
On Scheduling Coflows?

Saba Ahmadi1, Samir Khuller1, Manish Purohit2, and Sheng Yang1

1 University of Maryland, College Park
{saba,samir,styang}@cs.umd.edu

2 Google, Mountain View
mpurohit@google.com

Abstract. Applications designed for data-parallel computation frame-
works such as MapReduce usually alternate between computation and
communication stages. Coflow scheduling is a recent popular networking
abstraction introduced to capture such application-level communication
patterns in datacenters. In this framework, a datacenter is modeled as
a single non-blocking switch with m input ports and m output ports. A
coflow j is a collection of flow demands {djio}i∈m,o∈m that is said to be
complete once all of its requisite flows have been scheduled.
We consider the offline coflow scheduling problem with and without
release times to minimize the total weighted completion time. Coflow
scheduling generalizes the well studied concurrent open shop schedul-
ing problem and is thus NP-hard. Qiu, Stein and Zhong [14] obtain
the first constant approximation algorithms for this problem via LP
rounding and give a deterministic 67

3
-approximation and a randomized

(9 + 16
√
2

3
) ≈ 16.54-approximation algorithm. In this paper, we give a

combinatorial algorithm that improves significantly upon theirs to yield
a deterministic 5-approximation algorithm with release times. For the
case without release time, it is 4-approximation.

Keywords: Coflow scheduling, Concurrent Open Shop

1 Introduction

Large scale data centers have emerged as the dominant form of computing infras-
tructure over the last decade. The success of data-parallel computing frameworks
such as MapReduce [8], Hadoop [1], and Spark [18] has led to a proliferation of
applications that are designed to alternate between computation and commu-
nication stages. Typically, the intermediate data generated by a computation
stage needs to be transferred across different machines during a communication
stage for further processing. For example, there is a “Shuffle” phase between
every consecutive “Map” and “Reduce” phase in MapReduce. With an increas-
ing reliance on parallelization, these communication stages are responsible for a

? This work is supported by NSF grant CNS 156019.



large amount of data transfer in a datacenter. Chowdhury and Stoica [4] intro-
duced coflows as an effective networking abstraction to represent the collective
communication requirements of a job. In this paper, we consider the problem
of scheduling coflows to minimize weighted completion time and give improved
approximation algorithms for this basic problem.

The communication phase for a typical application in a modern data center
may contain hundreds of individual flow requests, and the phase ends only when
all of these flow requests are satisfied. A coflow is defined as the collection of
these individual flow requests that all share a common performance goal. The
underlying data center is modeled as a single m ×m non-blocking switch that
consists of m input ports and m output ports. We assume that each port has unit
capacity, i.e. it can handle at most one unit of data per unit time. Modeling the
data center itself as a simple switch allows us to focus solely on the scheduling
task instead of the problem of routing flows through the network. Each coflow j
is represented as a m×m integer matrix Dj = [djio] where the entry djio indicates
the number of data units that must be transferred from input port i to output
port o for coflow j. Figure 1 shows a single coflow over a 2 × 2 switch. For
instance, the coflow depicted needs to transfer 2 units of data from input a to
output b and 3 units of data from input a to output d. Each coflow j also has a
weight wj that indicates its relative importance and a release time rj .

Input 
Ports

2

3 1

4

2 3

1 4

a

c

b d
a b

c d

Output 
Ports

Bipartite Graph 
Representation

Matrix
 Representation

Fig. 1. An example coflow over a 2 × 2 switch. The figure illustrates
two equivalent representations of a coflow - (i) as a weighted, bipartite
graph over the set of ports, and (ii) as a m×m integer matrix.

A coflow j is available to be scheduled at its release time rj and is said to
be completed when all the flows in the matrix Dj have been scheduled. More
formally, the completion time Cj of coflow j is defined as the earliest time such

that for every input i and output o, djio units of its data have been transferred
from port i to port o . We assume that time is slotted and data transfer within
the switch is instantaneous. Since each input port i can transmit at most one
unit of data and each output port o can receive at most one unit of data in
each time slot, a feasible schedule for a single time slot can be described as
a matching. Our goal is to find a feasible scheduling that minimizes the total
weighted completion time of the coflows, i.e. minimize

∑
j wjCj .

2



1.1 Related Work

Chowdhury and Stoica [4] introduced the coflow abstraction to describe the
prevalent communication patterns in data centers. Since then coflow scheduling
has been a topic of active research [6,5,14,19] in both the systems and theory
communities. Although coflow aware network schedulers have been found to
perform very well in practice in both the offline [6] and online [5] settings, no O(1)
approximation algorithms were known even in the offline setting until recently.
Since the coflow scheduling problem generalizes the well-studied concurrent open
shop scheduling problem, it is NP-hard to approximate within a factor better
than (2− ε) [2,16].

