
The Load-Distance Balancing Problem

Edward Bortnikov∗ Samir Khuller⋆ Yishay Mansour† ‡ Joseph (Seffi) Naor⋄

∗Yahoo! Research, Matam Park, Haifa 31905 (Israel)

⋆Department of Computer Science, University of Maryland, College Park, MD 20742 (USA)

†School of Computer Science, Tel-Aviv University, Tel-Aviv (Israel)
‡Google Research, New York, NY 10011 (USA)

⋄Computer Science Department, Technion, Haifa 32000 (Israel)

Abstract

Problems dealing with assignment of clients to servers have been widely studied. However, they
usually do not model the fact that the delay incurred by a client is a function of both the distance
to the assigned server and the load on this server, under a given assignment. We study a problem
referred to as the Load-Distance Balancing problem (or LDB), where the objective is assigning a set of
clients to a set of given servers. Each client suffers a delay that is the sum of the distance to its server
and the congestion delay at this server, a non-decreasing function of the number of clients assigned
to the server.

We address two flavors of LDB – the first one seeking to minimize the maximum incurred delay,
and the second one targeted for minimizing the average delay. For the first variation, we present
hardness results, a best possible approximation algorithm, and an optimal algorithm for a special
case of linear placement of clients and servers. For the second one, an optimal polynomial-time
algorithm is presented.

Keywords: Approximation Algorithms, Facility Assignment

1 Introduction

The ever-increasing demand for large-scale real-time services to geographically dispersed user populations
motivates access providers to deploy advanced services close to the network’s edge. Consider, for example,
wireless mesh networking (WMN) technologies, which are poised to be a next-generation platform for
high-speed Internet access in urban and rural areas [1]. A WMN infrastructure consists of numerous
wireless routers, which jointly forward the user traffic to (and from) a limited set of landline gateways.
Today, these gateways mainly provide bandwidth sharing of their high-speed access links to the WMN
users. Tomorrow, they can be envisioned as a platform for rolling out application-level services with
stringent quality-of-service (QoS) requirements. For example, we foresee WMN gateways playing the role
of VoIP traffic gateways, media content delivery caches, and even online game servers [4].

In a multi-server setting, service assignment problems naturally arise. In this context, each client
session must be assigned to an application-level server. Assignment problems have been widely studied
in operations research and computer science, and classical problems model the cost of assigning clients
to servers as a sum of fixed client-server distances and server (facility) costs. In this context, the servers
might or might not have capacities. We identify a need for a more realistic model for describing the end-

user QoS, e.g., service delay. We model the service delay of a client session as a sum of a network delay,

1

incurred by the network connecting the user to its server, and a congestion delay, caused by queueing and
processing at the assigned server. The delay experienced by each end user is the sum of two quantities:
the distance to the assigned server, and the delay incurred at the server. The load-distance balancing

problem, or LDB, seeks to balance between these two factors, in order to minimize the service delay among
all clients. It has two flavors: (1) maximum delay minimization and (2) average delay minimization.

Summary of Results: We demonstrate that the min-max LDB problem is NP-hard and present an
approximation algorithm with a factor of 2. We also show that the problem is non-approximable with a
factor better than 2 for general distance and load functions assuming P 6= NP . In addition, we are able
to show that for metric spaces (where triangle inequality is satisfied by the distance function) we cannot
obtain an approximation factor better than 5

3 unless P = NP . For the special case when the users and
the servers are located on a line segment with Euclidean network distances, we present a polynomial time
dynamic programming algorithm for this problem. In the sequel, we present a polynomial algorithm for
min-average LDB, which applies for convex load functions, and a dynamic-programming solution for the
linear setting which has an improved time complexity.

Related Work: The min-max LDB problem has been introduced in [3]. That work concentrated on
solving the problem in a distributed setting, in which the servers jointly compute the assignment with
partial local data. The protocol of [3] can use any sequential algorithm as a building block. In particular,
it can use BFlow, the best possible approximation algorithm. Our paper studies the LDB problem in a
broader context, and presents new problem variations, algorithms, and hardness results.

