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Abstract. In this paper, we consider generalizations of classica¢ioyg prob-
lems to handle hard capacities. In the hard capacitatedoset problem, addi-
tionally each set has a covering capacity which we are notvalll to exceed.
In other words, after picking a set, we may cover at most aipeéaumber of
elements. Based on the classical results by Wolsey)@og n) approximation
follows for this problem.

Chuzhoy and Naor [FOCS 2002], first studied the special casmweighted
vertex cover with hard capacities and developed an elegappBximation for
it based on rounding a natural LP relaxation. This was sulesgty improved to
a 2 approximation by Gandhi et al. [ICALP 2003]. These resaite surprising in
light of the fact that for weighted vertex cover with hard aeipies, the problem is
at least as hard as set cover to approximate. Hence thisasepéne unweighted
problem from the weighted version.

The set cover hardness precludes the possibility of a coinfstetor approxima-
tion for the hard-capacitated vertex cover problem on weiglgraphs. However,
it was not known whether a better than logarithmic approxiomais possible
on unweightednultigraphs, i.e., graphs that may contain parallel edges. Neither
the approach of Chuzhoy and Naor, nor the follow-up work ofia et al. can
handle the case of multigraphs. In fact, achieving a condgator approxima-
tion for hard-capacitated vertex cover problem on unweidhhultigraphs was
posed as an open question in Chuzhoy and Naor’s work. In #ispwe resolve
this question by providing the first constant factor apprmadion algorithm for
the vertex cover problem with hard capacities on unweightatligraphs. Previ-
ous works cannot handle hypergraphs which is analogousnsider set systems
where elements belong to at mgssets. In this paper, we give @ f) approx-
imation algorithm for this problem. Further, we extend thesrks to consider
partial covers.

1 Introduction

Covering problems have been widely studied in computensei@nd operations re-
search, starting from the early work on set-cover, [L5, 18]. In addition, the vertex
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cover problem has been extremely well studied as well — this $pecial case of set
cover, where each element belongs to exactly two sets(]. Both these problems

have played a central role in the development of many impoitieas in algorithms

— greedy algorithms, LP rounding, randomized algorithminal-dual methods, and

have been the vehicle to convey many central ideas in conariaboptimization.

In this paper, we consider covering problems with hard ciéypaonstraints. In other
words, if a set is chosen, it cannot cover all its elements,tbere is an upper
bound on the number of elements that the set can cover. Maoneafty, consider
a ground set of elements = {ay,as,...,a,} and a collection of subsets &f,
S = {51,5,,...,5x»}. Each setS € S has a positive integral capacity(S) € N
and has an upper bound (denotedbS)) on the number of copies. In addition, each
set can have arbitrary non-negative weightS — R™. A solution for capacitated cov-
ering problem contains each set S, z(5) times wherez(S) = {0,1,2,...,m(S)}
such that there is an assignment of at mdst)%(.S) elements to sef and all the ele-
ments are covered by the assignment. The goal is to minipjzeg @(S)z(S). Using
Wolsey’s greedy algorithmifs], we can easily derive @(log n) approximation for the
capacitated set cover problem with hard capacities.

Approximation algorithms for vertex cover with (soft) cajiges were developed by
Guha et al9]. In the soft capacitated covering problem there is no bamithe number

of copies of each set (vertex) that can be chosen9]ing primal dual algorithm was
developed to give a 2 approximation. This algorithm can hereded easily to handle
vertex cover with (soft) capacities in hypergraphs. In otherds, if we have a hyper
graph with hyper edges of size at mggfset cover problem where each element belongs
to at mostf sets), then we can easily get Aapproximation §]. On the other hand, the
case of hard capacities is quite difficult. In a surprisinguie Chuzhoy and Naor]
showed that the weighted vertex cover problem with hard @éipa is set-cover hard
and showed that founweighted graphs a randomized rounding algorithm can give a
3 approximation. This was subsequently improved to a 2 aqmation [/]. Vertex
cover is a special case of set cover problem where 2. This naturally raises the
question whether it is possible to obtain Arapproximation for the unweighted set
cover problem with hard capacities, where each elemenhbslto at mosy sets. The
approaches of4, 7] do not extend to case wheh> 2. Moreover, the results of![ 7]
only hold forsimple graphs. Obtaining a constant factor approximation algorithm for

