Efficient Parallel Algorithms
for Testing k—Connectivity
and Finding Disjoint s-t Paths in Graphs*

Samir Khuller Baruch Schieber
Computer Science Department IBM Research Division
Upson Hall T.J. Watson Research Center
Cornell University P.O. Box 218
Ithaca, NY 14853 Yorktown Heights, NY 10598
Abstract

We present an efficient parallel algorithm for testing whether a graph G is k-vertex
connected. The algorithm runs in O(k?logn) time and uses nk?C(n,m) processors on a
CRCW PRAM, where n and m are the number of vertices and edges of G, and C(n,m) is
the number of processors required to compute the connected components of GG in logarithmic
time. For fixed k, the algorithm runs in logarithmic time and uses nC(n, m) processors. To
develop our algorithm we design an efficient parallel algorithm for the following disjoint s-t
paths problem: Given a graph G, and two specified vertices s and ¢, find k£ vertex disjoint
paths between s and ¢, if they exist. If no such paths exist, find a set of at most £ — 1
vertices whose removal disconnects s and ¢. Our parallel algorithm for this problem runs
in O(k?logn) time and uses kC(n, m) processors. We show how to modify the algorithm
to find k-edge disjoint paths, if they exist. This yields an efficient parallel algorithm for
testing whether a graph G is k-edge connected. The algorithm runs in O(k?logn) time and
uses nkC(n, kn) processors on a CRCW PRAM. Finally, we describe more applications of
the disjoint s-t paths algorithm.

*An extended summary of this paper appears in Proc. 30th IEEE Symp. on Foundations of Computer Science,
October 1989.

"The research of this author is supported by an IBM Graduate Fellowship, NSF grant DCR 85-52938, and
funds from AT&T Bell Labs and Sun Microsystems. Part of this research was done while this author was visiting
the IBM T.J. Watson Research Center.

1. Introduction

Graph Connectivity is considered as one of the classical subjects in Graph Theory [Har69,
Ber76, Eve79], and has many practical applications, e.g., in chip and circuit design, reliability of
communication networks and cluster analysis. Designing efficient parallel algorithms for graph
connectivity is clearly a basic problem in parallel computation. Efficient parallel algorithms for
testing connectivity [SV82, CV86], biconnectivity [TV85], triconnectivity [FT88, FRT89], and
four-connectivity [KR87] of graphs have been developed. In this paper we present an efficient
parallel algorithm for testing whether a graph is k-vertex connected, for any fixed k. The
problem is formally stated as follows: Given an undirected graph G(V, F) and a fixed integer
k, test whether G is k-vertex connected. If the graph is not k-vertex connected, find a set of at

most £ — 1 vertices whose removal disconnects G.

In order to solve the connectivity problem, we solve the following disjoint s-t paths problem:
Given an undirected graph G, and two specified vertices s and t, find k-vertex disjoint paths
between s and ¢. If no such paths exist, obtain a set of at most £ — 1 vertices whose removal
disconnects s and ¢. Even [Eve75] observed that in order to test for k-vertex connectivity it is

sufficient to check whether there are k-vertex disjoint paths between kn pairs of vertices.

The model of parallel computation used is the Concurrent-Read Concurrent-Write (CRCW)
Parallel Random Access Machine (PRAM) [Wyl79]. A PRAM employs p synchronous proces-
sors all having access to a shared memory. A CRCW PRAM allows simultaneous access by more
than one processor to the same memory location for both read and write purposes. In case sev-
eral processors attempt to write simultaneously in the same memory location, an arbitrary one
succeeds in doing the write. We remark that our algorithm can also be implemented in weaker
PRAM models. The complexity of our algorithm when implemented on such models is the
same as the complexity of finding connected components. However, to make the presentation
simpler we concentrate on the CRCW PRAM model.

A parallel algorithm is said to have optimal speedup if its time-processor product is the same

as the time complexity of the best known sequential algorithm for the same problem.

Our parallel algorithm for testing k-vertex conmectivity runs in O(k%logn) time using
nk?C(n,m) processors, where n = |V|, m = |E| and C(n,m) is the number of processors
required to compute the connected components of a graph with n vertices and m edges in
O(logn) time. For fixed k, our algorithm runs in logarithmic time using nC(n, m) processors.
From now on, throughout the paper we assume that £ is fixed, and all factors of & will be elided

from the complexity bounds.

Using the logarithmic time parallel connectivity algorithm [CV86], the bound for C'(n,m)

is (m 4+ n)a(m,n)/logn processors, where a(m,n) is the functional inverse of Ackermann’s
function, as defined in [Tar75]. Recall that the time complexity of the best known deterministic
sequential algorithm for testing k-vertex connectivity is O(mn), for any fixed & > 4 [EveT75,
Gal80, BDD*82]. Thus, the existence of an optimal logarithmic time parallel algorithm for
connectivity would make our k-vertex connectivity algorithm achieve optimal speedup, for any
fixed £ > 4. The main component of our parallel k-connectivity algorithm is an efficient
parallel algorithm for the disjoint s-t paths problem. This algorithm runs in O(logn) time using
C(n, m) processors. Again, the existence of an optimal logarithmic time parallel algorithm for

connectivity would make our parallel disjoint s-¢ paths algorithm achieve optimal speedup.

The previous best deterministic parallel algorithm for testing k-vertex connectivity, for
k > 4, required O(log?n) time and nM(n) processors (where M(n) = Q(n?) is the number
of arithmetic operations required to multiply two n x n matrices). Similar to our algorithm,
this algorithm tests k-vertex connectivity by finding k-vertex disjoint paths between pairs of
vertices. The disjoint paths are found using a straightforward parallelization of the sequential
algorithm [KMV89]. The parallelization suffers from the problem of being inefficient, requiring
O(log? n) time and M(n) processors. A randomized parallel algorithm for testing k-vertex
connectivity is given in [LLW86]. It runs in O(log® n) time and uses n?-> processors. Compared
to our algorithm, this algorithm uses fewer processors for dense graphs but has the disadvantage

of using randomization, and takes O(log® n) time compared to our O(logn) time bound.

The sequential algorithm for testing connectivity reduces the problem to several flow prob-
lems in appropriately defined networks. This reduction yields an efficient sequential algorithm.
However, the flow problem does not seem amenable to efficient parallelism since it involves
computing reachability in directed graphs. Thus, obtaining an efficient parallel algorithm re-
quires further insights into the problem. In our algorithm we reduce the connectivity problem
to a reachability problem in directed graphs, called bridge graphs. We are able to exploit the

structure of these bridge graphs to obtain an efficient parallel reachability algorithm.

This is not the first time that the techniques used for efficient sequential algorithms are not
adequate for the respective parallel algorithms. For example, the sequential Depth First Search
(DFS) algorithm is very efficient, and can be used to obtain efficient sequential algorithms for
many other problems, such as: connectivity, biconnectivity, st-numbering. However, it seems
that DF'S is not amenable to efficient parallelism. In order to obtain efficient parallel algorithms
for each of these problems, new techniques have to be developed. Examples of these techniques
are the Euler tour technique [TV85] and Ear Decomposition Search [MSV86].

Our k-vertex disjoint paths algorithm can be extended to obtain k-edge disjoint paths with
the same complexity. The algorithm finds either k-edge disjoint paths, or a set of at most

k — 1 edges whose removal disconnects s and ¢. This yields a parallel algorithm to test a graph

for k-edge connectivity that runs in O(logn) time using nC(n,n) processors, improving on
the previous parallel algorithms in both time and number of processors. The best sequential
algorithm for testing k-edge connectivity runs in O(n?) time, for any fixed & > 2 [Mat87]. Thus,
the existence of an optimal logarithmic time parallel algorithm for connectivity would make our

k-edge connectivity algorithm achieve optimal speedup, for any fixed £ > 2.

In addition to its application to connectivity algorithms, the disjoint s-¢ paths algorithm
has several other applications. It can be used in protocols for reliable communication over
networks as described in [IR84]. In [KMV89] it is used to obtain efficient parallel algorithms
for the two paths problem ([Sey80, Shi80]). We use it to obtain efficient parallel algorithms for

the subgraph homeomorphism problem for some fixed pattern graphs.

We remark that for the case £ = 2, the disjoint s-t paths problem can be solved using an
st-numbering of the graph. Unfortunately, the technique does not seem to generalize to solving

the problem for any & > 2. For completeness, we describe this solution.

The paper is organized as follows. In Section 2 we give some preliminary definitions and
background. Before giving a description of the entire algorithm, we describe the simpler case
when k£ = 2, in Section 3. We also describe how to solve the problem when £ = 2 using
st-numbering. In Section 4, we describe the algorithm for finding & vertex disjoint s-f paths.
In Section 5, we show how to modify the algorithm to get k edge disjoint s-t paths. Finally,

Section 6 describes some more applications of the disjoint paths algorithm.

Remark: The algorithm for k£ = 2, given in Section 3, is a special case of the algorithm described
in Section 4, and is included only to make the presentation clearer. Since Section 4 is self-

contained, some of the readers might find it useful to skip over Section 3.

