i} respectively. We use p(A) as a shorthand for

∑
j∈A pj .

When talking about a sequence `, we use `(1) and `(|`|) to denote the
first and last elements of ` respectively.

For simplicity, from now on we assume that the jobs are given in non-
increasing order of delivery time; that is, we assume that s1 ≥ s2 ≥ . . . ≥
sn. Thus, for any set of jobs X ⊆ A, we can denote the completion time
of job i ∈ X in an optimal schedule for X with

MX
i = p

(
{j ∈ X | j ≤ i}

)
+ si.

And the makespan of X with

M(X) = max
i∈X

MX
i .

3 An Incremental Solution

Our goal is to produce an optimal incremental solution for scheduling with
rejections to minimize lateness. In other words, we want to construct a
list of jobs x1, x2, . . . , xn such that for any k, the set {x1, . . . , xk} is an
optimal solution for minimizing lateness with k rejections. Clearly, the
only way to produce such a solution is to repeatedly remove the job that
decreases the lateness of the remaining jobs the most, we call this a greedy
choice.

Definition 1. A job i ∈ A is said to be a greedy choice for a set of jobs
A if M(A− i) ≤M(A− j) for all j ∈ A.

Interestingly, repeatedly selecting a greedy choice may not lead to an
optimal incremental solution. Consider the example in Figure 1. The third
job is a greedy choice, but for k = 2 the unique optimal solution is to
reject the first and the second jobs. There is still hope, however, since the
instance does allow an optimal incremental solution, namely 〈2, 1, 3, 4〉.
To get around this pitfall we need a notion stronger than greedy choice.

Definition 2. Let A = {1, . . . , n} be a set of jobs. A job i ∈ A is said to
be a strongly greedy choice for A if i is a greedy choice for {j, . . . , n} for
all j ≤ i.

0 5 10 t

i pi si

1 1 11
2 4 6
3 5 3
4 2 2

Fig. 1. Dark rectangles denote processing times and light rectangles denote delivery
times. Why a greedy choice is not enough: The third job is a greedy choice, but the
only optimal solution when k = 2 is to reject the first and the second jobs.

Our algorithm, whose pseudo-code is given below, repeatedly identifies
a strongly greedy choice for A, adds it to the list, and removes it from A.
It is worth noting here that the existence of a strongly greedy choice is
not obvious. Indeed, in the next section we show that such a job always
exists.

incremental(A)
1 `← 〈 〉
2 while A 6= ∅ do
3 i← strongly greedy choice for A
4 insert i at the end of `
5 A← A− i
6 return `

4 Analysis

In this section we prove that incremental always finds an optimal incre-
mental solution for minimizing lateness with rejections. To that end we
introduce two lemmas, whose proofs make use of the following property.

Property 1. Let A = {1, . . . , n} and A′ = {2, . . . , n}. For any set X ⊆ A′

we have M(A \X) = max{p1 + s1,M(A′ \X) + p1}.

Lemma 1 will establish that Line 3 in our algorithm is well defined,
and Lemma 2 will show that the choice made there is the right one.

Lemma 1. Every set A of jobs admits a strongly greedy choice.

Proof. By induction on the size of A = {1, . . . , n}. The base case (n = 1)
is trivial. For the inductive step (n > 1), if 1 is a greedy choice then we

are done since 1 is trivially a strongly greedy choice, so let us assume
otherwise.

Let A′ = {2, . . . , n}. By induction, there exists a strongly greedy
choice i for A′; thus, we only need to show that i is a greedy choice
for A. Since i is a greedy choice for A′, we have M(A′ − i) ≤ M(A′ − j)
for any j > 1. By Property 1, it follows that M(A − i) ≤ M(A − j) for
any j > 1. Furthermore, since 1 is not a greedy choice for A, we have
M(A− 1) > M(A− j) for some j > 1; thus, M(A− i) < M(A− 1) and
we are done. ut

Lemma 2. Let i be a strongly greedy choice for A. For any set S ⊆ A− i
there exists j ∈ S such that M(A \ (S − j + i)) ≤M(A \ S).