the hard-capacitated vertex cover problem for unweighted multigraphs was posed as

an open question in [4]. In this paper, we resolve that question, and extending our
approach we also obtain an O( f')-approximation for the unweighted set cover problem
with hard capacities. Further, we also provide af?(f) approximation algorithm for
partial cover problem with hard capacities. Partial cogea hatural generalization of
covering problems where only a desired number of elemerdd teebe covered].
While the works of B, 17] extended the vertex cover with soft capacities to consider
partial cover, nothing prior to our work was known in the cabard capacities.

The notion of capacities is also natural in the context oflifgdocation problems, as
well as clustering problems and has been widely studieda€tgied facility location
and k-median problems have been an active area of reséatchd and frequently ap-



pear in applications involving placement of warehouse$, eahes and as a subroutine
in several network design protocols. Non-metric capamitdihcility location problem
is a generalization of hard-capacitated set cover probtamawhich Bar-llan et al. J]
gave arO(log n + log m)-approximation. In this problem, there arefacilities andn
clients; there is a cost associated for opening each faaifitl each client connects to
one of the open facility paying a connection cost while thenhar of clients that can
be assigned to an open facility remains bounded by its cgp#&¢hen, the connection
costs are eithdi or co, we get the set cover problem with hard capacities.

In several set cover applications, an element only belomgsfew sets. This is espe-
cially true in the context of scheduling. One such examphkdéswork of Khuller, Li

and SahaT”] where they study a scheduling algorithm to allocate jobsiézhines in
data centers such that the minimum number of machines &avatact The goal is to
minimize the energy to run machines while maintaining thé&e@span (maximum sum

of processing times on any machine). In data centers, eaehisleeplicated amall
number of times (typically copies). Thus a job needed to access specific data can be
run on one of a small number of machines.14][ a (In n+ 1) approximation algorithm

is provided that violates the makespan by a facto?.dflowever, it does not consider
the fact that each job can be scheduled onlyfdheref ~ 3) machines. Incorporating
this, and in addition, considering that jobs have some fixedgssing time, we obtain
the hard-capacitated set cover problem with elements balgrio at mostf sets. The
scheduling model off]] can also be seen as a hard-capacitated set covering iastanc
with multiple capacity constraints.

Our algorithms for the hard-capacitated versions of bottexecover and set cover are
based on rounding linear programmind?] relaxations. In the following subsection,
we outline the main reasons why the previous approachearfdiprovide a sketch of
our algorithms.

1.1 Our Approach and Contributions

The works of [}, 7] cannot handle the hard-capacitated vertex cover problemulti-
graphs, neither do their approaches extend to hypergrayses systems with elements
belonging to at mosf sets. The algorithms in both of these works are basetiFon
rounding and involve three major steps. First, they pickaitices with fractional val-
ues above a desired threshold. Next, a randomized rounipgssperformed to choose
some additional vertices. If even after step two, there dgee with unsatisfied frac-
tional coverage, an alteration step is performed, in whietiiees are chosen as long
as all the edges are not fractionally fully covered maintajrihe capacity constraints.
Finally, the fractional edge assignment variables are dedrthrough a flow computa-
tion. While, the expected cost of selecting vertices in th& fivo steps can be easily
bounded within a small factor of the optima? cost, the main crux of the argument re-
lies in showing that with high probability the alterationst@an also be charged within
a small factor of the costincurred in the first two steps. Wihergraph does not contain
any parallel edge, the random variables required to progk austatement are all in-
dependent and thus strong concentration inequalities e@miployed for the analysis.