Related min-max problems dealing with capacities and facility location were studied before [2, 5, 6].
For example, the capacitated K-center problem [2, 5] asks for K locations to be designated as centers, so
as to minimize the maximum distance of a node from its assigned center. In the basic K-center problem,
there are no capacities and a center can be assigned an arbitrary number of clients. In the capacitated
version each center has a (uniform) load capacity of L, and thus each center can have at most L clients
assigned to it. In a sense, this guarantees a bound on the delay of any client, since each is within a
distance O(d∗) of its assigned center (d∗ is the optimal radius) and cannot suffer a long service time at
the assigned center due to the load being at most L. In [5], a 5-approximation on the distance measure
was presented for the capacitated K-center problem (improving on a previous bound of 10 [2]) and in
addition a (2

c
K, cL, 2R) solution was presented where c = 1 + ǫ for any 0 < ǫ < 1. This is a solution that

uses more than K centers, and allows higher than L load, yet provides a better approximation guarantee.

2 Problem Definition

Consider a set of servers S = {s1, . . . , sk} and a set of clients U = {u1, . . . , un}, so that k ≪ n. The
network delay function D : (U × S) → R

+ captures the network distance between a client and a server.
This function is not necessarily subject to the triangle inequality.

Consider an assignment λ : U → S that maps every client to a server. We assume that each client u

assigned to server s adds a unit of load on s. We denote the load on s as L(λ, s) , |{u : λ(u) = s}|. We
shorten this to L(s) when the assignment function is clear from the context. A monotonic non-decreasing
congestion delay function, δs : N → R

+, captures the delay incurred by server s as a function of the
number of assigned clients. Different servers can have different congestion delay functions. The service
delay ∆(u, λ) of session u in assignment λ is the sum of the two delays:

∆(u, λ) , D(u, λ(u)) + δλ(u)(L(λ, λ(u))).

The maximum (resp., average) cost of an assignment λ is the maximum (resp., average) delay it incurs
for a client: ∆M (λ(U)) , maxu∈U ∆(u, λ), and ∆A(λ(U)) , 1

n

∑
u∈U ∆(u, λ).

The min-max (resp., min-average) load-distance balancing assignment problem (or LDB in short) is to
find an assignment λ∗ such that ∆M (λ∗(U)) (resp., ∆A(λ∗(U))) is minimized. An assignment that yields
the minimum cost is called optimal.

2

3 Min-Max Load-Distance Balancing

3.1 NP-Hardness

We prove that the decision version of min-max LDB problem is NP-hard (referred to as LDB−D). We
consider the problem of deciding whether delay ∆∗ is feasible, i.e., ∆M (λ(U)) ≤ ∆∗. In what follows, we
show a reduction from the classical exact set cover (XSC) problem. An instance of XSC is a collection S

of subsets over a finite set U . A solution S′ ⊆ S is a cover for U , i.e., every element in U belongs to at
least one member of S′. The decision problem is whether there is a cover such that each element belongs
to precisely one set in the cover.

Theorem 1 The Min-Max LDB problem is NP-hard.

Proof : Consider an instance of XSC in which |U | = n, |S| = k, and each set contains exactly m elements.
The problem is therefore whether there is a cover containing n

m
sets.

The transformation of this instance to an instance of LDB−D is as follows. In addition to the elements
in U , we define a set U ′ of M(k − n

m
) dummy elements, where M > m. We construct a bipartite graph,

in which the left side contains the elements in U
⋃

U ′ (the clients), and the right side contains the sets in
S (the servers). The dummy clients are at distance d1 from each server. The real clients (elements) are
at distance d2 > d1 from each server (set) that covers them, and at distance ∞ from all the other servers.
The capacity of each server for distance d1 is M , and for distance d2 is m, i.e., δ−1

s (∆∗ − d1) = M , and
δ−1
s (∆∗ − d2) = m. In other words, the delay at a server for load at most m is ∆∗ − d2 and for load at

most M is ∆∗ − d1. It is easy to see that under a feasible assignment, no client’s delay exceeds ∆∗.
Each server can cover either M dummy clients, or any combination of 0 < m′ ≤ m original clients

and m−m′ dummy clients. If both real and dummy clients are assigned to at least one server, the total
number of servers that have real clients assigned to them is k′ > n

m
. All these servers have capacity

m, and hence, they serve at most mk′ − n dummy clients. The remaining servers can host M(k − k′)
dummy clients. Hence, the total number of assigned dummy clients is bounded by M(k−k′)+mk′−n =
M(k− n

m
)−M(k′− n

m
)+ m(k′− n

m
) < M(k− n

m
), that is, the assignment is not feasible. Hence, exactly

n
m

servers must be allocated to real clients, thus solving the XSC instance. 2

Hardness of Approximation: We simply specify some of the parameters in the above reduction to
obtain the hardness results. In particular, we show that if there is a solution to the exact cover problem,
then there is a solution for the load-balance problem with cost ∆∗. If there is no solution to the exact
cover problem, then all solutions for LDB have a high cost of (2(∆∗ − ǫ), or 5

3∆∗ in metric spaces).
Consider d1 = ε and d2 = ∆∗ − ε. If an element is not a member of a set, the distance to that server

is very high. If there is no solution for exact cover, then any collection of n
m

sets will leave some element
uncovered. The corresponding client will have to be assigned to a server that is also serving M−1 dummy
clients. The delay experienced by this client is thus d2 + (∆∗ − d1). This could be as high as 2(∆∗ − ε).
Note, however, that this distance function does not satisfy triangle inequality.