Proof. By induction on the size of A and k = |S|. For the base case
(k = 1) we note that i is a greedy choice for A so the lemma holds. For
the inductive step (k > 1) let A = {1, . . . , n} and A′ = {2, . . . , n}. There
are a few cases to consider depending on whether 1 ∈ S or 1 = i.

First, consider the case 1 /∈ S and i 6= 1. By Definition 2, i is a
strongly greedy choice for A′. By induction, there exists j ∈ S such that
M(A′ \ (S − j + i)) ≤ M(A′ \ S). It follows, by Property 1, that M(A \
(S − j + i)) ≤M(A \ S).

Second, consider the case 1 ∈ S and i 6= 1. Let S′ = S − 1. Notice
that M(A \ S) = M(A′ \ S′). Again, i is a strongly greedy choice for
A′. By inductive hypothesis on A and S′ there is a job j ∈ S′ such that
M(A′\(S′−j+i)) ≤M(A′\S′). Thus, it follows that M(A\(S−j+i)) ≤
M(A \ S).

Third, consider the case i = 1. Let j be the smallest job in S. We
will argue that M(A \ (S − j + 1)) ≤ M(A \ S). Let t be the leftmost
job attaining the makespan of M(A − j). If t < j then M(A − j) =
MA

t and M(A \ S) = MA
t ; furthermore, since 1 is a greedy choice, we

have M(A − 1) ≤ M(A − j) = M(A \ S). Otherwise, if t > j, we have
M(A− j) = MA

t − pj . Since M(A− 1) ≥MA
t − p1, this implies p1 ≥ pj .

Clearly, the finishing time of all jobs other than j cannot increase since
p1 ≥ pj . We only need to show that the finishing time of j is at most
M(A \ S). Let X = {2, . . . , j − 1} be the set of jobs scheduled before j.

M
A\(S−j+1)
j = p(X) + pj + sj ≤ p(X) + p1 + sj−1 = M

A\S
j−1 ≤M(A \ S).

We have exhausted all possible cases, so the lemma follows. ut

Theorem 1. The procedure incremental outputs an optimal incremen-
tal solution.

Proof. First we note that the algorithm actually outputs a solution since,
by Lemma 1, Line 3 is well defined. Let A = {1, . . . , n} be the input of
incremental and 〈x1, . . . , xn〉 be its output. We prove that {x1, . . . , xk}
is an optimal solution with k rejections by induction on k and n. The
base case, where k = 1 and n ∈ Z+, is trivial since x1 is a greedy choice
for A.

For the inductive step, let S be an optimal solution with k rejections
for A. By Lemma 2, we can assume without loss of generality that x1 ∈ S.
Therefore, S − x1 is an optimal solution with k− 1 rejections for A− x1.
We can think of x2, . . . xn as the output of increment(A − x1). Thus,
by induction, 〈x2, . . . , xk〉 is an optimal solution with k− 1 rejections for
A− x1. It follows that x1, . . . , xk is an optimal solution with k rejections
for A. ut

5 Implementation

So far we have focused on the correctness of incremental and have not
discussed its running time. Although it is not difficult implement incre-
mental to run in O(n3) time, in this section we outline two variations
of it that lead to faster running times. The first algorithm is based on
divide and conquer and runs in O(n2) time. The second algorithm resem-
bles insertion sort and runs in O(n log n) time. The reason for including
the description of the slower algorithm is two-fold: First, its implementa-
tion details are more straightforward than the faster algorithm; second,
its quadratic running time is a worst-case bound and it should perform
better in practice.

In each case, to prove that the algorithms produce an optimal incre-
mental solution we argue that their output coincides with incremental.
It should be noted right away that incremental is underspecified, since
there could be many strongly greedy choices to select from in Line 3.
However, every possible execution produces a valid incremental solution.
From now on, when we say “the output of algorithm X is the same as in-
cremental” we mean there exists an execution of incremental whose
output is the same as that of algorithm X.