However, the presence of parallel edges (or having hypghg)amake these random
variablespositively correlated. This hinders the application of required concentration
inequalities and the analysis breaks down.

We utilize thelP-structure to decompose the problem into two simpler ireanin-
stead of consolidating the variables corresponding to (setdices), we modify the
variables associated with assignment of elements (ednysesjs (vertices). Viewing the
LP solution as a bipartite graph between elements and setgyaipd is decomposed
into a forest {;) and an additional subgraph/{) such that elements entirely covered
by either one of these can be rounded without much loss ingheoaimation. There
may be elements that are partially covered (fractionallyséts in bothH; and H-.
We further modify the remaining fractional solution to retthe capacitated covering
problem on these unsatisfied elements as a multiset mutti¢mM) problemwithout
any capacity constraints.

We show that the partially rounded solution is feasible foe hatural linear pro-
gramming relaxation foMM. However the naturdlP relaxation forMM has an un-
bounded integrality gap. Using a strondd? relaxation, it is possible to giviyg n-
approximation algorithm foMM [14], but our fractional solution may not be feasible
for such stronger relaxations. Moreovetpg n approximation foMM is not sufficient
for our purpose. Instead, we show that it is possible to ah#rg cost of the obtained
solution to a constant factor &P cost forMM and the number of elements in the set
system, and this suffices to ensure a constant approxim&ienalgorithm forMM
follows the paradigm of grouping and scaling useddaumn restricted (each set has
same multiplicity for all elements) packing and coveringlgems [L.3]. However, our
set system is not column restricted. We still can group teenehts intesmall andbig
based on the extent of coverage these elements get from #letselatively lower or
higher multiplicities compared to their demands. By saatime fractional variables and
doing randomized rounding, we can satisfy the requiremehtsnall elements, but
big elements may still have residual demands left. Satigfyhe requirements of big
elements need a further step of careful rounding. Deta@lslascribed in Sectioh.2

Our main contributions are as follows.

— We obtain arO(1) approximation algorithm for the vertex cover problem wigrdh
capacities on unweighted multigraphs for the unit multipyi case, i.e., when all
m(v) = 1.

— We show arO( f)-approximation algorithm for the unweighted set cover feob
with hard capacities where each element belongs to at fnests.

As a corollary, we obtain a®(1) approximation for the hard-capacitated vertex
cover problem on unweighted multigraphs for arbitrary fiplittities.

— We consider partial covering problem with hard capacités.giveO(1) approx-
imation for partial vertex cover with hard capacities angf) approximation for
partial set cover problem with hard capacities.

In the following section, we describe a constant factor agipnation algorithm for the
hard-capacitated vertex cover problem on multigraphs witih multiplicity (m(v) =



1, Vo € V(G)). The algorithm and the analysis contain the main techmgakdients
which are later used to obtafn( /) approximation algorithms for the set cover and par-
tial cover problems with hard capacities and arbitrary iplitiities. For lack of space,
the latter two results appear in the full version of the paper

2 \ertex Cover on Multigraphs with Hard Capacities

We start with the following linear programming relaxatiar hard-capacitated vertex
cover with unit multiplicities.

minimize >~ x(v) (LPvc)
veV

subject to
y(67u)+y(67v) =1 Ve = (uw) €L, (1)
y(e,v) < z(v), yle,u) < z(u) Ve = (u,v) € B, ()

Z y(e,v) < k(v)z(v) Yo eV, 3)

e=(u,v)
0 <z(v),yle,v),yle;u) <1 VoveV,Ve=(u,v) € E. 4)

Herex(v) is an indicator variable, which isif vertexwv is chosen and otherwise. Vari-
ablesy(e,u) andy(e, v) are associated with edge= (u,v). y(e,u) = 1 (y(e,v) =1

) indicates edge is assigned to vertex ( v ). Constraints1) ensure each edge is cov-
ered by at least one of its end-vertices. Constrai)tgrfply an edge cannot be covered
by a vertexv, if v is not chosen in the solution. The total number of edges eavly

a vertexv is at mostk(v) if v is chosen an@ otherwise (constraints). We relax the
variablesr(v), y(e, v) to take value if0, 1] in order to obtain the desirddP-relaxation.
The optimal solution of Py denoted byLPyc(OPT) clearly is a lower bound on the
actual optimal cosDPT.

