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Abstract. We introduce the following elementary scheduling problem.
We are given a collection of n jobs, where each job Ji has an integer
length ℓi as well as a set Ti of time intervals in which it can be feasibly
scheduled. Given a parameter B, the processor can schedule up to B jobs
at a timeslot t so long as it is “active” at t. The goal is to schedule all
the jobs in the fewest number of active timeslots. The machine consumes
a fixed amount of energy per active timeslot, regardless of the number
of jobs scheduled in that slot (as long as the number of jobs is non-
zero). In other words, subject to ℓi units of each job i being scheduled in
its feasible region and at each slot at most B jobs being scheduled, we
are interested in minimizing the total time during which the machine is
active. We present a linear time algorithm for the case where jobs are unit
length and each Ti is a single interval. For general Ti, we show that the
problem is NP -complete even for B = 3. However when B = 2, we show
that it can be solved. In addition, we consider a version of the problem
where jobs have arbitrary lengths and can be preempted at any point in
time. For general B, the problem can be solved by linear programming.
For B = 2, the problem amounts to finding a triangle-free 2-matching
on a special graph. We extend the algorithm of Babenko et. al. [3] to
handle our variant, and also to handle non-unit length jobs. This yields
an O(

√

Lm) time algorithm to solve the preemptive scheduling problem
for B = 2, where L =

∑
i
ℓi. We also show that for B = 2 and unit

length jobs, the optimal non-preemptive schedule has at most 4/3 times
the active time of the optimal preemptive schedule; this bound extends
to several versions of the problem when jobs have arbitrary length.

1 Introduction

Power management strategies have been widely studied in the scheduling litera-
ture [1, 20, 4]. Many of the models are motivated by the energy consumption of
the processor. Consider, alternatively, the energy consumed by the operation of
large storage systems. Data is stored in memory which may be turned on and off
[2], and each task or job needs to access a subset of data items to run. At each
time step, the scheduler can perform at most B jobs. The only requirement is
that the memory banks containing the required data from these jobs be turned
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on. The problem studied in this paper is the special case where all the data is
in one memory bank. (For even special cases involving multiple memory banks,
the problem often becomes NP-complete.)

We propose a simple model for measuring energy usage on a parallel machine.
Instead of focusing on solution quality from the scheduler’s perspective, we focus
on the energy savings of “efficient” schedules.

In many applications, a job has many intervals of availability because, e.g., it
interfaces with an external event like a satellite reading or a recurring broadcast.
The real-time and period scheduling literatures address this. More broadly, tasks
may be constrained by user availability, introducing irregularity in the feasible
intervals. Our model is general enough to capture jobs of this nature.

More formally, we are given a collection of n jobs, each job Ji having integer
length ℓi and a set Ti of time intervals with integer boundaries in which it can
be feasibly scheduled. In particular, Ti = {Iik = [rik, d

i
k]}mi

k=1
is a non-empty set

of disjoint intervals, where |Iik| = dik − rik is the size of Iik. Note that if mi = 1,
then we can think of job Ji as having a single release time and a single deadline.

For ease of notation, we may refer to Ji as job i. Additionally, time is divided
into unit length timeslots and for a given parallelism parameter B, the system
(or machine) can schedule up to B jobs in a single timeslot. If the machine
schedules any jobs at timeslot t, we say that it is “active at t”. The goal is to
schedule all jobs within their respective feasible regions, while minimizing the
number of slots during which the machine is active. The machine consumes a
fixed amount of energy per active slot. In other words, subject to each job Ji
being scheduled in its feasible region Ti, and subject to at most B jobs being
scheduled at any time, we would like to minimize the total active time spent
scheduling the jobs. There may be instances when there is no feasible schedule
for all the jobs. However, this case is easy to check, as we show in Sec. 2. Note
that for a timeslot significantly large (e.g. on the order of an hour), any overhead
cost for starting a memory bank is negligible compared to the energy spent being
“on” for that unit of time.

To illustrate this model in other domains, consider the following operational
problem. Suppose that a ship can carry up to B cargo containers from one port
to another. Jobs have delivery constraints, i.e. release times and deadlines. An
optimal schedule yields the minimum number of times the ship must be sent
to deliver all the packages on time. The motivating assumption is that it costs
roughly the same to send the ship, regardless of load and that there is an upper
bound on the load.