The choice of d1 = ∆∗

3 and d2 = ∆∗ preserves the triangle inequality. The distance of a client in C′

to a server is either ∆∗ or 5
3∆∗. If there is no solution to exact set cover, then the best assignment can

have delay no lower than 5
3∆∗.

3.2 A 2-Approximation Algorithm

We now present an algorithm, called BFlow, which computes a 2-approximate solution for min-max LDB.
Algorithm BFlow works in phases; in each phase it guesses ∆∗ = ∆M (λ∗(U)), and checks the feasibility
of a specific assignment in which neither the network nor the congestion delay exceeds ∆∗, and hence its
cost is bounded by 2∆∗. BFlow performs a binary search on the value of ∆∗. A single phase is as follows:

1. Each client u marks all servers s that are at distance D(u, s) ≤ ∆∗. These are its feasible servers.

2. Each server s announces how many clients it can serve by computing the inverse of δ−1
s (∆∗).

3

3. Define a bipartite client-server graph where an edge specifies that a server is feasible for the client.
We need to determine if there is a matching in which the degree of each client is exactly one, and
the degree of server s is at most δ−1

s (∆∗). A feasible solution can be found via any flow algorithm.

Theorem 2 BFlow computes a 2-approximation of an optimal assignment for min-max LDB.

Proof : Consider an optimal assignment λ∗ with cost ∆∗. It holds that ∆1 = maxu D(u, λ∗(u)) ≤ ∆∗,
and ∆2 = maxs δs(L(s)) ≤ ∆∗. A phase of BFlow that tests an estimate ∆ = max(∆1, ∆2) is guaranteed
to find a feasible solution with cost ∆′ ≤ ∆1 + ∆2 ≤ 2∆∗. 2

Since there are at most kn distinct D values, the number of binary search phases is logarithmic in n.
The number of phases needed for covering all possible capacity values of server s is O(log δs(n)), which
is O(n) for any reasonable δs.

3.3 Optimal Assignment on a Line with Euclidean Distances

In this section, we consider the case when the users and the servers are located on a line segment [0, L],
and the network delays are Euclidean distances. We show that min-max LDB is polynomially solvable in
this model through dynamic programming.

We start with some definitions. For simplicity of presentation, we assume that every user or server
i has a distinct location xi. The distance between user u and server s is therefore D(u, s) = |xs − xu|.
Assignment λ is called order-preserving if for every pair of users u1 and u2 such that xu1

< xu2
it holds

that xλ(u1) ≤ xλ(u2). Otherwise, both λ and every pair (u1, u2) for which this condition does not hold
are called order-violating.

Every order-preserving assignment partitions the line into a series of non-overlapping segments such
that every user within segment i is assigned to server si. Segment i is located to the left of segment j if
and only if i < j. Note that si is not necessarily located inside segment i.

Theorem 3 The min-max LDB problem on a line has an order-preserving optimal assignment.

Proof : Consider an order-violating assignment λ. We show how it can be transformed into an order-
preserving assignment that incurs smaller or equal cost.

Since λ is order-violating, there exists a pair of users u1 and u2 assigned to servers s2 and s1 such
that xu1

< xu2
but xs2

> xs1
. We transform λ to a new assignment λ′ from by switching the assignments

of u1 and u2, i.e., λ′(u1) = s1 and λ′(u2) = s2. Since this switch does not affect the load on s1 and s2,
no change is incurred to any user’s processing delay. Therefore, only the network delays incurred to u1

and u2 are affected. We therefore need to show that λ′ does not incur greater maximum network delay
values than λ, that is, we need to show that max(D(u1, s1), D(u2, s2)) ≤ max(D(u1, s2), D(u2, s1)). To
this end, consider the following cases:

1. xu1
< xu2

< xs1
< xs2

(Figure 1(a)). Then, D(u1, s1) < D(u1, s2) and D(u2, s2) < D(u1, s2),
hence, max(D(u1, s1), D(u2, s2)) < max(D(u1, s2), D(u2, s1)).