2. Connectivity and disjoint paths

Let G(V,) be a simple undirected graph. Without loss of generality we will assume that G is
connected. Let s and ¢ be distinct vertices in V' that are not connected by an edge. An (s,1)
vertex separator is a set of vertices Sy C V', such that every path from s to ¢t contains at least one
vertex from Sy . Define N(s,?) to be the minimum cardinality of an (s,?) vertex separator. By
Menger’s theorem [Eve79, BMT77] there are exactly N(s,t) vertex disjoint paths between s and ¢.
The vertex connectivity Ay of G is defined as Ay = min { N(s,t) | {s,t} CV,s#1, (s,1) ¢ EF}.
In other words, the vertex connectivity of GG is the cardinality of the smallest set of vertices
whose removal disconnects G. Note that there are Ay vertex disjoint paths between any pair

of vertices in G.

We define an articulation vertex to be a vertex whose removal from G (together with its
incident edges) disconnects G. A graph is said to be biconnected if its vertex connectivity is at
least two. The biconnected components of a graph are its maximally biconnected subgraphs.

A graph whose vertex connectivity is at least k, is called k-vertex connected.

From the definition of vertex connectivity, it follows that testing whether G is k-vertex

connected can be done by checking if N(s,t) > k, for all n? pairs of vertices.

In [DF56, ET75] it was observed that N(s,t) can be computed using max-flow techniques.
Given the graph G(V, £), construct a network N, ,(V, E), where each vertex (excluding s and
t) and edge has unit capacity. It is not difficult to see that N(s,t) > k, if and only if the value

of the max-flow from s to ¢ in N, is at least k.

In [Eve75] it was observed that to test whether G is k-vertex connected it is sufficient to
check whether N(s,t) > k, for only kn pairs.

Let Vi = {v1,...,v%} be a set of k vertices of G. (W.l.o.g. assume that |V| > k.)
Claim: If N(v;,u) > kforall t=1,...,k and all uw € V, then G is k-vertex connected.

Proof: Suppose that the graph is not k-vertex connected. This implies that there exists a set
of at most k — 1 vertices whose removal disconnects ¢ into at least two components C and Cl.
Since the size of the separating set is < k, at least one vertex v; is in one of the components.
W.lo.g. assume that v; is in Cy. Let u be a vertex in C3. Clearly, N(v;,u) < k, yielding a

contradiction to the assumption. O

We conclude that we can test whether GG is k-vertex connected by running in parallel kn
copies of an algorithm for obtaining k-vertex disjoint paths. We will describe an algorithm
for obtaining k-vertex disjoint paths that takes O(logn) time and C(n, m) processors. This
yields an O(logn) time algorithm that uses nC(n, m) processors for testing whether a graph is

k-vertex connected.

The edge connectivity of G is defined in a similar way. Let s and ¢ be distinct vertices in V.
An (s,t) edge separator is a set of edges Sg C F, such that every path from s to t uses at least
one edge from Sg. Define M(s,t) to be the minimum cardinality of an (s,¢) edge separator.
By Menger’s theorem [Eve79, BM77], there are exactly M(s,t) edge disjoint paths between s
and ¢. The edge connectivity Ag of G is defined as Ag = min{ M(s,t) | {s,t} C V, s # t}.
In other words, the edge connectivity of GG is the cardinality of the smallest set of edges whose

removal disconnects G. Note that there are Ap edge disjoint paths between any pair of vertices

in G.

To test whether a graph is k-edge connected we can check whether M(s,t) > k, for all n?

pairs of vertices. As in the vertex case, M(s,t) can also be computed using max-flow techniques

([DF56, ET75]). In the corresponding network M, ; each edge has unit capacity.
It is easy to see that it is sufficient to check whether M (s,t) > k, for only n pairs.
Claim: Let v be a vertex in G. If M(v,u) > k for all w € V —{v}, then G is k-edge connected.

Proof: Suppose that the graph is not k-edge connected. This implies that there exists a set
of at most £ — 1 edges whose removal disconnects GG into at least two components C; and Cs.
W.lo.g. assume that v is in Cy. Let u be a vertex in Cy. Clearly, M(v;,u) < k, yielding a

contradiction to the assumption. O

Recently, Thurimella [Thu89] observed that to test whether GG is k-edge conmnected it is

sufficient to consider a sparse spanning subgraph of G.

Let F7 be a maximal spanning forest (tree) of G. For ¢ = 2,...,k, let F; be a maximal spanning
forest of G' — U;;ll F;. Define H = |J¥_, F. Notice that H has O(kn) edges.

Theorem 2.1 (Thurimella): The graph G is k-edge connected if and only if its subgraph H

is k-edge connected.

Proof: The if direction is trivial. We prove the only if direction by contradiction. Assume that
G is k-edge connected and H is not. This implies that there exists a set of at most £ — 1 edges
whose removal disconnects H into at least two components (say Cq and C3). On the other hand,
there are at least k edges between C7 and Cy in . Since the edges of the spanning forests
are pairwise disjoint, and there are k such forests, at least one such forest, say Fj;, does not
contain any edge between C'; and C5. Thus, in F;, the components C'; and (5 are disconnected.

However, in G — U;;l F;, which is spanned by F7, there is at least one edge between C'; and

(C5; a contradiction. |

It follows that we can test whether GG is k-edge connected by running n copies of an algorithm
for obtaining k-edge disjoint paths in parallel on a sparse subgraph H of G, that has O(kn)
edges. We construct H by k applications of the parallel connectivity algorithm. This takes
O(logn) time and C(n, m) processors. We will describe a parallel algorithm for obtaining k-
edge disjoint paths in a graph with n vertices and m edges, that runs in O(logn) time and
C(n,m) processors. This yields a O(logn) time algorithm that uses nC(n,n) processors for

testing whether a graph is k-edge connected.

We conclude the preliminaries with the following definition of bridges. Given a graph
G(V,FE), let H be a subgraph of GG, and let e and f be edges of G not in H. Define the
equivalence relation =g by e =g f, if and only if there is a path in G that includes e and f
and has no internal vertices in common with V(H). The subgraphs induced by the edges of the
equivalence classes of E(G)— E(H) under =g are called the bridges of G relative to H. The

attachment vertices of a bridge B relative to H are the vertices in V(B)N V(H).

In Fig. 1, H is a simple cycle in G. The bridge B is a trivial bridge consisting of only one

edge, the two other bridges By and Bj are non-trivial.

=R
PN
- / N
/’/’f // \\ B3
7 N
H K AN
/ o
y -
/ 7 ///
/ / e
/ /
7 /////
/ -
/ .-
/ -7
/ /,-”
&7
B,
edges of H

~~- edges of By and B3
edges of trivial bridge B,

Figure 1: An example illustrating bridges

3. Finding two vertex disjoint paths

Let G(V, E) be an undirected graph, with s and ¢ vertices that are not connected by an edge.
In this section, we develop a parallel algorithm for finding either two vertex disjoint paths
between s and t, or an articulation vertex separating s and t. We will subsequently show
how this algorithm can be generalized to finding k-vertex disjoint s-t paths, with the same

complexity bounds.

High level description:

The algorithm consists of five steps.

Step 1. Find a path P; from s to t.

Step 2. Decompose G into its bridges relative to the path Py.

If there is a single bridge that has both s and t as its attachment vertices, then a path
P, between s and t in this bridge is vertex disjoint from P;, yielding the two disjoint paths.

Suppose that there is no such bridge.

Define a linear order on the attachment vertices according to their position on P;. An
attachment vertex a is said to be less than an attachment vertex b, if a is to the left of b on
Py. (We assume that s is the leftmost vertex on P; and t is the rightmost.) For each bridge
B;, define [; to be its leftmost attachment vertex, i.e., the attachment vertex that is closest to
s on Pp. Similarly, define r; to be its rightmost attachment vertex; i.e., the attachment vertex

that is furthest from s on P;.

Step 3. Construct a new directed graph Gg(Vg, EB), called the bridge graph, as follows:
Ve = {f; | B; is a bridge} U {s,}

The set of edges Ep is defined as follows. The vertex s has an outgoing edge to a vertex 3;, if
l[; = s, and r; is furthest from s, among all bridges B, with [, = s. A vertex 3; has an outgoing
edge to t if r; = t. If r; # t, then we define an outgoing edge from j; as follows: each vertex j;
has an outgoing edge to a vertex (3;, if r; is the rightmost vertex on P, among the attachment

vertices of bridges whose leftmost attachment vertex is to the left of r;, and r; > r;.

Remark: When the maximum is achieved for more than one bridge, any one is chosen arbitrarily.

This implies that the outdegree of every vertex of G is at most one.
Step 4. Find a (directed) path from s to ¢ in Gg, if one exists.

We prove below that such a path in G exists if and only if there are two vertex disjoint

paths between s and . We also show how to construct these two paths, given the path in Gg.