We could also consider this as a basic form of “batch” processing similar
to the work of Ikura and Gimple [19], which presented an algorithm minimizing
completion time for batch processing on a single machine in the case of agreeable4

release times and deadlines. The natural extension to general release times and
deadlines has an efficient algorithm as well [7]. Both of these works focus on

4 When the ordering of jobs by release times is the same as the ordering of jobs by
deadlines.



finding a feasible schedule (which can be used to minimize maximum lateness).
However in our problem, in addition we wish to minimize the number of batches.

For the cases of unit length jobs or those in which jobs can be preempted
at integral time points, our scheduling problem can be modeled as a bipartite
matching problem in which each node on the left needs to be matched with a
node on the right. Each node on the right can be matched to up to B nodes on the
left, and we are interested in minimizing the number of nodes on the right that
have non-zero degree in the matching selected. This problem can easily be shown
to be NP -hard. For unit length jobs and single intervals Ti, we can develop a
fast algorithm to obtain an optimal solution to this scheduling problem. 5

In particular, even for B = 2, there is plenty of structure due to the connec-
tion with matchings in graphs. We anticipate that this structure will be useful
in the design of improved approximation algorithms for B > 2.

Main Results:

For proof details, we refer the reader to the full version of this paper [5].

1. For the case where jobs have unit length and each Ti is one interval (i.e. mi =
1), we develop an algorithm whose running time is linear. Our algorithm
takes as input n jobs with release times and deadlines and outputs a non-
preemptive schedule with the smallest number of active slots. The algorithm
has the additional property that it schedules the maximum number of jobs.
We also note that without loss of generality, time is slotted when job lengths,
release times and deadlines are integral (Sec. 2). When the release times and
deadlines are not integral, minimizing the number of batches can be solved
optimally in polynomial time via dynamic programming. This objective is
more restrictive than active time: a batch must start all its jobs at the same
time and the system may work on at most one batch at any given point
in time. Even so, scheduling unit length jobs with integer release times and
deadlines to minimize active time is a special case of this. We extend this to
the case with a budget on the number of active slots. The running time of
the former algorithm was recently improved in [22].

2. We consider the generalization to arbitrary Ti, which is closely related to
capacitated versions of vertex cover, k-center and facility location, all classic
covering problems. In particular, for the special case where every job is fea-
sible in exactly two timeslots, a 2-approximation is implied from the vertex
cover result in [17]. The complexity of the problem depends on the value
of B, since for any fixed B ≥ 3, the problem is NP -hard. When B = 2
this problem can be solved optimally in O(m

√
n) time where m is the total

number of timeslots which are feasible for some job (Sec. 3). We show that
this problem is essentially equivalent to the maximum matching problem
computationally. In addition, we show that this algorithm can be extended

5 The problem can be solved in O(n2T 2(n+T )) time using Dynamic Programming as
was shown by Even et. al. [12], albeit the complexity of their solution is high. Their
algorithm solves in the problem of stabbing a collection of horizontal intervals with
the smallest number of vertical stabbers, each stabber having a bounded capacity.



to the case of non-unit length jobs where a job can be preempted at integer
time points, i.e. scheduled in unit sized pieces.

3. We also consider the case when jobs have arbitrary lengths and can be pre-
empted6 at any time, i.e. not just at integer time points. For general B,
the problem can be solved by linear programming. For B = 2, the problem
amounts to finding a maximum triangle-free 2-matching on a special graph.
Babenko et. al. [3] present an elegant algorithm that essentially shows a max-
imum cardinality triangle-free 2-matching can be found in the same time as
a maximum cardinality matching. We extend it for our scheduling problem
to show that when B = 2 and jobs can be scheduled in arbitrary given time
slots, an optimal preemptive schedule can be found in O(

√
Lm) time, for L

the total length of all jobs. The proof is sketched in Sec. 4.2.
4. We give a tight bound on the gain from arbitrary preemption: an optimal

schedule allowing preemption only at integral times uses at most 4/3 the
active time of the optimal preemptive schedule. This bound is the best pos-
sible. The proof draws on the Edmonds-Gallai decomposition of matching
theory. A sketch is provided in Sec. 4.3.

