
Set Cover Revisited: Hypergraph Cover with Hard
Capacities⋆

Barna Saha1 and Samir Khuller2

1 AT&T Shannon Research Laboratory
2 University of Maryland College Park

barna@research.att.com, samir@cs.umd.edu

Abstract. In this paper, we consider generalizations of classical covering prob-
lems to handle hard capacities. In the hard capacitated set cover problem, addi-
tionally each set has a covering capacity which we are not allowed to exceed.
In other words, after picking a set, we may cover at most a specified number of
elements. Based on the classical results by Wolsey, anO(log n) approximation
follows for this problem.
Chuzhoy and Naor [FOCS 2002], first studied the special case of unweighted
vertex cover with hard capacities and developed an elegant 3approximation for
it based on rounding a natural LP relaxation. This was subsequently improved to
a 2 approximation by Gandhi et al. [ICALP 2003]. These results are surprising in
light of the fact that for weighted vertex cover with hard capacities, the problem is
at least as hard as set cover to approximate. Hence this separates the unweighted
problem from the weighted version.
The set cover hardness precludes the possibility of a constant factor approxima-
tion for the hard-capacitated vertex cover problem on weighted graphs. However,
it was not known whether a better than logarithmic approximation is possible
on unweightedmultigraphs, i.e., graphs that may contain parallel edges. Neither
the approach of Chuzhoy and Naor, nor the follow-up work of Gandhi et al. can
handle the case of multigraphs. In fact, achieving a constant factor approxima-
tion for hard-capacitated vertex cover problem on unweighted multigraphs was
posed as an open question in Chuzhoy and Naor’s work. In this paper, we resolve
this question by providing the first constant factor approximation algorithm for
the vertex cover problem with hard capacities on unweightedmultigraphs. Previ-
ous works cannot handle hypergraphs which is analogous to consider set systems
where elements belong to at mostf sets. In this paper, we give anO(f) approx-
imation algorithm for this problem. Further, we extend these works to consider
partial covers.

1 Introduction

Covering problems have been widely studied in computer science and operations re-
search, starting from the early work on set-cover [11, 15, 18]. In addition, the vertex

⋆ Research supported by NSF CCF-0728839, NSF CCF-0937865 anda Google Research Award.

cover problem has been extremely well studied as well – this is a special case of set
cover, where each element belongs to exactly two sets [2, 10]. Both these problems
have played a central role in the development of many important ideas in algorithms
– greedy algorithms, LP rounding, randomized algorithms, primal-dual methods, and
have been the vehicle to convey many central ideas in combinatorial optimization.

In this paper, we consider covering problems with hard capacity constraints. In other
words, if a set is chosen, it cannot cover all its elements, but there is an upper
bound on the number of elements that the set can cover. More formally, consider
a ground set of elementsU = {a1, a2, . . . , an} and a collection of subsets ofU ,
S = {S1, S2, . . . , Sm}. Each setS ∈ S has a positive integral capacityk(S) ∈ N

and has an upper bound (denoted bym(S)) on the number of copies. In addition, each
set can have arbitrary non-negative weightw̃ : S → R

+. A solution for capacitated cov-
ering problem contains each setS ∈ S, x(S) times wherex(S) = {0, 1, 2, . . . ,m(S)}
such that there is an assignment of at mostx(S)k(S) elements to setS and all the ele-
ments are covered by the assignment. The goal is to minimize

∑

S∈S w̃(S)x(S). Using
Wolsey’s greedy algorithm [18], we can easily derive aO(log n) approximation for the
capacitated set cover problem with hard capacities.