Step 5. If a path from s to t in Gp was found, construct two vertex disjoint paths between
s and t. (The construction is given below.) Otherwise (there is no path from s to ¢t in Gg),
if there is no bridge with s as an attachment vertex, then the neighbor of s on P; separates
s and t, else, consider all the vertices reachable from s in Gp. Recall that each such vertex
corresponds to a bridge of G relative to P;. Let w be the attachment vertex of one of these

bridges which is furthest from s. The vertex w separates s from ¢.

Correctness: To prove the correctness of the algorithm we prove the following theorem.

Theorem 3.1: There are two vertex disjoint paths between s and t in G if and only if there

is a directed path from s tot in Gp.

Proof: The if direction: Suppose that there is a directed path Pg = s,3;,,...,Bs,,t from s to
tin Gg. To prove that there are two vertex disjoint paths from s to ¢t in G, we show that the

value of the max-flow in the network N,; is at least two.

Observe that the path P; corresponds to a path in N,; from s to ¢. Using P; we can push
one unit of flow from s to Z. Our goal is to show that Pp defines an augmenting path in N,

given the flow corresponding to P.

For each vertex f3;, on Pg, let R, be the path in By, from [,, to r;,. (Note that [, = s

and r,, =1t.)

Given a path P, let P[l;r] denote its segment from [to r. We define P, to be a path from

s to tin GG as follows.
P2 = Rxl 7 Pl[rxl; ll‘2]7 RxQ? st 7 Rl‘a—l; Pl[lrl"a—l; ll‘a]; Rl?a'

Path P; consists of two kinds of segments: segments belonging to bridges and segments belong-

ing to P; that “reverse” on P; (see Fig. 2). (We view P; as directed from s to ¢.)

Figure 2: Path P,

We claim that P, corresponds to an augmenting path in N,;, yielding a flow of two units

(see Fig. 3). This follows from the following lemma.

Lemma 3.2: After pushing one unit of flow along P,, the outgoing flow from each vertex

(excluding s) and the incoming flow to each vertex (excluding t) is at most one.

Proof: Before pushing the flow along P, we had a legal flow of value one. Clearly, by pushing
flow along P, we change the flow only for the vertices on P,, thus we may consider only these
vertices. Consider an internal vertex » on P;. If v is not on Py (that is, it is an internal vertex

on some R,,), then its incoming and outgoing flow is one.

Suppose that » is a vertex on Pl[rxi;lxiJrl]. From the definition of Gpg it follows that

lgipy < 7Tz, for 1 <0 < a. Clearly, [> 15, for 1 <1 < a — 2, since otherwise ;, would

Ti42

have an outgoing edge to (;,,,. We observe that the path P, has the following monotonicity

Figure 3: Obtaining two vertex disjoint s-¢ paths

property: ly, < 1y < lpy < 71g, < ... <71y, , <y, < 7y,_,. This implies if » appears more
than once on P, then it appears twice, and v = 7, = ls,,,, for some 1 < i < a — 2 (see I'ig.

4). Also note that P, is (edge) simple (i.e., it does not repeat any edges).

; in+2

Tig1

Figure 4: Vertex v occurs on P, twice

We distinguish between three cases: (1) The vertex v is not an endpoint of any path R,,.
(2) The vertex v is a right endpoint of R;; and a left endpoint of R, , (i.e., v =12, = I, ,,)-
(3) The vertex v is an endpoint of one path R, (i.e., either v = I, or v = r;;). (The figures
describing all the cases are given in Fig. 9.) The proofs for each of these cases are given in
the proof of Lemma 4.2 in the next section. (Lemma 4.2 is the version of this lemma for an
arbitrary k.) O

The only if direction (of Theorem 3.1): Assume that there is no path from s to ¢ in Gpg. If
there is no bridge with s as an attachment vertex, then the neighbor of s on P; separates s and
t. Consider all the vertices reachable from s in Gg. Recall that each such vertex corresponds
to a bridge of GG relative to P;. Let w be the attachment vertex of one of these bridges, say B;,
which is furthest from s. We claim that w separates s and t. Remove w and all its incident

edges from G, and assume that there exists a path ¢) from s to ¢ in the remaining graph.

Consider the vertices of () that are also on P; in the order of their appearance on Q.
Observe that there must be two such successive vertices wy and wy such that w; < w and
wy > w. Clearly, the sub-path of ¢ from w; to wy does not contain any vertex of P;. Hence,
there exists a bridge B; relative to P, such that /; < w and r; > w, contradicting the definition
of w. |

Implementation and complexity: We show how to implement the algorithm in O(logn)
time and C(n,m) processors on a CRCW PRAM. In the following discussion we will assume

that GG is represented by its adjacency list.

Step 1. We find the path P, from s to ¢, by computing a spanning tree of G, and following
the unique path from s to ¢ in this tree. This is done in O(logn) time and C(n,m) processors

using a logarithmic time parallel graph connectivity algorithm (e.g., [CV86]).

Steps 2,3. The implementation of these steps is analogous to the implementation of Steps 2
and 3 of the k disjoint paths algorithm given in the next section. The detailed description of

these steps is postponed to that section.

Step 4. Observe that the outdegree of each vertex in G is at most one. Observe also that Gp
is acyclic, since (8; — () in G'p implies that r, < r,. We conclude that G'p is a rooted forest
(where the edges are directed towards the root). Since the outdegree of ¢ is zero, t is the root

of some tree in the forest. Thus, there exists a path from s to ¢ iff s is in the tree rooted at t¢.

We can check if s is in the tree rooted at ¢ by applying the Euler tour technique of [TV85].
However, to apply this technique we need the full adjacency list of the forest, i.e., we need to
compute the list of incoming edges to each vertex ;. To do this we use the following observation.
Consider two edges (3, — f;) and (8, — ;) incoming to ;. Suppose that r, < r,. Then, all

the bridges with rightmost attachment vertex between r, and r, have an outgoing edge to §;.

For a bridge B;, define the rightmost edge to be the edge of B; whose endpoint is the
rightmost attachment of B;. Consider the concatenation of the adjacency lists (in &) of all the
vertices on P;. Compact this list to include only the rightmost edges of bridges. It follows from
the above observation that the rightmost edges of all the bridges whose corresponding outgoing
edges in G point to the same vertex in Gp are consecutive in this concatenated list. Thus, the
list of incoming edges of all the vertices in Gp can be computed using the algorithms for list
ranking and prefix sums in O(logn) time and (m 4 n)/logn processors [CV86, AM8S8, LF'80].

Step 5. If there is no path from s to ¢t in G'g, the separating vertex w is the rightmost attach-
ment vertex of the bridge corresponding to the root of the tree containing s. This rightmost
attachment can be found in O(logn) time with n/logn processors using the same technique

used in Step 4.

10

If there is a path from s to t in G, the two vertex disjoint paths @7 and @2 can be
constructed by following the two flow paths from s to t. We define)1 and @) recursively.
First, we define the prefix of each of these paths and then for each edge on these paths we
define its successive edge. The prefix of Q1 is Pi[s;/,,]. The prefix of Q2 is R,,. The successor
edge for an edge (u — v), v # t, is the edge along which the unit flow leaves ». Updating the
incoming and outgoing flow edges through each vertex is easily accomplished after computing
P;. Fach vertex of P, that is also on Py, independently adjusts its incoming and outgoing flow
edges. For some vertices the flow through them is completely cancelled, and they are not on
either ()1 or (2. In this way, we obtain the two paths as linked lists, that can be ranked in
O(logn) time using n/logn processors [CV86, AMS88, CV88].

To conclude this section, we remark that two disjoint s-f paths can be obtained from an st-
numbering of the graph. This alternative algorithm has the advantage that after computing this
numbering once, we can find two vertex disjoint paths between any pair of vertices. However,

it seems that this algorithm cannot be generalized to obtain k-vertex disjoint paths, for & > 2.

For completeness we describe this algorithm briefly. Recall the definition of an st-numbering
([LEC67, ET76]). Let G(V,FE) be an undirected graph and let (s*,¢*) be an edge in G. An
st-numbering of G is a 1-1 function f : V — {1,...,n} with the following properties: (1)
f(s*) = 1; (2) f(t*) = n; (3) any vertex v € V — {s*,t*} has at least one adjacent vertex u
with f(u) < f(v) and at least one adjacent vertex w with f(w) > f(v). It is not difficult to see
that a graph is biconnected if and only if it has an st-numbering starting from any edge (s*,t*)

(ILEC67)).

The algorithm consists of two stages: a preprocessing stage, in which an st-numbering is

computed, and a processing stage which uses this numbering to obtain two vertex disjoint paths.

In the preprocessing stage we decompose G into its biconnected components, and compute

an st-numbering for each biconnected component.

We now show how to find two vertex disjoint paths between s and t. First, we check to

ensure that s and ¢ are in the same biconnected component.