2. xu1
< xs1

< xu2
< xs2

(Figure 1(b)). Then, D(u1, s1) < D(u1, s2) and D(u2, s2) < D(u1, s2),
hence, max(D(u1, s1), D(u2, s2)) < max(D(u1, s2), D(u2, s1)).

3. xs1
< xu1

< xu2
< xs2

(Figure 1(c)). Then, D(u1, s1) < D(u2, s1) and D(u2, s2) < D(u1, s2),
hence, max(D(u1, s1), D(u2, s2)) < max(D(u1, s2), D(u2, s1)).

4. xs1
< xu1

< xs2
< xu2

. Symmetric to case (2).

5. xs1
< xs2

< xu1
< xu2

. Symmetric to case (1).

Thus, we switch the assignment of every order-violating pair of users until an order-preserving assignment
is obtained. We conclude that every optimal assignment for min-max LDB is either order-preserving, or
can be transformed into an order-preserving assignment that incurs an equal service delay. 2

4

�� �� �� ���� �� �� ���� �� �� ��
���������

	
��

���������

������
Figure 1: Switching the assignment of an order-violating pair (u1, u2).

We now identify the recursive structure of an optimal assignment λ∗. Let λ∗
i,j for 1 ≤ i ≤ n and

1 ≤ j ≤ k be an optimal assignment for users {ui, . . . , un} that employs servers {sj, . . . , sk}. We can
assign ℓ = 0, . . . , n− i+1 leftmost users to server sj . This assignment defines the maximum delay among
the leftmost users. From the optimality of λ∗

i,j , the assignment λ∗
i+ℓ,j+1 of the remaining users to the

remaining servers is also an optimal one. Hence,

∆M (λ∗
i,j) = min

0≤ℓ≤n−i+1
[max(δsj

(ℓ) + max
0≤ℓ′<ℓ

|xsj
− xui+ℓ′

|, ∆M (λ∗
i+ℓ,j+1))], (1)

The boundary conditions are: ∆M (λ∗n + 1, j) = 0 (no users), and ∆M (λ∗i, k + 1) = ∞ (no servers), for
1 ≤ i ≤ n and 1 ≤ j ≤ k. The global optimal assignment cost is ∆M (λ∗(U, S)) = ∆M (λ∗

1,1).
Optimal assignments can be computed through dynamic programming using the above recurrence.

An optimal algorithm employs a two-dimensional table Table[1..n+1, 1..k+1], where an entry Table[i, j]
holds the value of ∆M (λ∗

i,j), and the number of users assigned to sj . Note that

max
0≤ℓ′<ℓ

|xsj
− xui+ℓ′

| = max(|xsj
− xui

|, |xsj
− xui+ℓ−1

|),

and hence, the computation of a single entry Table[i, j] incurs O(1) operations for each examined entry
Table[i+ ℓ, j+1]. A naive implementation examines O(n) such entries, an therefore, the time complexity
of filling the whole table is O(kn2). This result can be improved by noting that Eq. (1) defines a min-max
among the value pairs of fi,j(ℓ) = δsj

(ℓ) + max0≤ℓ′<ℓ |xsj
− xui+ℓ′

| (a non-decreasing function of ℓ) and

gi,j(ℓ) = ∆M (λ∗
i+ℓ,j+1) (a non-increasing function of ℓ). Hence, the min-max is achieved for the value

of ℓ for which fi,j(ℓ) − gi,j(ℓ) is closest to zero. It can be efficiently found through binary search, which
yields O(log n) operations for a single table entry, and O(kn log n) operations altogether.

4 Min-Average Load-Distance Balancing

We now present a polynomial-time algorithm for min-average load-distance balancing. Contrary to the
min-max problem, the goal is to minimize the sum of delays among all users. We require that for each
server s, the function xδs(x) is convex (most practical congestion delay functions satisfy this requirement).

The algorithm reduces the assignment problem to minimum-cost matching in a bipartite graph. The
left part contains n clients, and the right part contains n copies of each server (i.e., nk nodes). The cost
of connecting user u to the i’th instance of server s is defined as

∆i(u, s) = D(u, s) + iδs(i) − (i − 1)δs(i − 1).

Intuitively, these costs are marginal costs in the assignment, that is, ∆i(u, s) is the cost of connecting
user u to server s after i − 1 other users.