Approximation algorithms for vertex cover with (soft) capacities were developed by
Guha et al [9]. In the soft capacitated covering problem there is no boundon the number
of copies of each set (vertex) that can be chosen. In [9], a primal dual algorithm was
developed to give a 2 approximation. This algorithm can be extended easily to handle
vertex cover with (soft) capacities in hypergraphs. In other words, if we have a hyper
graph with hyper edges of size at mostf (set cover problem where each element belongs
to at mostf sets), then we can easily get anf approximation [9]. On the other hand, the
case of hard capacities is quite difficult. In a surprising result, Chuzhoy and Naor [4]
showed that the weighted vertex cover problem with hard capacities is set-cover hard
and showed that forunweighted graphs a randomized rounding algorithm can give a
3 approximation. This was subsequently improved to a 2 approximation [7]. Vertex
cover is a special case of set cover problem wheref = 2. This naturally raises the
question whether it is possible to obtain anf approximation for the unweighted set
cover problem with hard capacities, where each element belongs to at mostf sets. The
approaches of [4,7] do not extend to case whenf > 2. Moreover, the results of [4,7]
only hold forsimple graphs.Obtaining a constant factor approximation algorithm for
the hard-capacitated vertex cover problem for unweighted multigraphs was posed as
an open question in [4]. In this paper, we resolve that question, and extending our
approach we also obtain an O(f)-approximation for the unweighted set cover problem
with hard capacities. Further, we also provide anO(f) approximation algorithm for
partial cover problem with hard capacities. Partial cover is a natural generalization of
covering problems where only a desired number of elements need to be covered [8].
While the works of [3, 17] extended the vertex cover with soft capacities to consider
partial cover, nothing prior to our work was known in the caseof hard capacities.

The notion of capacities is also natural in the context of facility location problems, as
well as clustering problems and has been widely studied. Capacitated facility location
and k-median problems have been an active area of research [1,5,16] and frequently ap-

pear in applications involving placement of warehouses, web caches and as a subroutine
in several network design protocols. Non-metric capacitated facility location problem
is a generalization of hard-capacitated set cover problem for which Bar-Ilan et al. [1]
gave anO(log n+ logm)-approximation. In this problem, there arem facilities andn
clients; there is a cost associated for opening each facility and each client connects to
one of the open facility paying a connection cost while the number of clients that can
be assigned to an open facility remains bounded by its capacity. When, the connection
costs are either0 or∞, we get the set cover problem with hard capacities.

In several set cover applications, an element only belongs to a few sets. This is espe-
cially true in the context of scheduling. One such example isthe work of Khuller, Li
and Saha [12] where they study a scheduling algorithm to allocate jobs tomachines in
data centers such that the minimum number of machines are activated. The goal is to
minimize the energy to run machines while maintaining the makespan (maximum sum
of processing times on any machine). In data centers, each data is replicated asmall
number of times (typically3 copies). Thus a job needed to access specific data can be
run on one of a small number of machines. In [12], a (lnn+1) approximation algorithm
is provided that violates the makespan by a factor of2. However, it does not consider
the fact that each job can be scheduled only onf (heref ≈ 3) machines. Incorporating
this, and in addition, considering that jobs have some fixed processing time, we obtain
the hard-capacitated set cover problem with elements belonging to at mostf sets. The
scheduling model of [6] can also be seen as a hard-capacitated set covering instance
with multiple capacity constraints.

Our algorithms for the hard-capacitated versions of both vertex cover and set cover are
based on rounding linear programming (LP) relaxations. In the following subsection,
we outline the main reasons why the previous approaches failand provide a sketch of
our algorithms.

1.1 Our Approach and Contributions

The works of [4,7] cannot handle the hard-capacitated vertex cover problem on multi-
graphs, neither do their approaches extend to hypergraphs or set systems with elements
belonging to at mostf sets. The algorithms in both of these works are based onLP

rounding and involve three major steps. First, they pick allvertices with fractional val-
ues above a desired threshold. Next, a randomized rounding step is performed to choose
some additional vertices. If even after step two, there are edges with unsatisfied frac-
tional coverage, an alteration step is performed, in which vertices are chosen as long
as all the edges are not fractionally fully covered maintaining the capacity constraints.
Finally, the fractional edge assignment variables are rounded through a flow computa-
tion. While, the expected cost of selecting vertices in the first two steps can be easily
bounded within a small factor of the optimalLP cost, the main crux of the argument re-
lies in showing that with high probability the alteration cost can also be charged within
a small factor of the cost incurred in the first two steps. Whenthe graph does not contain
any parallel edge, the random variables required to prove such a statement are all in-
dependent and thus strong concentration inequalities can be employed for the analysis.

However, the presence of parallel edges (or having hypergraphs) make these random
variablespositively correlated. This hinders the application of required concentration
inequalities and the analysis breaks down.