Related Work:

Problems of scheduling unit jobs have a rich history [29, 18]. For scheduling
unit length jobs with arbitrary release times and deadlines on B processors to
minimize the sum of completion times, Simons and Warmuth [29] extended the
work by Simons [28] giving an algorithm with running time O(n2B) to find a
feasible solution. For constant B, the running time is improved in [25].

In the closely related busy time problem [13, 21], jobs of arbitrary length
have release times and deadlines and are scheduled in batches, so that the job
demand in a batch is never more than a given value. The goal is to minimize the
total busy time. Unlike our problem, this model permits an unbounded number
of machines, making every instance feasible. The “min gap” problem [4] is to
find a schedule of unit length jobs minimizing the number of idle intervals. We
refer the reader to [18] for results on unit job scheduling and to surveys [20, 1]
for a more comprehensive overview of scheduling results for power management
problems.

2 Unit Jobs and Single Execution Windows

If time is not slotted and release times and deadlines are integral, then w.l.o.g.,
the optimal solution schedules jobs in “slots” implied by integer time boundaries.

We only provide a high level description of the algorithm. We assume at first
that the instance is feasible, since this is easy to check by an EDF computation.
Denote the distinct deadlines by di1 < di2 < . . . < dik , and let Sp be the set of
jobs with deadline dip . Then S1 ∪ S2 . . . ∪ Sk is the entire set of jobs where the
deadlines range from time 1 to T = dik .

6 For the non-preemptive case minimizing active time is strongly NP-complete, even
for B = 2.



We process the jobs in two phases. In Phase I we scan the jobs in order of
decreasing deadline. We do not schedule any jobs, but modify their deadlines
to create a new instance which has an equivalent optimal solution. The desired
property of the new instance is that at most B jobs have the same deadline.
Process the timeslots from right to left. At slot D, let S be the set of jobs that
currently have deadline D. From S, select max(0, |S| − B) jobs with earliest
release times and decrement their deadlines by one. If |S| ≤ B then we do not
modify the deadlines of jobs in S. (Note that a job may have its deadline reduced
multiple times since it may be processed repeatedly.)

Assume for simplicity’s sake that after Phase I, Sp refers to the jobs of (mod-
ified) deadline dip . In Phase II, jobs are actually scheduled. Initially, all jobs are
labeled unscheduled. As the algorithm assigns a job to an active timeslot, it sta-
tus changes to scheduled. Once a job is scheduled, it remains scheduled. Once a
slot is declared active, it remains active for the entire duration of the algorithm.

We schedule the slots dip from left to right. To schedule dip , if there remain
unscheduled jobs with that deadline, we schedule them. If there are fewer than
B such jobs, we schedule additional jobs that are available. Job j is available if
it is currently unscheduled and has dip ∈ [rj , dj). We schedule these available
jobs EDF, until the slot is full or no more jobs are available.

Analysis of the Algorithm:

It is easy to implement our algorithm in O(n log n) time using standard data
structures. Suppose the initial instance I is transformed by Phase I to a modified
instance I ′. We prove the following properties about an optimal solution for I ′.

Proposition 1. An optimal solution for I ′ has the same number of active slots
as an optimal solution for the original instance I.

Proposition 2. W.l.o.g., an optimal solution for I ′ uses a subset of slots that
are deadlines.

Theorem 1. The algorithm computes an optimal solution for I ′ (i.e., with the
fewest active slots).

Proposition 3. On infeasible instances, the algorithm maximizes the number
of scheduled jobs and does so in the fewest number of active slots.

Linear Time Implementation: We define Phase I′ to be equivalent to Phase
I: initially each deadline value has no jobs assigned to it. Process jobs j in order
of decreasing release time, assigning j to a new deadline equal to the largest
value D ≤ dj that has < B jobs assigned to it. We now argue their equivalence.