We construct a simple cycle C; that contains both s and s* by concatenating two vertex
disjoint paths from s to s*. One path is computed by starting at s and following a sequence of
vertices with decreasing st numbers, until we reach s*. We are guaranteed to reach s* since each
vertex (excluding s*) has an adjacent vertex with a smaller number. Similarly, we construct a
second path by starting at s and following a sequence of vertices with increasing st numbers,
until we reach ¢*, and then use the edge (s*,t*) to reach s*. If t is on C then the two vertex
disjoint paths from s to ¢ are obtained from C;. Otherwise, we compute a simple cycle C that

contains both ¢ and s* in a similar way. Note that both C; and C; contain the edge (s*,7¥).

11

Let wq be the first vertex on C; to the left of s that is also on C}, and let wy be the first
vertex on C to the right of s that is also on C}. It is easy to see that the parts of C's and C}
from wy to wy define a simple cycle that contains both s and ¢, yielding two vertex disjoint

paths between s and t. (See Fig. 5.)

Figure 5: Obtaining two vertex disjoint s-¢ paths

The preprocessing stage of the algorithm can be done in O(logn) time and C'(n, m) proces-
sors on a CRCW PRAM, using the parallel algorithms for testing biconnectivity [TV85] and
computing an st-numbering [MSV86]. Given this preprocessing the rest of the computation can
be done in O(logn) time with n/logn processors, using the optimal logarithmic time parallel
algorithm for list ranking [CV86, AMSS].

4. Finding k vertex disjoint paths

Let G(V, F) be an undirected graph, with s and ¢ two specified vertices not connected by an
edge. In this section we describe a parallel algorithm for finding either k-vertex disjoint paths
between s and ¢, or a set of at most £ — 1 vertices whose removal separates s from ¢. This
algorithm is a generalization of the algorithm for obtaining two disjoint s-¢ paths given in the

preceding section. It runs in O(logn) time and uses C'(n, m) processors.
High level description:
The algorithm consists of five steps.

Step 1. If £ = 1, find a path from s to ¢t using a spanning tree of the graph. Otherwise,

12

recursively find k£ — 1 vertex disjoint paths from s to ¢, if they exist, if not, output a separating
set of size < k — 2.

Suppose that £ — 1 paths, Py,..., P,_1 were found.
Step 2. Decompose the graph into its bridges relative to the subgraph Py U P, U ... U Pr_1.

If there is a bridge that has both s and ¢ as its attachment vertices, then a path Py between
s and t in this bridge is vertex disjoint from Py,... P,_q, yielding the k£ disjoint paths. Suppose

that there is no such bridge.

For Step 3 we need the following definitions.

Definition 1: Suppose that both attachment vertices a and b are on a path P;. The vertex a
is said to be less than b, if a is to the left of b on P;. (We assume that s is the leftmost vertex
on P;, and t the rightmost.)

This defines a linear order on the attachment vertices lying on a path P;.

Definition 2: For a bridge B; and a path P;, let lf be the leftmost attachment vertex of B;
on P;; and 7“2]» be the rightmost attachment vertex of B; on P;. If B; has no attachment vertices

on P;, Il and r] are undefined.

Step 3. Construct a new directed graph Gg(Vp, Eg), called the bridge graph, defined as follows.
Ve = {f; | B; is a bridge} U {s,}

The edges in Fg are the union of k£ + 1 sets.

1. The set S = {ey,...,ex_1} of edges outgoing from s:
ej=1{s— By |l =maxrlst. (L =s)Arl > s}

In words, the edge €; is (s — ;) if rJ is the rightmost vertex on P;, to the right of s,
among the attachment vertices of bridges whose leftmost attachment is s. Notice that if
(s — ;) is an edge then I} = s, for all 1 < j < k — 1.

2. The set T of edges incoming to ¢:

T:{ﬁz_)t|7“£:t, for some 1 < j<k—1}

13

In words, the set T consists of edges (3; — t), for all bridges B; whose rightmost attach-
ment is t. Notice that if (3, — t) € T then vl = ¢, for all 1 < j <k — 1.

3. The edges between vertices corresponding to bridges. These edges are partitioned into
sets Dy,...,Dy_y. We add an edge (8; — B5) to D;, if it is possible to “move” from
bridge B; to B, by “reversing” along some path P,, and 77 is the furthest we can move
(from B;) along path P; (see Fig. 6). More formally, the edge (3; — ;) € D; if

(a) For some path P, (1 <y <k —1), we have (s < ¥ < r?).
(b) We have (11 > rf) (This condition is considered satisfied in case B; has no attach-

ment vertex on P;.)

(c) There is no j., such that 3, satisfies the above two conditions, and >l

In words, to determine the outgoing edge from f3; in the set D;, consider all bridges
whose leftmost attachment vertex on some P, is to the left of 7/ (and is not s). The
edge (f; — ;) is added to D; if B, has the rightmost attachment on P;, among all
bridges in the set, and this attachment vertex ri, is to the right of Tf Ties are broken
lexicographically, i.e., if 8, and 3, are both candidates for the outgoing edge from f;,
we choose 3, if z < y. (Each bridge can be uniquely labeled by the index of the lowest

numbered edge it contains.)

The graph Gp is illustrated by an example in Fig. 7.

Figure 6: The edge (8; — ;) is added to D;

Notice that each vertex, except s and ¢, has at most one outgoing edge belonging to each
set D;. Since there are £ — 1 such sets, the outdegree of each such vertex is at most k£ — 1. It

is easy to see also that the outdegree of s is at most £ — 1 and the outdegree of ¢ is zero.

14

Our algorithm is based on two ideas. First, we show that there exists a directed path from
s to t in Gp if and only if there are k vertex disjoint paths between s and ¢ in G. Moreover,
given the path in Gp, the k disjoint s-t paths in G can be constructed. Second, by exploiting

the structure of Gg, we show how to find a path from s to ¢ (if one exists) efficiently.
Step 4. Find a (directed) path from s to ¢ in G, if one exists.

Step 5. If a path from s to ¢t in G was found, construct the k vertex disjoint paths between s
and t. Suppose that there is no path from s to ¢t in Gp. Consider all the vertices 3; reachable
from s in Gp. Recall that each such vertex corresponds to a bridge B; of G. Let w; be the
attachment vertex of one of these bridges which is furthest from s on P;. In case there is no
attachment vertex of any of these bridges on P;, then w; is chosen to be the the neighbor of s

on P;. The set {wn,...,wy_1} separates s from 2.

Correctness. Suppose that there are £ — 1 vertex disjoint paths between s and ¢t. By our
induction hypothesis these paths are found in Step 1. The base case is when k£ = 1. In this case
the path P; from s to t is found by computing a spanning tree of G, and following the unique

path from s to ¢ in this tree. To prove the inductive step we prove the following theorem.

Theorem 4.1: There are k vertex disjoint paths between s and t in G if and only if there is a

directed path from s to t in Gp.

Proof: The if direction: Suppose that there is a directed path Pg = s,3;,,...,Bs,,t from s to

tin Gp. Assume that Pp is (vertex) simple (i.e., no vertex appears twice in Pp).

To prove that there are k vertex disjoint paths from s to ¢ in GG, we show that the value of
the max-flow in the network N, is at least k. Observe that the paths P,..., P,_; correspond
to k —1 vertex disjoint pathsin Ny from s to ¢. Using these paths we can push £ —1 flow units

from s to t. Our goal is to show that Pp defines an augmenting path in N,;, given this flow.

For an edge (8; — () in Gg, define the type of (8; — () to be y, if 7/ > [%. For example,
in Fig. 6, the type of the outgoing edge from f3; is y (since the “reversal” is done on path P,).
Notice that by the definition of G'g, the type is always defined. In case there are several such
y’s any one may be chosen to be the type of the edge. Given the path Pg = s,85,,...,0:,.1,
let 7, be the type of the outgoing edge from 3,,, for 1 < b <a — 1.

For each vertex 3,, on Ppg, define a path R, in B,, as follows. Ior B, , R, is from s to r;_ll,
where 7; is the type of the outgoing edge from ,,. For B, , R, is from I5*=" to t, where 1,_4
is the type of the outgoing edge from 3., ,. For B;,, 1 < b < a, R;, is from 157 to ré,??b, where

tp—1 is the type of the outgoing edge from [3,,_, and ¢ is the type of the outgoing edge from

15

Bz, in Pg. See Fig. 7 for an example. In this example a = 5, and the paths P, P;,, P;,, P;, are

Py, Ps, Py, P; respectively. The values of z1, 29,23, 24,25 are 1,2, 3,5, 6 respectively.

Define a path P from s totin G

Po= Ry ; Pylrit 0] Ryys oo os Ry 3 Pi 1[7"“ L flam1] R

I]’l‘g —1'"Zq

Path Py consists of the following two kinds of segments: segments belonging to bridges, and

segments belonging to paths P; that “reverse” on P;. (We view each P; as directed from s to
t.)