We utilize theLP-structure to decompose the problem into two simpler instances. In-
stead of consolidating the variables corresponding to sets(vertices), we modify the
variables associated with assignment of elements (edges) to sets (vertices). Viewing the
LP solution as a bipartite graph between elements and sets, thegraph is decomposed
into a forest (H1) and an additional subgraph (H2) such that elements entirely covered
by either one of these can be rounded without much loss in the approximation. There
may be elements that are partially covered (fractionally) by sets in bothH1 andH2.
We further modify the remaining fractional solution to recast the capacitated covering
problem on these unsatisfied elements as a multiset multicover (MM) problemwithout
any capacity constraints.

We show that the partially rounded solution is feasible for the natural linear pro-
gramming relaxation forMM. However the naturalLP relaxation forMM has an un-
bounded integrality gap. Using a strongerLP relaxation, it is possible to givelogn-
approximation algorithm forMM [14], but our fractional solution may not be feasible
for such stronger relaxations. Moreover, alogn approximation forMM is not sufficient
for our purpose. Instead, we show that it is possible to charge the cost of the obtained
solution to a constant factor ofLP cost forMM and the number of elements in the set
system, and this suffices to ensure a constant approximation. Our algorithm forMM

follows the paradigm of grouping and scaling used forcolumn restricted (each set has
same multiplicity for all elements) packing and covering problems [13]. However, our
set system is not column restricted. We still can group the elements intosmall andbig
based on the extent of coverage these elements get from sets with relatively lower or
higher multiplicities compared to their demands. By scaling the fractional variables and
doing randomized rounding, we can satisfy the requirementsof small elements, but
big elements may still have residual demands left. Satisfying the requirements of big
elements need a further step of careful rounding. Details are described in Section2.2.

Our main contributions are as follows.

– We obtain anO(1) approximation algorithm for the vertex cover problem with hard
capacities on unweighted multigraphs for the unit multiplicity case, i.e., when all
m(v) = 1.

– We show anO(f)-approximation algorithm for the unweighted set cover problem
with hard capacities where each element belongs to at mostf sets.
As a corollary, we obtain anO(1) approximation for the hard-capacitated vertex
cover problem on unweighted multigraphs for arbitrary multiplicities.

– We consider partial covering problem with hard capacities.We giveO(1) approx-
imation for partial vertex cover with hard capacities andO(f) approximation for
partial set cover problem with hard capacities.

In the following section, we describe a constant factor approximation algorithm for the
hard-capacitated vertex cover problem on multigraphs withunit multiplicity (m(v) =

1, ∀v ∈ V(G)). The algorithm and the analysis contain the main technicalingredients
which are later used to obtainO(f) approximation algorithms for the set cover and par-
tial cover problems with hard capacities and arbitrary multiplicities. For lack of space,
the latter two results appear in the full version of the paper.

2 Vertex Cover on Multigraphs with Hard Capacities

We start with the following linear programming relaxation for hard-capacitated vertex
cover with unit multiplicities.

minimize
∑

v∈V

x(v) (LPVC)

subject to

y(e, u) + y(e, v) = 1 ∀ e = (u, v) ∈ E, (1)

y(e, v) ≤ x(v), y(e, u) ≤ x(u) ∀e = (u, v) ∈ E, (2)
∑

e=(u,v)

y(e, v) ≤ k(v)x(v) ∀v ∈ V, (3)

0 ≤ x(v), y(e, v), y(e, u) ≤ 1 ∀ v ∈ V,∀e = (u, v) ∈ E. (4)

Herex(v) is an indicator variable, which is1 if vertexv is chosen and0 otherwise. Vari-
ablesy(e, u) andy(e, v) are associated with edgee = (u, v). y(e, u) = 1 (y(e, v) = 1
) indicates edgee is assigned to vertexu (v). Constraints (1) ensure each edge is cov-
ered by at least one of its end-vertices. Constraints (2) imply an edge cannot be covered
by a vertexv, if v is not chosen in the solution. The total number of edges covered by
a vertexv is at mostk(v) if v is chosen and0 otherwise (constraints (3)). We relax the
variablesx(v), y(e, v) to take value in[0, 1] in order to obtain the desiredLP-relaxation.
The optimal solution ofLPVC denoted byLPVC(OPT) clearly is a lower bound on the
actual optimal costOPT.