The algorithm computes a minimum-cost matching in the constructed graph (i.e., each user is assigned
to exactly one server copy), and turns this matching to a legal assignment by assigning each user to the
server it is matched to, regardless of the instance number.

5

Theorem 4 The algorithm computes an optimal assignment for min-average LDB.

Proof : We first claim that if the copy si of server s is utilized by the matching, then all the copies sj

for j ≤ i are used too. Indeed, suppose by contradiction that user u is matched to some copy si (i > 1),
and si−1 is not used. If u is switched from si to si−1, the matching cost can be reduced by

∆i(u, s) − ∆i−1(u, s) = iδs(i) + (i − 2)δs(i − 2) − 2δs(i − 1),

which is a positive value since xδs(x) is a convex function. Hence, the matching’s cost can be improved,
in contradiction to optimality.

Consider a matching µ in the bipartite graph for which the set of used instances of each server is
contiguous, and the corresponding assignment λ for the original problem. We denote the set of users
assigned to some instance of server s by µ(s), and the user assigned to the i’th copy of server s by µi(s).
Since the used set is contiguous, the sum of individual matching cost of the users in µ(s) telescopes to

|µ(s)|∑

i=1

∆i(µi(s), s) = |µ(s)|δs(|µ(s)|) +

|µ(s)|∑

i=1

D(µi(s), s) =

|µ(s)|∑

i=1

[D(µi(s), s) + δs(|µ(s)|)] =
∑

u:λ(u)=s

∆(u, λ).

Hence, the cost of the matching is equal to the cost of an assignment for the original problem. Therefore,
since the minimum-cost matching µ∗ has the desired property of contiguity, it produces a minimum-cost
assignment λ∗. 2

Optimal Assignment on a Line with Euclidean Distances: The fastest known minimum-cost
flow algorithm on a graph G(V, E) runs in O(|E| log |V |(|E| + |V | log |V |)) time [7]. We construct a
bipartite graph in which |V | = O(nk) and |E| = O(kn2), hence the running time is O(kn2 log(nk)(kn2 +
nk log(nk))) = O(k2n4 log n). In the special case when users and servers are located on a line segment,
and network delays are modeled as Euclidean distances, this running time can be significantly improved.
Similarly to the min-max LDB problem, the min-average LDB on a line has an order-preserving optimal
assignment. Hence, a polynomial time dynamic programming algorithm similar to the one presented in
Section 3.3 is applicable in this case. The algorithm’s running time is O(kn2) (in contrast to min-max
LDB, the binary search optimization to reduce the number of operations on a single table entry to log n

cannot be applied).

5 Conclusions and Future Work

We studied two variations of the load-distance balancing (LDB) problem, namely, min-max LDB and min-
average LDB. For the first problem, we proved hardness of approximation for general cost functions, and
presented the best possible approximation algorithm, as well as an optimal algorithm for the case of linear
placement of clients and servers. For the second problem, we presented a polynomial algorithm, and its
performance optimization for the linear case.

A more general question might be to optimize over the choice of servers, rather than fixing the set of
servers. For example, how can we choose a subset of k servers to open, and find an assignment of clients
to open servers so as to minimize the average cost, or maximum cost of a client? Alternatively, each
server may have a cost, and there may be a budget on the total cost of open servers. These and other
questions would be interesting to study.

Acknowledgements

We thank Israel Cidon, Uri Feige, Idit Keidar and Isaac Keslassy for stimulating discussions.

6

References

[1] I.F. Akylidiz, X. Wang, and W. Wang. Wireless Mesh Networks: a Survey. Computer Networks Journal,
2005.

[2] J. Bar-Ilan, G. Kortsarz, and D. Peleg. How to allocate network centers. Journal of Algorithms, 15:385–415.

[3] E. Bortnikov, I. Cidon, and I. Keidar. Scalable Load-Distance Balancing. In International Symposium on
Distributed Computing (DISC), 2007.

[4] J. Chen, B. Knutsson, B. Wu, H. Lu, M. Delap, and C. Amza. Locality Aware Dynamic Load Management
form Massively Multiplayer Games. PPoPP, 2005.

[5] S. Khuller and Y. J. Sussmann. The Capacitated K-Center Problem. SIAM Journal on Discrete Mathematics,
13:403–418, 2000.

[6] P. B. Mirchandani and R. L. Francis. Discrete Location Theory. John Wiley & Sons Inc., 1990.

[7] J. Orlin. A Faster Strongly Polynomial Minimum Cost Flow Algorithm. ACM STOC, 1988.

7