The path Py is not necessarily (edge) simple as shown in Fig. 7. (The figure illustrates
only the leftmost and rightmost attachment vertices of each bridge.) This happens when some
segments of P that “reverse” on some P;, overlap. We claim that, given P, we can construct
an (edge) simple path from s to ¢ that consists of two kinds of segments: segments belonging
to bridges, and segments that “reverse” on some F;. This is achieved by a “pruning” step on
the path P.. Moreover, we can obtain a “pruned” path P, with the following monotonicity

property. If b < ¢, and both P;[r! ;11] are segments of the edge simple path Py,

l‘b’ 1‘b+1] [l‘c7 Te41

then l;b+1 <r < 1 < 7t . (In other words, as we move on the “pruned” P from s to ¢ the

segments of Py that are ‘reverse segments are ordered on P;.)

The “pruning” step on P is done as follows. Consider the segment P;[r Ty l;b]. Let d be
the maximum index such that d > b, and l;d < rxb on P;. (Note that d is always defined, since
d = b+1is a possible candidate.) In this case we “prune” the path Py, and replace the subpath
of P from r;b to lfg by the segment P;[rt ;1%] (See Fig. 8). The simple path is constructed

Ib7 Trq

by following the chain from s to ¢ in the resulting graph. Let

Pk—Rsz [lll]Rm;"';RIa—l;P'

I17 o ta—1

(e) B,

Taq—1?' Ta

denote the resulting (edge) simple path.

We claim that P, corresponds to an augmenting path in N, ;. This follows from the following

lemma.

Lemma 4.2: After pushing one unit of flow along P, the outgoing flow from each vertex

(excluding s) and the incoming flow to each vertex (excluding t) is at most one.

Proof: Before pushing the flow along P we had a legal flow of value £ — 1. Clearly, by pushing
flow along P we change the flow only for the vertices on Py, thus we may consider only these
vertices. Consider an internal vertex v on Py. If v is not on any P;, ¢ < k (that is, it is an

internal vertex on some R,,), then its incoming and outgoing flow is one.

16

——— reverse segments

Dy
[

D17D27D3

Gg
3

Figure 7: The path Py corresponding to Pg = s, 31, 82, B3, 35, B, t (in GB).

17

Figure 8: We prune the path so that P, goes from B,, to B;,

Suppose that v is an internal vertex on some P;. Let (v — v), and (v — w) be the incoming

and outgoing edges of v on P; respectively. We have three cases. (The figures describing these

cases are given in Fig. 9.)

Case

Case

Case

1. The vertex v is not an endpoint of any path R,,.
In this case v appears only once on Pj. Observe that on Py we have the edges (w — v)
and (v — u) (that is, the reverse of the corresponding edges on P;). After pushing one

unit of flow along P, the incoming and outgoing flow of v is zero.

2. The vertex v is a right endpoint of R, and a left endpoint of R (ie,v=r =

Tc41

l;cH), for some b < e.

Both P[rt ;i Tand Pi[ri ;It] are segments of the edge simple path P. Sinc r;b =

i Tp?! "Tpi1 Tl "Tet1

l;cH, by the monotonicity property there is no d, (b < d < ¢) such that R,, has an
endpoint on F;. It follows that the vertex v appears exactly twice on P. In the first
appearance, the incoming edge of P is the last edge on R.,, and the outgoing edge is
(v — u) (reverse of the edge on ;). In the second appearance on Py, the incoming edge

is (w — v) and the outgoing edge is the first edge on R After pushing one unit of

Tet1”
flow along Py, the incoming flow to v is one (from R,,), and the outgoing flow from v is

one (towards R, ,).

3. The vertex v is an endpoint of one path R, (i.e., either v = l;b or v = r;b).

We prove it only for the case v = lfgb, the proof for the case v = T;b is analogous. The
vertex v appears only once on P;. Observe that on P, we have the edges (w — v) and
the outgoing edge from v on R,,. After pushing a unit flow along P the incoming flow

to v is one (from) and the outgoing flow from v is one (towards Ry,).

18

N
-
~
<
N
N
N
N
| S e e <~—‘)
‘ >_- x e - - - - - >
1
\ u Pz v w
A
\
AN
N
N
N
N
~
o
\\
““““““““““ >
(a) Case 1
——— P
- =
R S~ Rocpr __---
Ty ~ //”
N //
AN //
\\ P
< Ve
R o e 4< ”””””””””””””””””””
..\ >= x ®» - - - - . > /7
\ P s
y 7
\\ U 2 v w ,
\ Vd
N //
~N ~
~ -
-~ -
(b) Case 2
Py
e >
-~
-7 Ry
7
7
Ve
e
..\\ = @ ESPY ® - - = %
7/
\ u b v w e
\ Ve
N e
N //
\\ //
~ //

Figure 9: Figures to illustrate all three cases

19

This concludes the proof of the if direction of Theorem 4.1.

The only if direction: Assume that there is no path from s to ¢ in Gg. Consider all the
vertices f3; reachable from s in G'g. Recall that each such vertex corresponds to a bridge B; of
G. Let w; be the attachment vertex of one of these bridges which is furthest from s on P;. In
case there is no attachment vertex of any of these bridges on P;, then w; is chosen to be the
the neighbor of s on P;. We claim that {wy,..., wr_1} separate s from ¢. To see that, remove
the vertices {wy,...,wr_1} and all their incident edges from G, and assume that there exists a

path ¢ from s to ¢ in the resulting subgraph.

Consider the vertices of () that are also on one of the paths P;, 1 < j <k — 1, in the order
of their appearance on (). Observe that there must be two successive vertices z; and z5 such
that: (i) zy is on some P; and z; < wj, (ii) z2 is on some Pj and z3 > wj. Clearly, the
sub-path of ¢ from z; to 9 does not contain any vertex of Py,..., Pr_1. Hence, there exists
a bridge B; such that lf < w; and Tfl > w;s. This implies that 3; is reachable from s in G'p,

contradicting the definition of w;:. |

Implementation and Complexity: We show how to implement the algorithm in O(logn)
time using C'(n, m) processors on a CRCW PRAM, for any fixed k. In the following discussion

we will assume that G is represented by its adjacency list.
Step 1. This is the recursive step.

Step 2. The bridges of G relative to the subgraph Py U P, U...U Pr_1, and the attachment
vertices of each bridge are obtained by computing the spanning forest of the subgraph of G
induced by the vertices in V(G)— V(P U P, U...U P;_y). By adding the edges incident to the
vertices in V(P U Py U...U Pr_q) (that are not in Py U P, U...U Py_1) we can obtain all the
trivial bridges, as well as the edges that go from vertices on the P; paths to internal vertices of
bridges. This is done in O(logn) time and C(n, m) processors using a logarithmic time parallel

graph connectivity algorithm (e.g., [CV86]).

Step 3. We show how to compute the edges of Gp. Recall that (8, — 3,) € D;, if 7‘; is the

¢, among the rightmost attachments of bridges whose

rightmost vertex on P;, to the right of r

leftmost attachment vertex on some P, is to the left of »Z (and is not s).

We do the computation in £ — 1 phases. Phase ¢ consists of three substeps, as follows.

1. Each vertex w on Py U P, U...U Py_q, considers all the bridges that are attached to it.
Among them it selects the bridge whose rightmost attachment vertex on P; is furthest
from s. Denote this bridge by M;(w). This can be done, for all the vertices on Py U P U

..U Pr_q, in O(logn) time and (m + n)/logn processors using the optimal logarithmic

20

time algorithm for finding the maximum [SV81].

2. Associate with each vertex w, the rightmost attachment vertex of M;(w) on P;. (For
convenience we refer to this attachment vertex as M;(w) as well.) For each vertex v on
a path P;, compute the prefix maximum M (v) = max,<, M;(w) (i.e., the maximum of
M;(w) over all vertices w to the left of v on P;). This can be done, for all the vertices
in O(logn) time with m/logn processors, using the optimal logarithmic time algorithm
for computing prefix maxima. This algorithm can be deduced from the general parallel

algorithm for prefix computations [LI'80].

3. Given the prefix maxima, the outgoing edge from the set D; of a bridge B, can be
computed by taking the maximum over the set {M7(r}),..., M*(rF=1)}. This can be
done, for all the bridges in O(logn) time with mk/logn processors, using the optimal

logarithmic time algorithm for finding the maximum [SV81].

Step 4. We have to find a path from s to ¢ in the directed graph G'g. In general, it is not known
if s-t paths in directed graphs can be obtained in O(logn) time and C'(n, m) processors. We
show how to find such a path in O(klogn) time using k(m 4 n)/log n processors, by exploiting

the structure of Gpg.

For1 < j <k—1,let F; be the subgraph of G g induced by the edges from the set D;U{e;}.
(Recall that e; is an outgoing edge from s.) Observe that the outdegree of each vertex in Fj is
at most one. Observe also that F} is acyclic, since (8, — () in F; implies that < ri (and
also, there is no edge incoming to s). We conclude that F} is a rooted forest (where the edges

are directed towards the root).

Define a “shortcutting” operation over the edges from D; U {e;}. In the “shortcutting” the
outgoing edges of all vertices with outgoing edges in D; U {e;} are updated. Consider such a
vertex 3,. (We assume that this vertex is not s. Later we describe how the updating is done

for s.)