For the special case when all coflows have zero release time, Qiu, Stein and

Zhong [14] obtain a deterministic 64
3 approximation and a randomized (8+ 16

√
2

3 )
approximation algorithm for the problem of minimizing the weighted completion
time. For coflow scheduling with arbitrary release times, Qiu et al. [14] claim a

deterministic 67
3 approximation and a randomized (9 + 16

√
2

3 ) approximation
algorithm. However in journal version, we demonstrate a subtle error in their
proof that deals with non-zero release times. We show that their techniques in
fact only yield a deterministic 76

3 -approximation algorithm for coflow scheduling
with release times. However their result holds for the case with equal release
dates.

By exploiting a connection with the well-studied concurrent open shop schedul-
ing problem, Luo et al. [12] claim a 2-approximation algorithm for coflow schedul-
ing when all the release times are zero. Unfortunately, as we show in journal
version, their proof too is flawed and the result does not hold.

In a recent work, Khuller et al. [10] study coflow scheduling in the online
setting where the coflows arrive online over time. Using the results of this paper
(Theorem 2), they obtain an exponential time 7-competitive algorithm and a
polynomial time 14-competitive algorithm.

1.2 Our Contributions

The main algorithmic contribution of this paper is a deterministic, primal-dual
algorithm for the offline coflow scheduling problem with improved approximation
guarantees.

Theorem 1 There exists a deterministic, polynomial time 5-approximation al-
gorithm for coflow scheduling with release times.

Theorem 2 There exists a deterministic, polynomial time 4-approximation al-
gorithm for coflow scheduling without release times.

Our results significantly improve upon the approximation algorithms devel-
oped by Qiu et al. [14] whose techniques yield an approximation factors of
76
3 = 25.33 and (8 + 16

√
2

3 ) ≈ 15.54 (See journal version) respectively for the
two cases. In addition, our algorithm is completely combinatorial and does not

3



require solving a linear program. A LP-based version is also provided together
with its proof, to help showing the intuition behind the primal-dual one.

We also extend the primal dual algorithm by Mastrolilli et al. [13] to give a
3-approximation algorithm for the concurrent open shop problem when the jobs
have arbitrary release times.

Theorem 3 There exists a deterministic, combinatorial, polynomial time 3-
approximation algorithm for concurrent open shop scheduling with release times.

1.3 Connection to Concurrent Open Shop

The coflow scheduling problem generalizes the well-studied concurrent open shop
problem [13,3,9,11,17]. In the concurrent open shop problem, we have a set of
m machines and each job j with weight wj is composed of m tasks {tji}mi=1, one

on each machine. Let pji denote the processing requirement of task tji . A job j is
said to be completed once all its tasks have completed. A machine can perform
at most one unit of processing at a time. The goal is to find a feasible schedule
that minimizes the total weighted completion time of jobs. An LP-relaxation
yields a 2-approximation algorithm for concurrent open shop scheduling when
all release times are zero [3,9,11] and a 3-approximation algorithm for arbitrary
release times [9,11]. Mastrolilli et al. [13] show that a simple greedy algorithm
also yields a 2-approximation for concurrent open shop without release times.
We develop a primal-dual algorithm that yields a 3-approximation for concurrent
open shop with release times.

The concurrent open shop problem can be viewed as a special case of coflow
scheduling when the demand matrices Dj for all coflows j are diagonal [6,14].
At first glance, it appears that coflow scheduling is much harder than concurrent
open shop. For instance, while concurrent open shop always admits an optimal
permutation schedule, such a property may not be true for coflows [6]. In fact,
even without release times, the best known approximation algorithm for schedul-
ing coflows has an approximation factor of ≈ 15.54 [14], in contrast to the many
2-approximations known for the concurrent open shop problem. Surprisingly, we
show that using a similar LP relaxation as for the concurrent open shop prob-
lem, we can design a primal dual algorithm to obtain a permutation of coflows
such that sequentially scheduling the coflows after some post-processing in this
permutation leads to provably good coflow schedules.

2 Preliminaries

We first introduce some notations to facilitate the following discussion. For every
coflow j and input port i, we define the load Li,j =

∑m
o=1 d

j
io to be the total

amount of data that coflow j needs to transmit through port i. Similarly, we
define Lo,j =

∑m
i=1 d

j
io for every coflow j and output port o. Equivalently, a

coflow j can be represented by a weighted, bipartite graph Gj = (I,O,Ej) where
the set of input ports (I) and the set of output ports (O) form the two sides

4



of the bipartition and an edge e = (i, o) with weight wGj (e) = djio represents

that the coflow j requires djio units of data to be transferred from input port i
to output port o. We will abuse notation slightly and refer to a coflow j by the
corresponding bipartite graph Gj when there is no confusion.