2.1 Rounding Algorithm

Let (z*,y*) denote an optimal fractional solution bPyc. We create a bipartite graph
H = (A,B,E(H)), whereA represents the vertices Gf B represents thedges of G 3
and the linksE(H) correspond to thée, v) variablese € B,v € A with non-zeroy*
value?. Eachv € A(H) is assigned a weight af*(v). Each link(e, v) is assigned a
weight ofy* (e, v). We now modify the link weights in a suitable manner to decosgp
the link sets ofH into two graphdH; andHs. Special structures dfi; and H, make
rounding relatively simpler on them.

— H; isaforest. For each node € A(H;) and link(e,v) € E(H1), y*(e,v) < z*(v).

3 We often refer a vertex iB(H) by edge-vertex to indicate it belongsE¢G).
4in order to avoid confusion between edgesGofvith edges ofH, we refer to edges off by
links



— InHy, if (e,v) € E(H2), then weight of link (e, v) isequal to the weight of v. Thus,
for each node € A(Hs) and link (e, v) € E(Hz), y*(e,v) = x*(v).
A moment’s reflection shows the usefulness of such a propessentially, irH,,
we can ignore the hard capacity constraints altogether.

The decomposition procedure is based on iteratively bngagycles. We now explain
the rounding algorithms on each &f; and Hs.

Rounding on Hs.

We discard all isolated vertices froiy. Letr > 2 be the desired approximation factor.
We select all vertices it\(Hy) with value ofz* at Ieast%. Let us denote the chosen
vertices byD. Then,

D={v|veA(Hy),z"(v) > -}.

I =

For every edge-vertex= (u,v) € B(Hz), if v (orw) isin D, and(e,v) € E(Hz) (or
(e,u) € E(Hz)), then we sey*(e,v) = 1 (ory*(e,u) = 1). Thatis, we assiga to v,
if the link (e, v) isin E(Hz) andv is in D, else ifu € D and(e,u) € E(H2), the edge:
is assigned ta.

Observation 1 From constraints (3), >_._(, ., ¥(e,v) < x(v)k(v). Therefore,
D e (uw) ue:) < k(y), and hence in Hy, after the assignment of edges to vertices

z(v)

in D, all vertices maintain their capacity.

In fact, in Ho, capacity constraints become irrelevaihenever, we decide to pick a
vertexin A(Hz), we can immediately cover all thelinksin E(H-) incident on it.

All edges with both links irE(H2) get covered at this stage. In additiongiE B(H2)
has only one linke,v) € E(Hs), butz*(v) = y*(e,v) > % then sincey € D, e gets
covered. Therefore, the uncovered edges after this stegrdiave no link ire(Hz) or
are fractionally covered to an extent less tlj;aim Hs.

Rounding onHj.

H; is a forest; edge-vertices id; either have both or one link i&(H;). While the
vertices ofH; andH, may overlap, the link sets are disjoint. Edge-verticeB(hl;)
with only one link inH; are calleddangling edges. We rooH; arbitrarily to some
node ofA(H;). This naturally defines a parent-child relationship. Feg(itra) depicts
the structure of;. Dangling edges are shown by dashed lines.

Rounding edges with both linksin Hy.

Algorithm (1) describes the procedure to assign edge-vertices thatdwikidinks in
E(H1).

We first select a collection @’ vertices fromA(H;) \ D with =* value at Ieas%. Any
edge-vertex iB(H; ) that has a child vertex chosenTM gets assigned to its child. For
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Nodes in H, that have not been selected in D

[
' . . Fig 1b. Structure of H, after the edges with two

Fig 1a. Structure of H;, dangling edges are colored black and end points in H; have been assigned.
connected by dashed lines, edges with both end-points in H;
are colored white and connected by solid lines.