5.1 Divide and Conquer

Consider the following divide and conquer algorithm. Let A = {1, . . . , n}
be our input instance. First, we find the smallest greedy choice for A,
denote this job by i. Second, we identify the smallest job j attaining the

maximum lateness in A − i. If j > i then i is a strongly greedy choice
(this will be proven later) in which case, i must come first followed by an
incremental solution for A− i. Otherwise j < i, in this case we make two
recursive calls on {1, . . . , j} and {j + 1, . . . , n}. To merge the solutions
returned by the two calls, take the leading job from the second solution,
followed by the jobs from the first solution (in order), followed by the
remaining jobs from the second sequence (also in order). The pseudo-
code for this procedure is given below.

divide-and-conquer(A = {1, . . . , n})
1 i← min{p | p is a greedy choice of A}
2 j ← min{p | p has maximum lateness in A− i}
3 if j > i
4 `← divide-and-conquer(A− i)
5 insert i to the front of `
6 else
7 `← divide-and-conquer({j + 1, . . . , n})
8 `′ ← divide-and-conquer({1, . . . , j})
9 insert `′ after the first element of `

10 return `

Theorem 2. The procedure divide-and-conquer can be implemented
to run in O(n2) time and returns an optimal incremental solution for
minimizing lateness with rejections.

Proof. Let T (n) be the running time of the algorithm on an instance
with n jobs. It can be shown that finding the leftmost greedy choice,
splitting the instance for the recursive calls, and the merging can be done
in O(n) time. Therefore, the running time obeys the recursion T (n) =
T (n1) + T (n2) + O(n) for some n1 + n2 = n. If we had control over how
the instance is split we could choose n1 = n2 = n

2 to get a running time of
O(n log n). Of course, we do not have control over this and in the worst
case we have n1 = 1 and n2 = n − 1, which yields a running time of
T (n) = O(n2).

To prove the correctness of the algorithm, let us show by induction on
n that the output of divide-and-conquer is the same as incremental.
The base case (n = 1) is obvious. For the inductive step (n > 1), if j > i
then we claim that i is strongly greedy, in which case both algorithms
place i first and then process A− i, which by inductive hypothesis we can
assume to be the same. Let i∗ be the leftmost strongly greedy choice for
A and assume, for the sake of contradiction, that i < i∗. This means that

there exists h < i such that for A′ = {h, . . . n} we have M(A′ − i∗) <
M(A′ − i). Note, however, that

M(A− i∗) = max
{
M(A \A′), p(A \A′) + M(A′ − i∗)

}
equals

M(A− i) = max
{
M(A \A′), p(A \A′) + M(A′ − i)

}
.

This mean that M(A \ A′) = M(A − i) contradicting the fact that j is
the leftmost job with maximum lateness in A− i.

Consider the case when j < i. Let i∗ be a strongly greedy choice
for A. Clearly the makespan of A − i∗ is attained by j and i∗ ≥ i > j.
Now consider what happens in the execution of incremental(A) after
processing i∗. For all h > j in A− i∗ we have MA−i∗

h ≤MA−i∗

j . Since the
finishing time of j in A − i∗ is larger than that of jobs h > j, the next
job to be removed by incremental must be less or equal than j. This is
true until all jobs in {1, . . . , j} are removed: Suppose the algorithm has
removed so far the jobs X ⊂ {1, . . . , j} and let j′ be the largest indexed
job in {1, . . . , j} \X, then

M
(A−i∗)\X
j′ = MA−i∗

j − p(X)− sj + sj′ ≥MA−i∗

h − p(X) = M
(A−i∗)\X
h

This mean that after removing i∗, incremental removes all jobs in
{1, . . . , j} before removing any jobs from {j +1, . . . , n}− i∗. By inductive
hypothesis the recursive calls in Lines 7 and 8 find the optimal orderings
for {1, . . . , j} and {j + 1, . . . , n} respectively, which are then combined
accordingly in Line 9. ut

5.2 Fast Incremental

In order to further improve the running time, we introduce an interesting
property about the structure of incremental solutions.