Let D (D∗, respectively) be the deadline assigned to job j in Phase I′ (Phase
I). Suppose for jobs i, i < j, i’s Phase I and Phase I′ deadlines are equal. Then
D∗ ≤ D by Phase I′’s choice of D. Phase I first assigns D to the < B jobs
currently assigned D in Phase I′, since they have release time ≥ rj . Among all
jobs which can still be assigned D, j has the latest release time. So D∗ = D. We
implement Phase I′ in O(n+T ) time using a disjoint set merging algorithm [16].



Let D1 < D2 < . . . < Dℓ be the distinct deadline values assigned to jobs in
Phase I. Phase II compresses the active interval from [0, T ] to [0, ℓ], as follows:
job j with Phase I deadline Dk gets deadline k; its release time rj changes to
the largest integer i with Di ≤ rj (let D0 = 0). The algorithm returns the EDF
schedule on this modified instance, with slot i changed back to Di. Phase II
assigns new release times in time O(n+ T ) and constructs an EDF schedule via
disjoint set merging, achieving time O(n + T ) [16].

3 Disjoint Collection of Windows

We discuss the generalization where each job’s feasible timeslots are an arbitrary
set of slots (as opposed to a single interval). For any fixed B ≥ 3 the problem
is NP-hard (see the full paper). There is an O(log n) approximation for this
problem by an easy reduction to a submodular covering problem [30].

3.1 Connections to Other Problems

Capacitated Vertex Cover. Given graph G = (V,E) and vertex capacities
k(v), the goal is to pick a subset S ⊆ V and assign edges to vertices in S, so
that each edge is assigned to an incident vertex and each vertex v is assigned up
to k(v) edges. Approximation algorithms are given in [17, 6].

In the special case of the activation problem where each job has exactly two
feasible timeslots, there is an equivalence with VCHC with uniform capacities
k(v) = B: the slots are the vertices and the jobs are the edges. One implication
of our result is that we can solve VCHC optimally when k(v) = 2.
Capacitated K-center problem.Given a graph, pickK nodes (called centers)
and assign each vertex to a center that is “close” to it [23]. No more than L nodes
should be assigned to a center, minimize d such that each node is assigned to a
center within distance d of it. Create an unweighted graph Gd induced by edges
of weight ≤ d. Create job Ji and timeslot ti for each node i. Let Ji be feasible
at tj if and only if edge (i, j) is in Gd or j = i. Then assigning all vertices to
K centers in Gd is equivalent to scheduling all jobs in K timeslots so that no
slot is assigned more than B = L jobs. Since we can solve the latter problem for
B = 2, we can solve the K-center problem when L = 2.
Capacitated Facility Location. Given a set of facilities (with capacities) and
clients, the goal is to open a subset of facilities and find a capacity-respecting
assignment of clients to open facilities that minimizes the sum of facility opening
costs and connection costs. When capacities are uniformly two, the problem can
be solved exactly. Details are described at the end of Sec. 3.2.

3.2 Polynomial solution for B=2

We consider scheduling jobs in the fewest number of active slots, when there are
two processors and each job can be scheduled in a specified subset of timeslots.
We use the following graph G. The vertex set is J ∪ T , where J is the set of all



jobs and T the set of all timeslots. The edge set is {(j, t) : job j can be scheduled
in timeslot t} ∪ {(t, t) : t ∈ T }. A degree-constrained subgraph (DCS) problem
is defined on G by the degree constraints d(j) ≤ 1 for every j ∈ J and d(t) ≤ 2
for every t ∈ T . By definition a loop (t, t) contributes two to the degree of t.
Any DCS gives a schedule, and any schedule gives a DCS that contains a loop
in every nonactive timeslot. Also any DCS D that covers ι jobs and contains λ
loops has cardinality |D| = ι+ λ.

Lemma 1. A maximum cardinality DCS (MC-DCS) D of G minimizes the
number of active slots used by any schedule of |V (D) ∩ J | jobs.

Let n be the number of jobs and m the number of given pairs (j, t) where job
j can be scheduled at time t. Observe that G has O(m) vertices and O(m) edges,
since we can assume every timeslot t is on some edge (j, t). In any graph, the
majority of edges in a simple non-trivial path are not loops. So in the algorithms
for MC-DCS and maximum matching, an augmenting path has length O(n). An
MC-DCS on G can be found in time O(

√
nm). The approach is via non-bipartite

matching. We describe two ways to handle the loops.
The first approach reduces the problem to maximum cardinality matching

in a graph called the MG graph. To do this modify G, replacing each timeslot
vertex t by two vertices t1, t2. Replace each edge (j, t) by two edges from j to the
two replacement vertices for t. Finally replace each loop (t, t) by an edge joining
the two corresponding replacement vertices.