First, the outgoing edge from 3, from the set D; is deleted. Let 3. be the root of the
tree in F; containing 3,. Notice that 8, has no outgoing edge from D;. If 3, has no outgoing
edges in G, then this completes the “shortcutting”. Suppose that 3, has outgoing edges. If
B has an outgoing edge to ¢, then we add an edge from 3, to ¢ (in case such an edge does not
exist). Suppose that (. has no outgoing edge to t. Fora =1,...,k—1, a # 7, define §,, to be
the vertex whose attachment point on P, is the rightmost among the attachment points of all
vertices with incoming edges from 3,. That is, r¢ > rZ, for all 8,/ such that (3, — 3,/) € Ep.
Observe that 3., is defined if 3, has outgoing edges, and that usually (5, — .,) is the outgoing

edge from the set D,. This is not the case only when r7 < r7. If 8, has an outgoing edge to

21

t then no update is done. Otherwise, for a = 1,...,k — 1, a # j, the outgoing edge from 3,,

from the set D, is updated as follows:

Case 1. The vertex 3, has no outgoing edge from the set D,. If r{ > ry then the outgoing
edge from 3, from D, is taken to be (3, — f.,).

Case 2. The vertex (3, has an outgoing edge (3, — 3,,) from the set D,. If r; > ry then the

z

outgoing edge from f, from D, is updated to be (8, — 3.,).
The “shortcutting” operation from s is defined similarly, where the sets {e,} play the role
of the sets D,.

The example in Fig. 10 shows a shortcutting step in Fy (the subgraph of G induced by
D1 U {61}).

B Bs

-----> edges added in shortcutting

Figure 10: Shortcutting in £}

Lemma 4.3: Let G'g be the graph resulting from the “shortcutting” over the edges of D;U{e; }.
Then, there exists a path from s tot in G'g, if and only if there exists a path from s tot in G'.

Proof: The if direction: Suppose that there is a path Pg in G'g, then it is easy to reconstruct
a path Pg in Gg. If Py uses an edge (#, — ,) in G’ (that is not an edge in Gg), then we
replace it by the path from 3, to 3, and the edge (8, — B.).

22

The only if direction: For this direction we first prove the following claim.

Claim: If there exists a path from s to ¢ in GG then there exists a path P = s, 85,,. .., Bz., 1,
with the following property: The edge incoming to 3, is e;,, and for each 1 < ¢ < a, the edge

incoming to 3., is from the set D, , where i. is the type of the outgoing edge from g3,..

Proof: Suppose that there exists a path s, 3,,,...,08y,,t, from s to ¢ in G that does not satisfy
the above property. We show how to construct a path Pg = s, 3;,, ..., Bs,,t, with this property.
This is done by replacing the edges of the original path, one by one. The edge (s — f,,) is
replaced by the edge e;, = (s — 35,), where #; is the type of the outgoing edge from §,,. If §;,
has an outgoing edge to ¢ then this completes the construction. Otherwise, we add the outgoing
edge from 3, from the set D;, (if such exists). Notice that §,, can reach 3,, by “reversing” on
P;,. Thus, if 3;, has no outgoing edge from D;,, then it must be the case that 7“;21 > 7“;22 > l;@)
In this case 3, is taken to be §;,. (That is, for the proof, we allow the repetition of vertices in
Pg, the actual path is given by omitting these repetitions.) We continue in the same manner.
Observe that we are guaranteed to get a path from s to ¢ since we consistently move to a vertex
whose attachment point on the path on which the next “reversal” is done is further to the right.
O

We now return to the proof of Lemma 4.3. Suppose that there is a path Pp =
S, Buys- - Buest, in Gp with the above property. If Pp consists only of edges from G'g
then the same path is also in G'5. Suppose that Pg contains some edges that are not
in G%. Let (8z, — Bs,,,) be the first such edge. We show how to construct a path
Py = 5,04, -vﬁzbvﬁng? ...,t in G’%. The prefix of the path upto 3., is the same as the
prefix of Pg upto (3;,. If 3;, has an outgoing edge to ¢ then we add it to Py to complete the

path. Otherwise, we distinguish between two cases:

Case 1. The edge (s, — fBs,,,) is not from the set D;. The outgoing edge from f,, in Py is

taken to be its outgoing edge (3, — f.) from the set D where 4341 is the type of the

ib+1 9
outgoing edge from f3;, , in Pg. From the definition of the “shortcutting” operation and

the property of Pg it follows that such an outgoing edge exists and that 7‘?“ > 1;2112.

Case 2. The edge (8, — Ba,,,) is from the set D;. Let (8;. — (:.,,) be the first edge in
Pp following (83;, — fs,,,) that is not from the set ;. Notice that the type of this
edge is j. In this case the vertices ﬁm$)+1’ .+, Bz are defined to be §;,. (That is, for the
proof, we allow the repetition of vertices in Pg, the actual path is given by omitting these

repetitions.) There are two subcases for the outgoing edge from f3,,.

Case 2.1. The vertex (3;, is the root of the tree (in F}) containing f,,. In this case the
outgoing edge from B, = f3;, is taken to be its outgoing edge (3, — B.) from the

set D if such exists, where i.41 is the fype of the outgoing edge from 3, ., in

Lot

23

Pp. From the definition of the “shortcutting” operation it follows that if such an

outgoing edge exists then r**' > [211 . Otherwise, i.e., if there is no such edge, it

must be the case that 7‘3;6:1 > l;fjrlz). In this case, ﬁf'c+1 is also defined to be 3, .

Case 2.2. The vertex 3, is not the root of the tree (in F}) containing f,,. In this case, the
next vertex is determined as follows. Let 3, be the root of the tree in F}; containing

Bz,. We have three possibilities:

1. If ’I‘;Cb-l-l > l?;lz) then the next vertex is also taken to be 3,,.

2. If not (1) and rif“ > 1;66112 then let d > ¢ be the minimum index such that
r;d“ < 1;2112. (Notice that d is always defined. The only case it may be undefined
is when (3, has an outgoing edge to ¢ in G. However, in this case 3,, would have
also an outgoing edge to t in G'5; a contradiction.) The vertices ﬁl,/c“, .. .,ﬁxé
are defined to be ;. The outgoing edge from ﬁz& = [, is taken to be its

outgoing edge (f;, — B.) from the set D if such exists. From the definition

Td41
of the “shortcutting” operation it follows that if such an outgoing edge exists
then 72" > [5t) . Otherwise, i.e., if there is no such edge, it must be the case
that rz5t" > %%, In this case, B, , s also defined to be 3.

3. Consider the remaining possibility. Notice that 3, can reach 3; , by “reversal”
on Pj. Since ryt' < L4, and it > l;f;lz), , must have an outgoing edge
(By — p) from the set D

operation (3, must also have an outgoing edge (8, — 3.) from the set D

iop1» and clearly, 727t > 1;6;12. After the “shortcutting”

Teg1?

where it > 1;3112. This outgoing edge is taken to be the next edge in Pg.

On obtaining the outgoing edge from f3,,, we continue the above process of modifying path
Pgp to obtain an s-t path in G'5. Observe that, we may actually replace a vertex (3, in Pg
by a vertex (3, in Pg, for some ¢ > b. However, we always have the property that ’I“;C, > rfgcc,
for all ¢ > b. In words, we consistently move to a vertex whose attachment point on tile path
on which the next “reversal” is done is further to the right. We continue modifying Pp in this

manner until we reach t. O

The path from s to ¢t in G'p is computed in £ — 1 phases. In phase j we perform the
“shortcutting” operation over the edges of D; U {e;}. From the above lemma it follows that
there exists a path from s to ¢ in G, if and only if s is connected to ¢ by an edge in the graph
resulting after these £ — 1 phases. If such a path exists, it can be reconstructed by adding the

edges deleted in the “shortcutting”, starting from phase £ — 1 down to phase 1.

Next, we describe how to implement each phase in O(logn) time using km/ logn processors.
The implementation consists of two stages: (1) For each vertex (3, identify the root of the tree

of F; containing it. (2) Given the root, update the outgoing edges of j,.

24

It is not difficult to see that Stage (2) can be implemented in constant time using km
processors and hence in O(logn) time using km/logn processors. The computation of Stage
(1) can be done by applying the Euler tour technique of [TV85]. However, to apply this
technique we need the full adjacency list of the forest £}, i.e., we need to compute the list of
edges from the set D; incoming to each vertex (3,. For this we use the following observation.
Consider two edges of type i: (8, — ;) and (3, — f;) from the set D;. (Since both edges
are of type ¢ we can reach §, from both (8, and 3., by a “reversal” over P;.) Suppose that
7‘; < rl. Then, all the bridges whose outgoing edge from D; is of type ¢ and whose rightmost

7

, and 77 have an outgoing edge to j3;.

attachment vertex on F; is between r

For a bridge B, and 1 < ¢ < k — 1, define the rightmost edge on P; to be the edge of B,
whose endpoint is the rightmost attachment of B, on P;. Consider the concatenation of the
adjacency lists (in) of all the vertices on P;. Compact this list to include only rightmost edges
of bridges whose outgoing edge from D); is of type i. It follows from the above observation that
the rightmost edges of all the bridges that (i) their outgoing edge from D; is of type ¢, and (ii)
these edges point to the same vertex in (Gp, are consecutive in this concatenated list. Thus, the
list of incoming edges of all the vertices in Gp can be computed using the algorithms for list
ranking and prefix sums in O(logn) time and (m 4 n)/logn processors [CV86, AM8S8, LF'80].