Representing a coflow as a bipartite graph simplifies some of the notation
that we have seen previously. For instance, for any coflow j, the load of j on
port i is simply the weighted degree of vertex i in graph Gj , i.e., if NGj (i) denotes
the set of neighbors of node i in the graph Gj .

Li,j = degGj (i) =
∑

o∈NGj (i)

w(i, o) (1)

For any graph Gj , let ∆(Gj) = maxs∈I∪O degGj (s) = max{maxi L
j
i ,maxo L

j
o}

denote the maximum degree of any node in the graph, i.e., the load on the most
heavily loaded port of coflow j.

In our algorithm, we consider coflows obtained as the union of two or more
coflows. Given two weighted bipartite graphsGj = (I,O,Ej) andGk = (I,O,Ek),
we define the cumulative graph Gj ∪Gk = (I,O,Ej ∪ Ek) to be a weighted bi-
partite graph such that wGj∪Gk(e) = wGj (e) +wGk(e). We extend this notation
to the union of multiple graphs in the obvious manner.

2.1 Scheduling a Single Coflow

Before we present our algorithm for the general coflow scheduling problem, it is
instructive to consider the problem of feasibly scheduling a single coflow subject
to the matching constraints. Given a coflow Gj , the maximum degree of any
vertex in the graph ∆(Gj) = maxv degG(v) is an obvious lower bound on the
amount of time required to feasibly schedule coflow Gj . In fact, the following
lemma by Qiu et al. [14] shows that this bound is always achievable for any
coflow. The proof follows by repeated applications of Hall’s theorem on the
existence of perfect matchings in bipartite graphs.

Lemma 1. [14] There exists a polynomial time algorithm that schedules a single
coflow Gj in ∆(Gj) time steps.

Lemma 1 also implicitly provides a way to decompose a bipartite graph G
into two graphs G1 and G2 such that ∆(G) = ∆(G1) + ∆(G2). Given a time
interval (ts, te], the following corollary uses such a decomposition to obtain a
feasible coflow schedule for the given time interval by partially scheduling a
coflow if necessary.

Corollary 1. Given a sequence of coflows G1, G2, . . . , Gn, a start time ts, and
an end time te such that te ≥ ts+

∑j−1
k=1∆(Gk) and te < ts+

∑j
k=1∆(Gk), there

exists a polynomial time algorithm that finds a feasible coflow schedule for the
time interval (ts, te] such that -

– coflows G1, G2, . . . , Gj−1 are completely scheduled.

5



– coflow Gj is partially scheduled so that ∆(G̃j) = ts+
∑j
k=1∆(Gk)−te where

G̃j denotes the subset of coflow j that has not yet been scheduled.
– coflows Gj+1, . . . , Gn are not scheduled.

2.2 Linear Programming Relaxation

By exploiting the connection with concurrent open-shop scheduling, we adapt
the LP relaxation used for the concurrent open-shop problem [9,11] to formulate
the following linear program as a relaxation of the coflow scheduling problem.
We introduce a variable Cj for every coflow Gj to denote its completion time.
Let J = {1, 2, . . . , n} denote the set of all coflows and M = I ∪O denote the set
of all the ports. Figure 2 shows our LP relaxation.

min
∑
j∈J

wjCj

subject to, Cj ≥ rj + Li,j ∀j ∈ J, ∀i ∈M (2)∑
j∈S

Li,jCj ≥
1

2

(∑
j∈S

L2
i,j + (

∑
j∈S

Li,j)
2

)
∀i ∈M,∀S ⊆ J (3)

Fig. 2. LP1 for Coflow Scheduling

The first set of constraints (2) ensure that the completion time of any job j
is at least its release time rj plus the load of coflow j on any port i. The second
set of constraints (3) are standard in parallel scheduling literature (e.g. [15]) and
are used to effectively lower bound completion time variables. For simplicity, we
define fi(S) for any subset S ⊆ J and each port i as follow

fi(S) =

∑
j∈S L

2
i,j + (

∑
j∈S Li,j)

2

2
(4)

3 High Level Ideas

We use the LP above in figure 2.2 and its dual to develop a combinatorial
algorithm (Algorithm 1) in Section 4.1 to obtain a good permutation of the
coflows. This primal dual algorithm is inspired by Davis et al. [7] and Mastrolilli
et al. [13]. As we show in Lemma 5, once the coflows are permuted as per this
algorithm, we can bound the completion time of a coflow j in an optimal schedule
in terms of ∆(