A DCS D corresponds to a matching M in a natural way: if slot t is active
in D then M matches corresponding edges of the form (j, ti). If loop (t, t) is in
D then M matches the replacement edge (t1, t2). Thus it is easy to see that an
MC-DCS corresponds to a maximum cardinality matching of the same size.

A second approach is to use an algorithm for MC-DCS on general graphs. If it
does not handle loops directly, modify G by replacing each loop (t, t) by a triangle
(t, t1, t2, t), where each ti is a new vertex with degree constraint d(ti) = 1. A
DCS in G corresponds to a DCS in the new graph that contains exactly |T | more
edges, one from each triangle. The cardinality algorithm of Gabow and Tarjan
[15] gives the desired time bound. Let ι∗ be the greatest number of jobs that
can be scheduled. One can compute ι∗ in time O(

√
nm) by finding a MC-DCS

on the bipartite graph formed by removing all loops from G [11].

Theorem 2. A schedule for the greatest possible number of jobs (ι∗) that min-
imizes the number of active slots can be found in time O(

√
nm).

The idea is to show that the choice of ι∗ jobs is irrelevant: the minimum
number of active slots for a schedule of ι∗ jobs can be achieved using any set of
ι∗ jobs that can be scheduled.

We note that matching is a natural tool for power minimization. Given a
maximum cardinality matching problem, create a job for each vertex. If two
vertices are adjacent, create a common slot in which they can be scheduled. A
maximum cardinality matching corresponds to a schedule of minimum active
time. Thus if T (m) is the optimal busy time, a maximum cardinality matching



on a graph of m edges can be found in O(T (m)) time. For bipartite graphs,
the number of slots can be reduced from m to n. Thus a maximum cardinal-
ity matching on a bipartite graph of n vertices and m edges can be found in
O(T (n,m)) time, where T (n,m) is the optimal time to find a minimum active
time schedule for O(n) jobs, O(n) timeslots, and m pairs (j, t).

Our algorithm can be extended to other versions of the power minimization
problem. For example the following corollary models a situation where power is
limited.

Corollary 1. For any given integer α, a schedule for the greatest possible num-
ber of jobs using at most α active slots can be found in time O(

√
nm).

Now consider capacitated facility location with capacities being two. With
clients as jobs and facilities as slots, denote by MGw the weighted equivalent
of the graph MG. Edge (j, ti) has weight equal to the cost of connecting client
j to facility t, for i = 1, 2. Edge (t1, t2) has weight −C(t) where C(t) is the
cost of opening facility t. Then, solving the facility location problem amounts to
determining a minimum weight matching in MGw where each job is matched,
which can be achieved by generalizing our algorithm to the weighted case in a
natural way.

4 Active Time and Arbitrary Preemption

This section considers jobs j of arbitrary lengths ℓj . There are B processors
that operate in a collection of unit length “timeslots” s ∈ S. Each job has a
set of timeslots in which it may be scheduled. Preemptions are allowed at any
time, i.e., job j must be scheduled in a total of ℓj units of time but it can be
started and stopped arbitrarily many times, perhaps switching processors. The
only constraint is that it cannot execute on more than one processor at a time.
We seek a schedule minimizing the active time.

4.1 Linear program formulation

The problem can be written as a linear program. Form a bipartite graph where
edge js ∈ E if and only if job j can be scheduled in slot s. A variable xjs gives
the amount of time job j is scheduled in slot s, and a variable is gives the amount
of idletime in slot s. The problem is equivalent to the following LP:

max.
∑

s∈S is
s.t.