2.1 Rounding Algorithm

Let (x∗, y∗) denote an optimal fractional solution ofLPVC. We create a bipartite graph
H = (A,B,E(H)), whereA represents the vertices ofG, B represents theedges of G 3

and the linksE(H) correspond to the(e, v) variablese ∈ B, v ∈ A with non-zeroy∗

value4. Eachv ∈ A(H) is assigned a weight ofx∗(v). Each link(e, v) is assigned a
weight ofy∗(e, v). We now modify the link weights in a suitable manner to decompose
the link sets ofH into two graphsH1 andH2. Special structures ofH1 andH2 make
rounding relatively simpler on them.

– H1 is a forest. For each nodev ∈ A(H1) and link(e, v) ∈ E(H1), y∗(e, v) < x∗(v).

3 We often refer a vertex inB(H) by edge-vertex to indicate it belongs toE(G).
4 in order to avoid confusion between edges ofG with edges ofH, we refer to edges ofH by

links

– In H2, if (e, v) ∈ E(H2), then weight of link (e, v) is equal to the weight of v. Thus,
for each nodev ∈ A(H2) and link(e, v) ∈ E(H2), y∗(e, v) = x∗(v).

A moment’s reflection shows the usefulness of such a property, essentially, inH2,
we can ignore the hard capacity constraints altogether.

The decomposition procedure is based on iteratively breaking cycles. We now explain
the rounding algorithms on each ofH1 andH2.

Rounding onH2.

We discard all isolated vertices fromH2. Letη ≥ 2 be the desired approximation factor.
We select all vertices inA(H2) with value ofx∗ at least1

η
. Let us denote the chosen

vertices byD. Then,

D = {v | v ∈ A(H2), x
∗(v) ≥

1

η
}.

For every edge-vertexe = (u, v) ∈ B(H2), if v (or u) is in D, and(e, v) ∈ E(H2) (or
(e, u) ∈ E(H2)), then we sety∗(e, v) = 1 (or y∗(e, u) = 1). That is, we assigne to v,
if the link (e, v) is in E(H2) andv is inD, else ifu ∈ D and(e, u) ∈ E(H2), the edgee
is assigned tou.

Observation 1 From constraints (3),
∑

e=(u,v) y(e, v) ≤ x(v)k(v). Therefore,
∑

e=(u,v)
y(e,v)
x(v) ≤ k(v), and hence in H2, after the assignment of edges to vertices

in D, all vertices maintain their capacity.

In fact, inH2, capacity constraints become irrelevant.Whenever, we decide to pick a
vertex in A(H2), we can immediately cover all the links in E(H2) incident on it.

All edges with both links inE(H2) get covered at this stage. In addition, ife ∈ B(H2)
has only one link(e, v) ∈ E(H2), butx∗(v) = y∗(e, v) ≥ 1

η
, then sincev ∈ D, e gets

covered. Therefore, the uncovered edges after this step either have no link inE(H2) or
are fractionally covered to an extent less than1

η
in H2.

Rounding onH1.

H1 is a forest; edge-vertices inH1 either have both or one link inE(H1). While the
vertices ofH1 andH2 may overlap, the link sets are disjoint. Edge-vertices inB(H1)
with only one link inH1 are calleddangling edges. We rootH1 arbitrarily to some
node ofA(H1). This naturally defines a parent-child relationship. Figure (1a) depicts
the structure ofH1. Dangling edges are shown by dashed lines.

Rounding edges with both links in H1.

Algorithm (1) describes the procedure to assign edge-vertices that haveboth links in
E(H1).

We first select a collection ofD′ vertices fromA(H1) \D with x∗ value at least1
η

. Any
edge-vertex inB(H1) that has a child vertex chosen inD′ gets assigned to its child. For

Edges with both end-points in ��

Edges with one end point in ��

Original vertices

Dangling Edges

Fig 1a. Structure of ��, dangling edges are colored black and

connected by dashed lines, edges with both end-points in ��		

are colored white and connected by solid lines.