Algorithm 1 Assigning edges with two links in Hy

1 letD' = {v e A(Hy) | 2" (v) > %}, select all the vertices ifD’.
. for each edge-vertex with two links inH; do

2

3 if the child vertex ot is selected irD’ then

4: assign e to the selected child vertex.

5.  endif

6: end for

7: let T(v) denote the set of unassigned children edge-vertices imcitev € A(Hq) with
both links inH; .

8: selectanyt(v) = [>°,_(, ., eT(w) ¥ (e, u)] vertices from the children of the edge-vertices
in T(v), andassign the corresponding(v) edge-vertices i (v) to these selected children
vertices. Ifv’ is a newly selected vertex in this step and there are edgesabalinks incident
onv" in E(H2), then assign those edgesitaas well.

9: assign the remaining edge-vertices frof{v) to v.

each vertex € A(H;), we useT (v) to denote the set of children edge-vertices that are
not assigned in stepl). We select(v) = [>°,_(, , et ¥"(e,u)] vertices from the
children of the edge-vertices ifi(v). We assign the corresponding@) edge-vertices

in T(v) to these newly selected children vertices. Rest of the édge@ ) are assigned
tov.

Rounding dangling edges, i.e., with onelinkin H;.

After Algorithm 1 finishes, let (v) denote the set of unassigned dangling edge-vertices
connected te, and letl(v) = >-._, ) ceL(v) ¥ (€ u). L(v) are the leaf edge-vertices

of H,. We first prove a lemma that shows after the edge-assignmégorithm 1, we

still can safely assign at leait(v)| — [I(v)] edges from_(v) to v without violating

its capacity. We show the residual capacityaffter assigning edges frofi(H,) is at
least as high as + | T(v)| — [t(v)] + |L(v)| — [I(v)]. The number of edges assigned
to v from Algorithm 1 is at mostl + | T(v)| — [¢(v)] and hence the following lemma is
established.

Lemma 1. Each vertexv € A(H;) canbeassigned |L(v)| — [I(v)] |eaf edges-vertices
without violating its capacity.



The edge-vertices ib(v) are leaves of{;, they are connected toand have their other
link in E(Hz). We first pickone vertex from A(H3) such that it covers at least one edge
from L(v). Let us denote this vertex by2(v) and let it covep2(v) > 1 parallel edges
(v, h2(v)). If I(v) < p2(v), then following Lemmal, the rest of the edge-vertices of
L(v) can be assigned tg and we do so.

If I(v) > p2(v). Let R(v) denote the vertices cA(Hs) \ h2(v) that are end-points
of edges inL(v). If we pick enough vertices frorR(v) such that they cover at least
U'(v) = l(v) — p2(v) + 1 leaf-edges, then again from Lemrarest of the edges from
L(v) can be assigned ta

We scale up all the* variables oflJ,ca,) R(v) by a factor of —L+. We also scale

up the corresponding* link variables by a factor 0&. Let (z, y) denote the scaled

>

. _p2(v)
up variables. ThenY. .—(, e  #(e,u) = (l(”)’m(ﬁ)z (h2)) > (l(”()kﬁ )
L(v)\(v,h2(v)) 7 K
I(v) = p2(v) + 1 = I'(v), where the last inequality follows from the fact thiéat) >
p2(v) > 1. We letl’(v) = 0, if I(v) < p2(v). We now have the following multi-set
multi-cover problem{IM).

For each v € A(H;) with I’(v) > 0, we create an element a(v). For each vertex
u € Uyea,) R(v), we create a multi-set S(u). If there are d(v, u) leaf edge-vertices
inL(v)\ (v, h2(v)) incident upon «, thenwe include a(v) in S(u), d(v, u) times. Each
element a(v) hasarequirement of r(a(v)) = [I'(v)]. Thegoal isto pick minimumnum-
ber of sets such that each element a(v) is covered |I’(v) | times counting multiplicities.