∑
js∈E xjs ≥ ℓj j ∈ J (1.a)

∑
js∈E xjs +Bis ≤ B s ∈ S (1.b)

xjs + is ≤ 1 js ∈ E (1.c)
is, xjs ≥ 0 s ∈ S, js ∈ E

(1)

Observe that the inequalities (1.b)–(1.c) are necessary and sufficient for
scheduling xjs units of job j, js ∈ E, in 1 − is units of time (on B proces-
sors). Necessity is clear. For sufficiency, order jobs and processors arbitrarily.



Repeatedly schedule the next 1− is units of jobs on the next processor, until all
jobs are scheduled. Even though a job may be split across processors, it would
be scheduled last on one processor and first on the next, so (1.c) guarantees it
is not executed simultaneously on two processors. A variant of this LP gives a
polynomial-time solution to the problem where each job has a single interval
[rj , dj ] in which it can be scheduled. The idea is to redefine S as the collection
of minimal intervals formed by the 2n points {rj , dj : j ∈ J}.

4.2 The case B = 2 and 2-matchings

It is convenient to use a variant of the above LP based on the matching graph
MG of Sec. 3. Each edge of MG has a linear programming variable. Specifically
each edge js ∈ E(G) gives rise to two variables xe, e = jsi, i ∈ {1, 2}, that give
the amount of time job j is scheduled on processor i in timeslot s. Also each
timeslot s ∈ S, has a variable xe, e = s1s2 that gives the amount of inactive
time in slot s. The problem is equivalent to the following LP:

max.
∑{xe : e ∈ E(MG)}

s.t.
∑{xe : e incident to j} = ℓj j ∈ J (2.a)∑

{xe : e incident to si} ≤ 1 s ∈ S, i ∈ {1, 2} (2.b)∑{xe : e ∈ {js1, js2, s1s2}} ≤ 1 js ∈ E(G) (2.c)
xe ≥ 0 e ∈ E(MG)

(2)

To see that this formulation is correct note that any schedule supplies feasible
xe values. Conversely any feasible xe’s give a feasible solution to LP (1) (e.g.,
set xjs = xjs1 + xjs2 and is = xs1s2) and so corresponds to a schedule. Finally
the objective of (2) is the sum over job lengths plus the total inactive time, so
like (1) it maximizes the total inactive time.

Now consider an arbitrary graph G = (V,E) and the polyhedron defined by
the following system of linear inequalities:

∑{xe : e incident to v} ≤ 1 v ∈ V (3.a)∑{xe : e an edge of T} ≤ 1 T a triangle of G (3.b)
xe ≥ 0 e ∈ E

(3)

Call
∑{xe : e ∈ E} the size of a solution to (3). Say vertex v is covered if equal-

ity holds in (3.a). Define a 2-matching M to be an assignment of weight 0,1 or 1

2

to each edge of G so that each vertex is incident to edges of total weight ≤ 1.7 M
is basic if its edges of weight 1

2
form a collection of (vertex-disjoint) odd cycles.

The basic 2-matchings are precisely the vertices of the polyhedron determined
by the constraints (3) with (3.b) omitted. A basic 2-matching is triangle-free if
no triangle has positive weight on all three of its edges. Cornuéjols and Pulley-
blank [8] showed the triangle-free 2-matchings are precisely the vertices of the
polyhedron determined by constraints (3).

7 This definition of a 2-matching scales the usual definition by a factor 1

2
, i.e., the

weights are usually 0,1 or 2.



When job lengths are one, the inequalities of (2) are system (3) for graph
MG, with the requirement that every job vertex is covered. It is clear that the
result of Cornuéjols and Pulleyblank implies our scheduling problem is solved
by any maximum-size triangle-free 2-matching on MG subject to the constraint
that it covers each job vertex. Interestingly, there is always a solution where each
job is scheduled either completely in one slot or split into two pieces of size 1/2.