Lemma 3. Let A = {1, . . . , n} be a set of jobs and B = {j, . . . , n} be
any suffix of A. Then the order induced on B by the solution output by
incremental(A) and the order of the solution output by incremental(B)
are the same.

Proof. As we already mentioned at the beginning of the section, the
lemma statement does not imply that every execution of incremental(A)

and incremental(B) will coincide; rather, we mean that for every ex-
ecution of the former, there is an execution of the latter in which the
orderings coincide, and vice versa.

By induction on n. Suppose that i is chosen by incremental(A)
as a strongly greedy choice for A. If i ∈ A \ B then it does not affect
incremental(B), and by inductive hypothesis on A − i and B their
output is the same. Otherwise, i must also be a strongly greedy choice
for B, so both algorithms agree on their first decision and by inductive
hypothesis on A − i and B − i the rest of the output also coincides.
Conversely, suppose i is chosen by incremental(B) as strongly greedy
choice for B. Let i∗ be the leftmost greedy choice of A. If i∗ ∈ A \B, we
let incremental(A) use this job, by inductive hypothesis on A− i∗ and
B the rest of the output coincides. Otherwise, i∗ ∈ B for A, in which case
we claim that i is also a strongly greedy choice for A and by inductive
hypothesis the lemma follows. Consider any suffix A′ of A, by definition
i∗ is a greedy choice for A′, furthermore

M(A′ − i∗) = max
{
M(A′ \B), p(A′ \B) + M(B − i∗)

}
.

Similarly,

M(A′ − i) = max
{
M(A′ \B), p(A′ \B) + M(B − i)

}
However, since i is a (strongly) greedy choice for B we have M(B − i) ≤
M(B − i∗). Thus, it follows that i is a greedy choice for A′; that is,
M(A′ − i) ≤M(A′ − i∗). ut

It is worth noting that a similar statement about the prefixes of A is
not true, and it is ultimately the reason why we cannot modify divide-
and-conquer to run in O(n log n) time. Nevertheless, a scheme similar
to insertion sort does achieve this running time. The underlying idea is
very simple: Process jobs from right to left, maintaining an incremental
solution for the jobs processed thus far.

fast-incremental(A = {1, . . . , n})
1 `← 〈 〉
2 for i← n down to 1 do
3 let j ∈ {1, . . . , |`| + 1} be the smallest index such

that i is a greedy choice for {i, `(j), . . . , `(|`|)}
4 insert i to the left of the jth position in `
5 return `

Theorem 3. The procedure fast-incremental can be implemented to
run in O(n log n) time and outputs an optimal incremental solution.

Proof. Let us first argue the correctness of fast-incremental and then
discuss the details behind its implementation. Consider the k + 1st iter-
ation of fast-incremental where we are trying to insert i = n− k into
` and |`| = k, and denote by `′ the ordering after i is inserted. Let us
show by induction on k that `′ is an incremental solution for {i, . . . , n}.
For the base case (k = 0) there is nothing to show. For the inductive step
(k > 0), by Lemma 3 it suffices to prove that i is inserted in ` to the left
of the jth element (or at the end if j = k + 1) where j is the smallest
index such that i is a strongly greedy choice for {i, `(j), . . . , `(k)}, which
happens if and only if i is a greedy choice for that set.

To argue the O(n log n) running time we show that Line 3 of the k+1st
iteration can be carried out in O(log k) time. As a warm-up we first discuss
a slower O(k) time implementation. For the given sequence `, define µj

to be the makespan of {`(j), . . . , `(k)}, that is, µj = M({`(j), . . . , `(k)})
and µk+1 = µk+2 = 0. The following easy-to-prove property is the basis
for our implementation of Line 3.

Property 2. Job i is a greedy choice for the set {i, `(j), . . . , `(k)} if and
only if µj ≤ max{µj+1, si}+ pi.