Step 5. If there is no path from s to ¢t in Gp, the separating set {wy, ..., wr_1} can be found
from the construction of Step 4 in O(klogn) time and m/logn processors. After doing the
“shortcutting” assume that there is no edge from s to t in G'5. We add the deleted vertices (that
are “shortcutted” over) to G'g, in the reverse order of deletion. At each stage of adding the
vertices, we consider the set of edges which were deleted when the vertices were “shortcutted”
over. For each deleted vertex, we test whether it was reachable from s when the deleted edges
are added. In this way we are able to obtain the set of vertices reachable from s, and taking

their rightmost attachment vertices on each of the paths yields the separating set.

If a path Pg was found, then following the proof of Theorem 4.1 we construct P. Recall, that
to make the path Py (edge) simple we have to perform a “pruning” step. This is implemented by
constructing a linked list. For each rightmost attachment vertex r;b on P;, define its successor
suce(ry,) to be I, ,if (i) d = max{z | I}, <7}, }, and (ii) there is no ¢ < b such that [, <7} .
We add condition (ii) to avoid the situation where one attachment vertex is the successor of
more than one vertex. For each leftmost attachment vertex l;bb_l, succ(l;,bb_l) = r;bb. Since each
attachment vertex has at most one successor and is a successor of at most one vertex, the
resulting graph is a set of chains. A list ranking step from s, yields the “pruned” path. The
“pruning” is implemented optimally in logarithmic time using the parallel prefix computations

algorithm of [LF'80] and the parallel list ranking algorithm of [CV86, AMS88].

Finally, the k vertex disjoint paths can be constructed following the resulting & flow units

25

from s to ¢, in O(logn) time and n/logn processors using the optimal list ranking algorithm

([CV86, AMS8S8]). We conclude

Theorem 4.4: The described algorithm finds k vertex disjoint s-t paths in O(k*logn) time

using kC(n, m) processors.

5. Finding edge disjoint paths

In this section we describe a parallel algorithm for finding k-edge disjoint s-t paths. The
algorithm uses the same techniques as the algorithm for finding vertex disjoint paths and has
the same complexity; that is, the algorithm either finds k-edge disjoint paths or a set of at most

k — 1 edges whose removal separates s and ¢, in O(logn) time and C(n, m) processors.

The parallel algorithm is similar to the algorithm of Section 4. The only difference is in the
definition of the bridge graph G'5. Recall that edge disjoint s-¢ paths can be computed using a
max-flow computation in the network M, ; in which each edge has unit capacity, i.e., we relax
the restriction of unit vertex capacities and impose only the edge capacity constraints. Because
of this relaxation the flow augmenting path P, in M,; is permitted to transfer itself from one
bridge to another by using zero or more reverse edges of P;, unlike the condition imposed earlier
that required that at least one edge of P; be traversed in the reverse direction. To capture this,
the definition of the sets D; in the bridge graph G'p is modified. Specifically, the edge (5; — ;)
is added to the set D; if 7 is to the tight of rf, and is the rightmost vertex on P; among the

rightmost attachments of all bridges whose leftmost attachment on some path P, is to the left

Y
;-

1<j<k-—1,the edge (8; — ;) € D; if

of or the same as r!. More formally, the edge sets Dq,..., Dp_1 are defined as follows. For

1. For some path P, (1 <y <k —1), we have (s < [¥ <7r}).

2. We have (vl > Tf) (This condition is considered satisfied in case B; has no attachment

vertex on P;.)

3. There is no 3., such that 3, satisfies the above two conditions, and] > 77,

Note that the strict inequality in (1) was replaced by an inequality.

The correctness of the algorithm is implied by the following theorem.

Theorem 5.1: There are k edge disjoint paths between s and t in G if and only if there is a
directed path from s to t in (the modified) G'p.

26

The proof of the theorem is similar to the proof of Theorem 4.1: We show that a path in Gp
corresponds to a flow augmenting path Py in the network M, ;. Using the flow of value k£ we
can construct k-edge disjoint paths. If there is no path from s to ¢t in G'g, then the edges on
the paths P; outgoing from the furthest attachment vertices of the bridges reachable from s in

G'B, separate s from t.

6. Applications

In this section we describe some more applications of our parallel algorithm for finding disjoint

s-t paths.
Constructing a cycle through three specified vertices

Problem: Given an undirected graph G, and three specified vertices a,b,c of G determine
whether the three vertices lie on a common simple cycle and construct such a cycle if one
exists.

Below, we show how to derive an efficient logarithmic time parallel algorithm for this problem.

The parallel algorithm is a parallelization of the sequential algorithm of [LR80]. We assume
that G is biconnected since a, b and ¢ must be in the same biconnected component if the cycle
exists. The main idea of the sequential algorithm of [LR80] is to decompose G into pieces and
to look for paths which must exist in these pieces if the cycle is to exist in (. All the steps
in this algorithm are easy to parallelize efficiently, except for the step that involves computing
three vertex disjoint s —t paths. Using the k-disjoint paths algorithm we can compute the three
paths (if such exist) and either construct the desired cycle from these paths, or conclude that

such a cycle does not exist.

The algorithm can be implemented in logarithmic time using the algorithm of Section 4,
together with parallel logarithmic time connectivity (e.g., [CV86]), biconnectivity (e.g., [TV85])
and triconnectivity (e.g., [FRT89]) algorithms. The number of processors used in the algorithm
is the same as the number of processors needed by the parallel triconnectivity algorithm. (The

algorithm of [FRT89] appears to use (n 4+ m)loglogn/logn processors.)
The two paths problem

Problem: Given an undirected graph G, and two pairs of vertices a1,as and by, by find two
disjoint paths, one from a; to @y and one from by to bs.

Our algorithm for finding three disjoint s-¢ paths is used as a subroutine in the parallel algo-
rithms of [KMV89] for the two paths problem to yield an O(log n) time, n? processors parallel

algorithm for solving the two paths problem on general graphs, and a logarithmic time parallel

27

algorithm for solving the problem on planar graphs that uses the same number of processors as

required for the triconnectivity algorithm.
Testing and finding subgraph homeomorphism for some fixed pattern graphs

Problem: Given a graph G, test if G has a subgraph homeomorphic to some fixed pattern graph
H. If G has such subgraph find it.
We show how to solve this problem for the pattern graphs: K4 and K3 3. As a corollary this

gives an efficient algorithm to test whether a graph is outer-planar.

First, we consider the testing problem. The following lemmas are from [Asa85].

Lemma 6.1: For a triconnected graph H, a graph G has a subgraph homeomorphic to H if

and only if there is a triconnected component of G that has a subgraph homeomorphic to H.

Lemma 6.2: If a simple graph G with two or more vertices has no subgraph homeomorphic
to K4, then m < 2n — 3.

Lemma 6.3: A graph G has a subgraph homeomorphic to K, if and only if there is a tricon-

nected component of G with four or more vertices.

Lemma 6.4: If a simple graph G with two or more vertices has no subgraph homeomorphic
to Ky 3, then m < 2n — 2.

Lemma 6.5: A simple graph GG has a subgraph homeomorphic to K, 3, if and only if there is

a triconnected component of G satisfying one of the following:
(i) It has five or more vertices.
(ii) It is the graph K4 with at least one virtual edge.

(iii) It is a triple bond of three virtual edges.

Lemmas 6.2 and 6.3 imply a simple algorithm for testing whether a given graph G has a
subgraph homeomorphic to K4. Similarly, Lemmas 6.4 and 6.5 imply a simple algorithm for
solving the same problem for K;3. Implementing both algorithms using a logarithmic time
triconnectivity algorithm (e.g., [FRT89]) yields logarithmic time algorithms that use the same

number of processors as required for the triconnectivity algorithm.

A planar graph is outer-planar if it can be embedded in the plane so that all its vertices lie

on the same face. The following theorem is an easy corollary of Kuratowski’s theorem.

28

Theorem 6.6: A graph is outer-planar if and only if it has no subgraph homeomorphic to K4

or](273.

We conclude that we can test whether a graph is outer-planar in O(logn) time using the
same number of processors as required for the triconnectivity algorithm. Owur algorithm is
simpler than the algorithm given in [RR89]. However, it does not yield the (outer-)planar
embedding of the graph in case it is outer-planar. To obtain an outer-planar embedding we
add one artificial vertex v to G, and an edge from v to every original vertex in the graph. The
new graph is planar if and only if G is outer-planar, since the addition of v ensures that all the
original vertices are on the same face in the obtained embedding. Using the logarithmic time

algorithm in [RR89] we can obtain an outer-planar embedding for G.