Cornuéjols and Pulleyblank give two augmenting path algorithms for triangle-
free 2-matching: they find such a matching that is perfect (i.e., every vertex is
fully covered) in time O(nm) [9], and such a matching that has minimum cost in
time O(n2m) [8]. (The latter bound clearly applies to our scheduling problem,
since it can model the constraint that every job vertex is covered.) Babenko et.
al. [3] showed that a maximum cardinality triangle-free 2-matching can be found
in time O(

√
nm). This is done by reducing the problem to ordinary matching,

with the help of the Edmonds-Gallai decomposition.
The full paper gives two easy extensions of [3]: a simple application of the

Mendelsohn-Dulmage Theorem [24] shows that a maximum cardinality triangle-
free 2-matching can be found in the same asymptotic time as a maximum cardi-
nality matching (e.g., the algebraic algorithm of Mucha and Sankowski [27] can
be used). This result extends to maximum cardinality triangle-free 2-matchings
that are constrained to cover a given set of vertices (this is the variant needed for
our scheduling problem). The development in the full paper is self-contained and
based on standard data structures for blossoms. For instance, it is based on a
simple definition of an augmenting cycle (analog of an augmenting path), leading
to an augmenting blossom (which models the triangle cluster8 of Cornuéjols and
Pulleyblank [8, 9]); we show a maximum cardinality matching with the great-
est number of augmenting blossoms gives a maximum cardinality cardinality
triangle-free 2-matching. 9

4.3 Applications to preemptive scheduling for B = 2

Our algorithm for finding a maximum triangle-free 2-matching and LP (2) solve
the preemptive scheduling problem for unit jobs. We extend this to jobs of arbi-
trary length by reducing to unit lengths, using vertex substitutes from matching
theory. A sketch follows; details are in the full paper.

A graph UG is defined wherein a job of length ℓ that can be preemptively
scheduled in s given time slots is represented by a complete bipartite graph
Ks−ℓ,s. The s − ℓ vertices on the small side will be matched to s − ℓ vertices
on the big side, leaving ℓ vertices to be matched to time slots where the job is
scheduled. The triangles of UG are similar to those of MG. Lemma 4 (ii) in the
full paper (or [9]) implies that a solution to the scheduling problem is given by
a maximum cardinality triangle-free 2-matching on UG that covers all vertices
in Ks−ℓ,s graphs. For efficiency we use the sparse vertex substitute technique of
[14] which works on (various) graphs of O(m) edges rather than UG itself.

8 A triangle cluster is a connected subgraph whose edges can be partitioned into
triangles, such that every vertex shared by two or more triangles is a cut vertex.

9 Our algorithm was developed independently of the authoritative algorithm of [3].



Theorem 3. Let J be a set of unit jobs that can be scheduled on B = 2 pro-
cessors. A preemptive schedule for J minimizing the active time can be found in
O(

√
nm) time. The result extends to jobs of arbitrary integral length ℓj, where

the time is O(
√
Lm) for L the sum of all job lengths.

What can be gained by allowing arbitrary preemption? For example when
B = 2, three unit jobs that may be scheduled in slots 1 or 2 require 2 units
of active time under preemption at integral points, and only 3/2 units under
arbitrary preemption. We now show this example gives the greatest disparity
between the two preemption models for B = 2.

Recall that we construct an optimal preemptive schedule P by finding a max-
imum size triangle-free 2-matching (on MG for unit jobs, and UG for arbitrary
length jobs) and converting it to P in the obvious way via LP (2). The following
lemma is proved by examining the structure of blossoms in our special graphs,
e.g., the triangles all have the form js1s2 for j a job vertex and s1s2 the edge
representing a time slot; also vertices s1 and s2 are isomorphic. The matching
terminology in the following lemma is from [10; or see 24].

Lemma 2. (i) A blossom in MG (UG) is a triangle cluster iff it contains ex-
actly one vertex of J (JU ).(ii) Let H be a Hungarian subgraph in MG (UG).
Any slot s either has both its vertices inner, or both its vertices outer (and in the
same blossom) or neither vertex in VH . (iii) Let the optimal preemptive schedule
P be constructed from T (M), the 2-matching corresponding to matching M , and
let B be an augmenting blossom of M . The slots with both vertices in B have
≥ 3/2 units of active time in P.

Theorem 4. For B = 2 and a set of jobs J , the minimum active time in a
schedule allowing preemption at integral points is ≤ 4/3 times that of a schedule
permitting arbitrary preemption.

Remark: The theorem holds for unit jobs, and for jobs of arbitrary length ℓj
when time is slotted, i.e., a schedule is allowed to execute a length ℓj job in ℓj
distinct timeslots, but no more.
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