Thus, provided with the µ-values we can find the correct position
where to insert i in O(k) time. Although computing the µ-values from
scratch could take as much as O(k2) time, we can update the values from
the previous iteration in just O(k) time: If i is to be inserted to the left
of the jth position in the sequence then we set µ′h = max{si, µh}+ pi =
µh+pi for 1 ≤ h < j, µ′j = max{si, µj}+pi, and µ′h+1 = µh for j ≤ h ≤ k.

To improve upon this, we need to keep track of the differences of
the µ-values instead of the µ-values themselves. Let δj = µj − µj+1 for
1 ≤ j ≤ k, where µk+1 is taken to be 0. To find out where to insert i
first we identify the smallest j′ such that µj′ < si. Observe that j′ fulfills
the condition of Property 2; thus, we only need to check whether there
exists j′′ < j′ for which the same condition holds. For j′′ = j′ − 1 we can
check directly. For j′′ ≤ j′ − 2, since µj′′+1 ≥ µj′−1 ≥ si, the condition of
Property 2 is the equivalent to µj′′ − µj′′+1 ≤ pi, in which case j′′ is the
smallest index such that δj′′ ≤ pi and j′′ ≤ j′ − 2, if there is any.

All these tests can be performed in O(log k) time if we maintain an
augmented balanced binary tree whose leaves are the values δ1, . . . , δk,
where each internal node keeps track of the sum of the δ-values, and

the minimum δ-value in its subtree. When inserting i to the left of the
jth position, the effect of setting µ′h = µh + pi for all 1 ≤ h < j, µ′j =
max{si, µj+1}+pi, and µ′h+1 = µ′h for all j ≤ h ≤ k can be easily achieved
by inserting a new value δ′j = µ′j − µ′j+1 and setting δ′j−1 = µ′j−1 − µ′j .
The remaining values are left unchanged since δ′h = µ′h − µ′h+1 = µh +
pi−µh− pi = δh for h ≤ j− 2 and δ′h = µ′h−µ′h+1 = µh−1−µh−2 = δh−1

for h > j . Thus, in each iteration, the tree can be updated in O(log k)
time as well. ut

Acknowledgements: We would like to thank the anonymous referees
for helpful suggestions.

References

1. Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, and L. Stougie. Multi-
processor scheduling with rejection. SIAM J. Discrete Math., 13(1):64–78, 2000.

2. M. Chrobak, C. Kenyon, J. Noga, and N. E. Young. Oblivious medians via online
bidding. In Proceedings of the 13th Latin American Symposium on Theoretical
Informatics, pages 311–322, 2006.

3. D. W. Engels, D. R. Karger, S. G. Kolliopoulos, S. Sengupta, R. N. Uma, and
J. Wein. Techniques for scheduling with rejection. J. Algorithms, 49(1):175–191,
2003.

4. L. Epstein, J. Noga, and G. J. Woeginger. On-line scheduling of unit time jobs
with rejection: minimizing the total completion time. Operations Research Letters,
30(6):415–420, 2002.

5. T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. The-
oretical Computer Science, 38:293–306, 1985.

6. L. A. Hall. Approximation Algorithms for NP-Hard Problems, chapter 2. PWS
Publishing Company, 1997.

7. H. Hoogeveen, M. Skutella, and G. J. Woeginger. Preemptive scheduling with
rejection. Mathematical Programming, 94(2-3):361–374, 2003.

8. G. Lin, C. Nagarajan, R. Rajaraman, and D. P. Williamson. A general approach
for incremental approximation and hierarchical clustering. In Proceedings of the
17th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1147–1156,
2006.

9. R. R. Mettu and C. G. Plaxton. The online median problem. SIAM Journal on
Computing, 32(3):816–832, 2003.

10. S. S. Seiden. Preemptive multiprocessor scheduling with rejection. Theor. Comput.
Sci., 262(1):437–458, 2001.

11. S. Sengupta. Algorithms and approximation schemes for minimum late-
ness/tardiness scheduling with rejection. In Proceedings of the 15th International
Workshop on Algorithms and Data Structures, pages 79–90, 2003.