Finally, we note that in a similar way we can test subgraph homeomorphism for the pattern

graphs: Cy4, C5 and K5, for any fixed p.
We use the k-vertex disjoint paths algorithm to obtain homeomorphs of K4 and K 3.

Finding K4 homeomorphs: Our algorithm is based on the proof of Lemma 6.3 in [Asa85].
W.lo.g. assume G has 2n edges (if not, choose any subgraph of G with 2n edges), and that
G has a triconnected component G with four or more vertices. Choose any vertex » of Gy
and consider the subgraph G; — {v} (which is biconnected). In G; — {v}, find a cycle C of
length > 3, by obtaining a spanning tree of G; — {v} and adding one non-tree edge. Find three
vertex disjoint paths from v to three distinct vertices on the cycle €', such paths exist since
G is triconnected. The three paths are found as follows. First, introduce a new vertex ¢, and
add edges from t to all vertices on C. Then, find three vertex disjoint v-f paths. The required
paths are the segments of these v-t paths upto their first point of intersection with C. Tt is
easy to see that the graph obtained from these three disjoint paths from v to C, together with
C' is homeomorphic to K4. To get the K4 homeomorph in GG, we may need to replace virtual
edges by paths in G. It follows that using our algorithm, together with parallel logarithmic
time connectivity and triconnectivity algorithms, a K4y homeomorph can be found in O(logn)

time using the same number of processors as required for the triconnectivity algorithm.

Finding K, 3 homeomorphs: Our algorithm is based on the proof of Lemma 6.5 in [Asa85].
Again, we assume that G has 2n edges and a triconnected component (7 satisfying one of the

conditions in Lemma 6.5. We consider all the three cases which G; may satisfy.

Case 1. GG1 has five or more vertices: Find G’, a subgraph homeomorphic to K4. Let the
vertices in G’ of degree three be called vy, vg, v3, v4. If G’ is exactly the graph K4 then Gy
must have another vertex u ¢ G'. Find three disjoint paths from u to any three vertices

of the K4. It is easy to see that a subgraph homeomorphic to K33 can be extracted from

29

these three paths and the K.

If G’ is a subdivision of K4, then consider a vertex u on the path P[vy;vq]. Since G is

triconnected, there must be a path from u to some other vertex w of G' in Gy — {vy, v, }.

Using this path and the K4 it becomes easy to extract the subgraph homeomorphic to

ﬁ273.

Case 2. (G1 is K4 with a virtual edge: Replace the virtual edge by a path of length > 2 and

obtain a subgraph homeomorphic to K3 3.

Case 3. (1 is a triple bond of virtual edges: Replace all three virtual edges by paths of length

> 2 and obtain a subgraph homeomorphic to K3 3.

Again, the implementation of this algorithm can be done in O(logn) time using the same

number of processors as required for the triconnectivity algorithm.

Acknowledgements. We are grateful to Steve Mitchell and Vijay Vazirani for useful discus-

sions and encouragement. We are also grateful to the referees for many useful suggestions.

References

[AMSS]

[Asa85]

[BDD+82]

[Ber76]

[BM77]

[CV86]

R.J. Anderson and G.L. Miller. Deterministic parallel list ranking. In Proc. of
AWOC 88, Lecture Notes in Computer Science No. 319, pages 81-90. Springer-
Verlag, 1988.

T. Asano. An approach to the subgraph homeomorphism problem. Theoretical
Computer Science, 38:249-267, 1985.

M. Becker, W. Degenhardt, J. Doenhardt, S. Hertel, G. Kaninke, W. Keber,
K. Mehlhorn, S. Niher, H. Rohnert, and T. Winter. A probabilistic algorithm
for vertex connectivity of graphs. Information Processing Letters, 15(3):135-136,
October 1982.

C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, 1976.

J.A. Bondy and U.S5.R. Murty. Graph Theory with applications. American Elsevier,
New York, NY, 1977.

R. Cole and U. Vishkin. Approximate and exact parallel scheduling with applications
to list, tree and graph problems. In Proc. 27th IEFE Symp. on Foundation of
Computer Science, pages 478-491, October 1986.

30

[CVss]

[DF56]

[ET75]

[ET76]

[EveT5]

[Eve79]

[FRT89]

[FTS88]

[Gal80]

[Har69]

[TR84]

[KMV89]

[KRS7]

R. Cole and U. Vishkin. Optimal parallel algorithms for expression tree evaluation
and list ranking. In Proc. of AWOC 88, Lecture Notes in Computer Science No.
319, pages 91-100. Springer-Verlag, 1988.

G.B. Dantzig and D.R. Fulkerson. On the max-flow min-cut theorem of networks.
In Linear Inequalities and Related Systems, Annals of math. Study No. 38, pages
215-221. Princeton University Press, 1956.

S. Even and R.E. Tarjan. Network flow and testing graph connectivity. SITAM
Journal on Computing, 4:507-518, 1975.

S. Even and R.E. Tarjan. Computing st-numbering. Theoretical Computer Science,
2:339-344, 1976.

S. Even. An algorithm for determining whether the connectivity of a graph is at
least k. SIAM Journal on Computing, 4:393-396, 1975.

S. Even. Graph algorithms. Computer Science Press, Rockville, MD, 1979.

D. Fussell, V. Ramachandran, and R. Thurimella. Finding triconnected components
by local replacements. In Proc. 16th ICALP, Lect. Notes in Comp. Sci. No. 372,
pages 379-393. Springer-Verlag, July 1989.

D. Fussell and R. Thurimella. Separation pair detection. In Proc. of AWOC 88,
Lecture Notes in Computer Science No. 319, pages 149-159. Springer-Verlag, 1988.

7. Galil. Finding the vertex connectivity of graphs. SIAM Journal on Computing,
9:197-200, 1980.

F. Harary. Graph Theory. Addison Wesley, Reading, Ma, 1969.

A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed networks.
In Proc. 25th IFEE Symp. on Foundation of Computer Science, pages 137-147,
October 1984.

S. Khuller, S.G. Mitchell, and V.V. Vazirani. Processor efficient parallel algorithms
for the two disjoint paths problem and for finding a Kuratowski homeomorph. In
Proc. 30th IEFE Symp. on Foundations of Computer Science, pages 300-305, Oc-
tober 1989.

A. Kanevsky and V. Ramachandran. Improved algorithms for graph four-
connectivity. In Proc. 28th IEEFE Symp. on Foundation of Computer Science, pages
252-259, October 1987.

31

[LEC67]

[LFS0]

[LLWS6]

[LRSO]

[Mat87]

[MSV86]

[RRS9]

[Sey80]

[Shig0]

[SV81]

[SV82]

[Tar75]

[Thu89]

[TV85]

A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs.
In Proc. Int. Symp. on Theory of Graphs; P. Rosenstiehl Fd., pages 215-232. Gordon
and Breach, 1967.

R.E. Ladner and M.J. Fischer. Parallel prefix computation. Journal of the ACM,
27:831-838, 1980.

N. Linial, L. Lovasz, and A. Wigderson. A physical interpretation of graph connec-
tivity, and its algorithmic applications. In Proc. 27th IFEE Symp. on Foundation
of Computer Science, pages 39-48, October 1986.

A.S. LaPaugh and R.L. Rivest. The subgraph homeomorphism problem. Journal
of Computer and System Sciences, 27:133-149, 1980.

D. Matula. Determining edge connectivity in O(mn). In Proc. 28th IEEE Symp. on
Foundation of Computer Science, pages 249-251, October 1987.

Y. Maon, B. Schieber, and U. Vishkin. Parallel Ear Decomposition Search (EDS)
and st-numbering in graphs. Theoretical Computer Science, 47:277-298, 1986.

V. Ramachandran and J.H. Reif. An optimal parallel algorithm for graph planarity.
In Proc. 30th IFEFE Symp. on Foundations of Computer Science, pages 282-287,
October 1989.

P.D. Seymour. Disjoint paths in graphs. Discrete Mathematics, 29:293-309, 1980.

Y. Shiloach. A polynomial solution to the undirected two path problem. Journal of
the ACM, 27:445-456, 1980.

Y. Shiloach and U. Vishkin. Finding the maximum, merging and sorting in a parallel
computation model. Journal of Algorithms, 2:88-102, 1981.

Y. Shiloach and U. Vishkin. An O(logn) parallel connectivity algorithm. Journal
of Algorithms, 3:57-63, 1982.

R.E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal on
the ACM, 22:215-225, 1975.

R. Thurimella. Techniques for the design of parallel graph algorithms. PhD thesis,
Dept. of Computer Science, The University of Texas at Austin, Austin, TX, 1989.

R.E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. STAM
Journal on Computing, 14:862-874, 1985.

32

[Wyl79] J.C. Wyllie. The complezity of parallel computations. PhD thesis, Dept. of Computer
Science, Cornell University, Ithaca, NY, 1979.

33