………………………………………………………

…

Nodes in ��	 that have not been selected in �

Fig 1b. Structure of �1		after the edges with two

end points in �1		have been assigned.

Algorithm 1 Assigning edges with two links in H1

1: let D′ = {v ∈ A(H1) | x
∗(v) ≥ 1

η
}, select all the vertices inD′.

2: for each edge-vertexe with two links inH1 do
3: if the child vertex ofe is selected inD′ then
4: assign e to the selected child vertex.
5: end if
6: end for
7: let T(v) denote the set of unassigned children edge-vertices incident on v ∈ A(H1) with

both links inH1.
8: select anyt(v) = ⌈

∑
e=(u,v)∈T(v) y

∗(e, u)⌉ vertices from the children of the edge-vertices
in T(v), andassign the correspondingt(v) edge-vertices inT(v) to these selected children
vertices. Ifv′ is a newly selected vertex in this step and there are edges that have links incident
onv′ in E(H2), then assign those edges tov′ as well.

9: assign the remaining edge-vertices fromT(v) to v.

each vertexv ∈ A(H1), we useT(v) to denote the set of children edge-vertices that are
not assigned in step (4). We selectt(v) = ⌈

∑

e=(u,v)∈T(v) y
∗(e, u)⌉ vertices from the

children of the edge-vertices inT(v). We assign the correspondingt(v) edge-vertices
in T(v) to these newly selected children vertices. Rest of the edgesin T(v) are assigned
to v.

Rounding dangling edges, i.e., with one link in H1.

After Algorithm 1 finishes, letL(v) denote the set of unassigned dangling edge-vertices
connected tov, and letl(v) =

∑

e=(u,v),e∈L(v) y
∗(e, u). L(v) are the leaf edge-vertices

of H1. We first prove a lemma that shows after the edge-assignment in Algorithm1, we
still can safely assign at least|L(v)| − ⌈l(v)⌉ edges fromL(v) to v without violating
its capacity. We show the residual capacity ofv after assigning edges fromE(H2) is at
least as high as1 + |T(v)| − ⌈t(v)⌉ + |L(v)| − ⌈l(v)⌉. The number of edges assigned
to v from Algorithm1 is at most1+ |T(v)| − ⌈t(v)⌉ and hence the following lemma is
established.

Lemma 1. Each vertex v ∈ A(H1) can be assigned |L(v)| − ⌈l(v)⌉ leaf edges-vertices
without violating its capacity.

The edge-vertices inL(v) are leaves ofH1, they are connected tov and have their other
link in E(H2). We first pickone vertex fromA(H2) such that it covers at least one edge
from L(v). Let us denote this vertex byh2(v) and let it coverp2(v) ≥ 1 parallel edges
(v, h2(v)). If l(v) ≤ p2(v), then following Lemma1, the rest of the edge-vertices of
L(v) can be assigned tov, and we do so.

If l(v) > p2(v). Let R(v) denote the vertices ofA(H2) \ h2(v) that are end-points
of edges inL(v). If we pick enough vertices fromR(v) such that they cover at least
l′(v) = l(v)− p2(v) + 1 leaf-edges, then again from Lemma1, rest of the edges from
L(v) can be assigned tov.

We scale up all thex∗ variables of
⋃

v∈A(H1)
R(v) by a factor of 1

1− 1
η

. We also scale

up the correspondingy∗ link variables by a factor of 1
1− 1

η

. Let (x̄, ȳ) denote the scaled

up variables. Then,
∑

e=(u,v)∈
L(v)\(v,h2(v))

ȳ(e, u) = (l(v)−p2(v)x∗(h2(v)))

(1− 1
η)

≥
(l(v)− p2(v)

η)
(1− 1

η)
>

l(v) − p2(v) + 1 = l′(v), where the last inequality follows from the fact thatl(v) >

p2(v) ≥ 1. We let l′(v) = 0, if l(v) ≤ p2(v). We now have the following multi-set
multi-cover problem (MM).