Note that, since the original graph is a multigragfu, ) can be greater than

Lemma 2. Ifweset 2(S(u)) = zu, Yu € U, e, R(v), thenz isafeasiblefractional
solution for the above stated multi-set multi-cover problem.

As described in Sectiofi.1, existing approaches are not sufficient to obtain an inte-
gral solution for the abov&IM problem that will ensure a constant approximation.
We instead, obtain an algorithm where the total number of patked is close to
s+ ZuengA(Hl) R(v) Tu, Wheres is the number of vertices iA(H1) with I'(v) > 0. In

Section2.2, we prove the following theorem.

Theorem 3. Given any feasible fractional solution z with cost F' for multi-set multi-
cover problemwith NV elements, thereis a polynomial time randomized rounding algo-
rithm that rounds the fractional solution to a feasible integral solution with expected
cost at most 21N + 32F.

The algorithm for assigning the leaf edge-verticek(in) is given in Algorithm @).

Since, each vertex € A(H;) covers at mostL(v)| — [i(v)] leaf edge-vertices, by
Lemmal the capacity of all the vertices iH; are maintained. We now proceed to
analyze the cost.



Algorithm 2 Assigning edges with only one link in Hy

: for eachvertexv € A(H:) with |L(v)| > 1 do
select the vertexh2(v) that covers at least one edge-vertex fro(w) and assign the
corresponding edge-verticesi@(v).

end for

. for eachvertexv € A(H:) with I(v) < p2(v) do
assign all the remaining edge-vertices (at mdstv)| — [I(v)]) tov

end for

for eachvertexv € A(Hy) with I’(v) > 1 do

scale up thex™ variables inJ, ¢, R(v) by a factor of =+ and denote it by.
n

N -

© NGO R ®

: end for

: create the MM instance({(a(v), d(v))},{S(w)}), and round the fractional solutick to
obtain an integral solution.

11: for eachw such thatS(u) is chosen byMM algorithmdo

12:  selectu, andassign all the leaf-edges incident anto it.

13: end for

14: for eachv € A(Hy) with I'(v) > 1 do

15:  assign all the remaining leaf edge-verticeslofv) (at most|L(v)| — [I(v)]) to it.

16: end for

[EnY
o

Theorem 2. Thereexists a polynomial time algorithmachieving an approximation fac-
tor of 34 for the hard-capacitated vertex cover problem with unit multiplicity on un-
weighted multigraphs.

2.2 Proof of Theorem3

In the multi-set multi-cover problemMM), we are given a ground set &f elements

U and a collection of multi-setS of U, S = {51, S, ..., Su}. Each multi-sefS € S
containsM (S, e) copies of element € U. Each element has a demand of(a) and
needs to be covereda) times. The objective is to minimize the number of chosen
sets that satisfy the demands of all the elements. Here wmpeoa new algorithm that
proves Theorers.

The following is a linear program relaxation fotM.



2.3 Rounding Algorithm for MM

Letx* denote the LP optimal solution. The rounding algorithm &gl steps.

Step 1. Selecting sets with high fractional valueFirst, we pick all setsS € S
such thatz*(S) > a > 0, where X is the desired approximation factor. De-
note the chosen sets bj. Each elementz now has a residual requirement of
r(a) = X aes.5en M(S,a). Clearly the fractional solution™ projected on the sets
S\ H is a feasible solution for the residual problem. For eacimelga € U, let
7(a) = r(a) = ,cs5.5e2 M (S, a) be the residual requirement. For some- 0 (to be
set later), lety(S) = fz*(5), for eachS € S\ H. We have for all elements € U,

ZaGS,SGS\H M(S,a)y(S) = Br(a).
Note that after this step, we have a fractional solution wikt

HI+ Y ys) <SS+ Y a(S)

SeS\H SeH SeS\H

For notational simplicity, we denote= S\ . Next, we proceed to round the variables
y(S) for S € C.