For each v ∈ A(H1) with l′(v) > 0, we create an element a(v). For each vertex
u ∈

⋃

v∈A(H1)
R(v), we create a multi-set S(u). If there are d(v, u) leaf edge-vertices

in L(v) \ (v, h2(v)) incident upon u, then we include a(v) in S(u), d(v, u) times . Each
element a(v) has a requirement of r(a(v)) = ⌊l′(v)⌋. The goal is to pick minimum num-
ber of sets such that each element a(v) is covered ⌊l′(v)⌋ times counting multiplicities.

Note that, since the original graph is a multigraph,d(v, u) can be greater than1.

Lemma 2. If we set z(S(u)) = x̄u, ∀u ∈
⋃

v∈A(H1)
R(v), then z is a feasible fractional

solution for the above stated multi-set multi-cover problem.

As described in Section1.1, existing approaches are not sufficient to obtain an inte-
gral solution for the aboveMM problem that will ensure a constant approximation.
We instead, obtain an algorithm where the total number of sets picked is close to
s+

∑

u∈
⋃

v∈A(H1) R(v)
x̄u, wheres is the number of vertices inA(H1) with l′(v) > 0. In

Section2.2, we prove the following theorem.

Theorem 3. Given any feasible fractional solution x̄ with cost F for multi-set multi-
cover problem with N elements, there is a polynomial time randomized rounding algo-
rithm that rounds the fractional solution to a feasible integral solution with expected
cost at most 21N + 32F .

The algorithm for assigning the leaf edge-vertices inL(v) is given in Algorithm (2).

Since, each vertexv ∈ A(H1) covers at most|L(v)| − ⌈l(v)⌉ leaf edge-vertices, by
Lemma1 the capacity of all the vertices inH1 are maintained. We now proceed to
analyze the cost.

Algorithm 2 Assigning edges with only one link in H1

1: for each vertexv ∈ A(H1) with |L(v)| ≥ 1 do
2: select the vertexh2(v) that covers at least one edge-vertex fromL(v) and assign the

corresponding edge-vertices toh2(v).
3: end for
4: for each vertexv ∈ A(H1) with l(v) ≤ p2(v) do
5: assign all the remaining edge-vertices (at most|L(v)| − ⌈l(v)⌉) to v

6: end for
7: for each vertexv ∈ A(H1) with l′(v) > 1 do
8: scale up thex∗ variables in

⋃
v∈A(H1)

R(v) by a factor of 1

1− 1
η

and denote it bȳx.

9: end for
10: create theMM instance({(a(v), d(v))}, {S(u)}), and round the fractional solution̄x to

obtain an integral solution.
11: for eachu such thatS(u) is chosen byMM algorithmdo
12: selectu andassign all the leaf-edges incident onu to it.
13: end for
14: for eachv ∈ A(H1) with l′(v) > 1 do
15: assign all the remaining leaf edge-vertices ofL(v) (at most|L(v)| − ⌈l(v)⌉) to it.
16: end for

Theorem 2. There exists a polynomial time algorithm achieving an approximation fac-
tor of 34 for the hard-capacitated vertex cover problem with unit multiplicity on un-
weighted multigraphs.

2.2 Proof of Theorem3

In the multi-set multi-cover problem (MM), we are given a ground set ofN elements
U and a collection of multi-setsS of U , S = {S1, S2, . . . , SM}. Each multi-setS ∈ S
containsM(S, e) copies of elementa ∈ U . Each elementa has a demand ofr(a) and
needs to be coveredr(a) times. The objective is to minimize the number of chosen
sets that satisfy the demands of all the elements. Here we propose a new algorithm that
proves Theorem3.

The following is a linear program relaxation forMM.

min
∑

S∈S

x(S)

∑

a∈S

M(a, S)x(S) ≥ r(a) ∀ a ∈ U

0 ≤ x(S) ≤ 1 ∀S ∈ S

2.3 Rounding Algorithm for MM

Let x∗ denote the LP optimal solution. The rounding algorithm has several steps.

Step 1. Selecting sets with high fractional value.First, we pick all setsS ∈ S
such thatx∗(S) ≥ α > 0, where 1

α
is the desired approximation factor. De-

note the chosen sets byH. Each elementa now has a residual requirement of
r(a) −

∑

a∈S,S∈HM(S, a). Clearly the fractional solutionx∗ projected on the sets
S \ H is a feasible solution for the residual problem. For each elementa ∈ U , let
r̄(a) = r(a)−

∑

a∈S,S∈HM(S, a) be the residual requirement. For someβ > 0 (to be
set later), lety(S) = βx∗(S), for eachS ∈ S \ H. We have for all elementsa ∈ U ,
∑

a∈S,S∈S\HM(S, a)y(S) ≥ βr̄(a).

Note that after this step, we have a fractional solution withcost

|H |+
∑

S∈S\H

y(S) ≤
1

α

∑

S∈H

x∗(S) + β
∑

S∈S\H

x∗(S).

For notational simplicity, we denoteC = S\H. Next, we proceed to round the variables
y(S) for S ∈ C.

Step 2. Rounding into powers of 2.For each multiplicityM(S, a), ∀S ∈ C, a ∈ U ,
we round it to the highest power of2 lesser than or equal toM(S, a) and denote it by
M1(S, a). For each requirement̄r(a), ∀a ∈ U , consider the lowest power of2 greater
than or equal tōr(a) and denote it bȳr1(a). Clearly, if

∑

a∈S,S∈C M(S, a)y(S) ≥

βr̄(a), then
∑

a∈S,S∈C M
1(S, a)4y(S) ≥ βr̄1(a). We denotey1 = 4y.

Step 3. Division into small and big elements.First, for each element if there is a
set that completely satisfies its requirement, we pick the set. We continue the pro-
cess as long as no more element can be covered entirely by a single set. Thus after
this procedure, for all elementsa, and for all setsS, M1(S, a) < r̄1(a) and hence

M1(S, a) ≤ r̄1(a)
2 . Now for each elementa, we divide the sets inC containinga into

big sets (Big(a)) andsmall sets (Small(a)). A setS ∈ C is said to be a big set fora, if
M1(S, a) ≥ 1

18 lnn
r̄1(a), otherwise it is called a small set, i.e.,

Big(a) = {S ∈ C |M1(S, a) ≥
1

18 lnn
r̄1(a)}

Small(a) = {S ∈ C |M1(S, a) <
1

18 lnn
r̄1(a)}

Now, we decompose elements intobig andsmall. An element issmall if it is covered to
an extent of̄r1(a) by the sets inSmall(a). Else, the element is covered at least to an
extent of(β − 1)r̄1(a) by the sets inBig(a) and we call it abig element. This follows
from the inequality

∑

a∈S,S∈C∩Big(a)

M1(S, a)y1(S) +
∑

a∈S,S∈C∩Small(a)

M1(S, a)y1(S) ≥ βr̄1(a).

Therefore, either the sets inSmall(a) covera to an extent of̄r1(a), or the sets in
Big(a) covera to an extent of(β − 1)r̄1(a). Letβ1 = β − 1. In the first case, we refer
a as a small element, otherwise it is a big element.

Step 4. Covering small elements.We employ simple independent randomized round-
ing for covering small elements.We pick each set S ∈ C with probability γy1S , for some
γ ≥ 2.

Lemma 3. All small elements are covered in Step 4 with probability at least
(

1− 1
n1/3

)

.

Step 5. Covering big elements.This is the most crucial ingredient in the algorithm. For
each big element, we consider only the big sets containing it. For each such big element

and big set we have 1
18 lnn

r1a < M1(S, a) ≤
r1a
2 . Since, multiplicities are powers of2,

there are at mostl = ln lnn + 3 different values of multiplicities of the sets for each
elementa.

Let T a
1 , T

a
2 , . . . T

a
l denote the collection of these sets with multiplicities

r̄1(a)
2 ,

r̄1(a)
22 , . . . ,

r̄1(a)
2l respectively. That is,T a

i = {S ∈ Big(a) | M(S, a) = r̄1(a)
2i }.

Setβ1 ≥ 3.

For each i = 1, 2, . . . , l, if
∑

S∈Ta
i
y1(S) > i and the number of sets that have been

picked from T a
i in Step 4 is less than

∑
S∈Ta

i
y1(S)

(β1−2) , pick new sets from T a
i such that the

total number of chosen sets from T a
i is

⌈∑
S∈Ta

i
y1(S)

(β1−2)

⌉

.