Step 2. Rounding into powers of 2For each multiplicityM (S, a), VS € C,a € U,
we round it to the highest power @flesser than or equal t/ (S, a) and denote it by
M?*(S, a). For each requirementa), Va € U, consider the lowest power afgreater
than or equal to*(a) and denote it by (a). Clearly, if Y acs.sec M(S,a)y(S) >
Br(a), thend g gce M'(S,a)dy(S) > B! (a). We denotey' = 4y.

Step 3. Division into small and big elementsFirst, for each element if there is a
set that completely satisfies its requirement, we pick the\dfe continue the pro-
cess as long as no more element can be covered entirely bygla sigt. Thus after
this procedure, for all elements and for all setsS, M'(S,a) < 7'(a) and hence

M1(S,a) < # Now for each element, we divide the sets i@ containinga into
big sets Big(a)) andsmall sets Emali(a)). A setS € C is said to be a big set far, if
M*(S,a) > —=+—71(a), otherwise it is called a small set, i.e.,

18Inn
. _ 1 > =1
Big(a) ={SeC|M*(S,a) > S (a)}
_ 1 L
Small(a) = {S € C |M"(8,a) < 75—7"(a)}

Now, we decompose elements itttigg andsmall. An element ismall if it is covered to

an extent of! (a) by the sets inSmall(a). Else, the element is covered at least to an
extent of(3 — 1)7!(a) by the sets iMBig(a) and we call it abig element. This follows
from the inequality



> MY(S,a)y'(S)  + > M'(S,a)y' (S) = 7' (a).

a€S,SeCNBig(a) a€S,SeCnSmall(a)

Therefore, either the sets ifimall(a) covera to an extent ofi!(a), or the sets in
Big(a) covera to an extent of 3 — 1)7!(a). Let 3; = 3 — 1. In the first case, we refer
a as a small element, otherwise it is a big element.

Step 4. Covering small elementsie employ simple independent randomized round-
ing for covering small element8\ pick each set S € C with probability vy, for some
v =2

Lemma 3. All small elements are covered in Step 4 with probability at least
(1= 5m)-

Step 5. Covering big elementsThis is the most crucial ingredient in the algorithm. For

each big element, we consider only the big sets containifi@iteach such big element
1

and big set we havggllmr}l < M%(S, a) < Z#. Since, m_ult_ip_li_cities are powers af

there are at most= Inlnn + 3 different values of multiplicities of the sets for each

element.

Let T7,Ty,...T¢ denote the collection of these sets with multiplicities
flé“), f;(za),...7F]2(L“) respectively. ThatisT* = {S € Big(a) | M(S,a) = Flz(f)}.
Setﬂl > 3.

Foreachi = 1,2,...,1,if ZseTg y'(S) > i and the number of sets that have been

ay' (S
% pick new sets from T} such that the

picked from T in Step 4 isless than

total number of chosen sets from 7} is { B2

We now show that each big element gets covered the requirabenof times and the
total cost is bounded by a constant factor of the optimal. cost

Lemma 4. Each big element « is covered r(a) times by the chosen sets.

Lemma 5. The expected number of sets selected in Sep 4 isat most 21n’, wheren’ are
the number of big elements that are not covered after Sep 5.

Theorem 3. The algorithm returns a solution with expected cost at most 21N + 32F,
where F' = " ¢ 2*(S), and covers all the elements with probability at least 1 — —.

This completes the description of th@(1) approximation algorithm for hard-
capacitated vertex cover problem on multigraphs with unittiplicities. We have not



tried to optimize the constants of our approach, but redytlie approximation ratio
to 2 or 3 may require significant new ideas. Theor8ris also crucially used to obtain
anO( f)-approximation algorithm for the set cover and partial cgu@blem with ar-
bitrary multiplicities. The results for set cover and palrtiover problem appear in the
full version of the paper.
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