We now show that each big element gets covered the required number of times and the
total cost is bounded by a constant factor of the optimal cost.

Lemma 4. Each big element a is covered r(a) times by the chosen sets.

Lemma 5. The expected number of sets selected in Step 4 is at most 21n’, where n′ are
the number of big elements that are not covered after Step 5.

Theorem 3. The algorithm returns a solution with expected cost at most 21N + 32F ,
where F =

∑

S x∗(S), and covers all the elements with probability at least 1− 1
n1/3 .

This completes the description of theO(1) approximation algorithm for hard-
capacitated vertex cover problem on multigraphs with unit multiplicities. We have not

tried to optimize the constants of our approach, but reducing the approximation ratio
to 2 or 3 may require significant new ideas. Theorem3 is also crucially used to obtain
anO(f)-approximation algorithm for the set cover and partial cover problem with ar-
bitrary multiplicities. The results for set cover and partial cover problem appear in the
full version of the paper.

References

1. Judit Bar-Ilan, Guy Kortsarz, and David Peleg. Generalized submodular cover problems and
applications.Theor. Comput. Sci., 250:179–200, January 2001.

2. R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex
cover problem.Annals of Discrete Mathematics, 25:27–45, 1985.

3. Reuven Bar-Yehuda, Guy Flysher, Julián Mestre, and DrorRawitz. Approximation of partial
capacitated vertex cover. InESA, pages 335–346, 2007.

4. Julia Chuzhoy and Joseph (Seffi) Naor. Covering problems with hard capacities.SIAM J.
Comput., 36(2):498–515, 2006.

5. Julia Chuzhoy and Yuval Rabani. Approximating k-median with non-uniform capacities. In
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, SODA
’05, pages 952–958, 2005.

6. Erik D. Demaine and Morteza Zadimoghaddam. Scheduling tominimize power consumption
using submodular functions. InProceedings of the 22nd ACM symposium on Parallelism in
algorithms and architectures, SPAA ’10, pages 21–29, 2010.

7. Rajiv Gandhi, Eran Halperin, Samir Khuller, Guy Kortsarz, and Aravind Srinivasan. An
improved approximation algorithm for vertex cover with hard capacities.J. Comput. Syst.
Sci., 72:16–33, February 2006.

8. Rajiv Gandhi, Samir Khuller, and Aravind Srinivasan. Approximation algorithms for partial
covering problems.J. Algorithms, 53(1):55–84, 2004.

9. Sudipto Guha, Refael Hassin, Samir Khuller, and Einat Or.Capacitated vertex covering.
Journal of Algorithms, 48(1):257 – 270, 2003.

10. Dorit S. Hochbaum. Approximation algorithms for the setcovering and vertex cover prob-
lems.Siam Journal on Computing, 11:555–556, 1982.

11. David S. Johnson. Approximation algorithms for combinatorial problems.J. Comput. Syst.
Sci., 9:256–278, 1974.

12. Samir Khuller, Jian Li, and Barna Saha. Energy efficient scheduling via partial shutdown. In
SODA, pages 1360–1372, 2010.

13. Stavros G. Kolliopoulos. Approximating covering integer programs with multiplicity con-
straints.Discrete Appl. Math., 129:461–473, 2003.

14. Stavros G. Kolliopoulos and Neal E. Young. Tight approximation results for general covering
integer programs. InIEEE Symposium on Foundations of Computer Science, pages 522–528,
2001.

15. László Lovász. On the ratio of optimal integral and fractional covers.Discrete Mathematics,
13(4):383 – 390, 1975.

16. Mohammad Mahdian and Martin Pal. Universal facility location. In in Proc. of European
Symposium of Algorithms 03, pages 409–421, 2003.

17. Julián Mestre. A primal-dual approximation algorithmfor partial vertex cover: Making ed-
ucated guesses. InAPPROX-RANDOM, pages 182–191, 2005.

18. Laurence A. Wolsey. An analysis of the greedy algorithm for the submodular set covering
problem.Combinatorica, 2:385–393, 1982.

	Set Cover Revisited: Hypergraph Cover with Hard Capacities