⋃
k≤j Gk), the maximum degree of the union of the first j coflows

in the permutation.
A näıve approach now would be to schedule each coflow independently and

sequentially using Lemma 1 in this permutation. Since all coflows k ≤ j would
need to be scheduled before starting to schedule j, the completion time of coflow j
under such a scheme would be

∑
k≤j ∆(Gk). Unfortunately, for arbitrary coflows

we can have
∑
k≤j ∆(Gk) � ∆(

⋃
k≤j Gk). For instance, Figure 3 shows three

coflows such that ∆(G1) +∆(G2) +∆(G3) = 300 > ∆(G1 ∪G2 ∪G3) = 101.

6



100 ba

dc

e f

G1

ba

dc

e f

G2

1

99

ba

dc

e f

G3

1

99

Fig. 3. Example that illustrates sequentially scheduling coflows inde-
pendently can lead to bad schedules.

One key insight is that sequentially scheduling coflows one after another may
waste resources. Since the amount of time required to completely schedule a
single coflow k only depends on the maximum degree of the graph Gk, if we
augment graph Gk by adding edges such that its maximum degree does not
increase, the augmented coflow can still be scheduled in the same time interval.
This observation leads to the natural idea of “shifting” edges from a coflow j later
in the permutation to a coflow k (k < j), so long as the release time of j is still
respected, as such a shift does not delay coflow k further but may significantly
reduce the requirements of coflow j. Consider for instance the coflows in Figure 3
when all release times are zero; shifting the edge (c, d) from graph G2 to G1 and
the edge (e, f) from G3 to G1 leaves ∆(G1) unchanged but drastically reduces
∆(G2) and ∆(G3). In Algorithm 3 in Section 4.2, we formalize this notion of
shifting edges and prove that after all such edges have been shifted, sequentially
scheduling the augmented coflows leads to provably good coflow schedules.

In section 6 we present an alternative approach using LP Rounding for finding
a good permutation of coflows. Then we schedule the coflows using Algorithm 3
and give alternative proofs for Theorem 1 and Theorem 2.

4 Approximation Algorithm for Coflow Scheduling with
Release Times

In this section we present a combinatorial 5-approximation algorithm for min-
imizing the weighted sum of completion times of a set of coflows with release
times. Our algorithm consists of two stages. In the first stage, we design a primal-
dual algorithm to find a good permutation of the coflows. In the second stage,
we show that scheduling the coflows sequentially in this ordering after some
postprocessing steps yields a provably good coflow schedule.

4.1 Finding a Permutation of Coflows Using a Primal Dual
Algorithm

Although our algorithm does not require solving a linear program, we use the
linear program in Figure 2 and its dual (Figure 4) in the design and analysis of
the algorithm.

7



max
∑
j∈J

∑
i∈M

αi,j(rj + Li,j) +
∑
i∈M

∑
S⊆J

βi,Sfi(S)

subject to,
∑
i∈M

αi,j +
∑
i∈M

∑
S/j∈S

Li,jβi,S ≤ wj ∀j ∈ J

αi,j ≥ 0 ∀j ∈ J, i ∈M
βi,S ≥ 0 ∀i ∈M, ∀S ⊆ J

Fig. 4. Dual of LP1

Our algorithm works as follows. We build up a permutation of the coflows
in the reverse order iteratively. Let κ be a constant that we optimize later. In
any iteration, let j be the unscheduled job with the latest release time, let µ be
the machine with the highest load and let Lµ be the load on machine µ. Now if
rj > κLµ, we raise the dual variable αµ,j until the corresponding dual constraint
is tight and place coflow j to be last in the permutation. But if rj ≤ κLµ, then
we raise the dual variable βµ,J until the dual constraint for some job j′ becomes
tight and place coflow j′ to be last in the permutation. Algorithm 1 gives the
formal description of the complete algorithm.

Algorithm 1: Permuting Coflows

1 J is the set of unscheduled jobs and initially J = {1, 2, · · · , n};
2 Initialize αi,j = 0 for all i ∈M, j ∈ J and βi,S = 0 for all i ∈M,S ⊆ J ;
3 Li =

∑
j∈J Lij ∀i ∈M ; // load of machine i

4 for k = n, n− 1, · · · , 1 do
5 µ(k) = arg maxi∈M Li ; // determine the machine with highest load

6 j = arg max`∈J r` ; // determine job that released last

7 if rj > κ · Lµ(k) then
8 αµ(k),j = (wj −

∑
i∈M

∑
S3j Li,jβi,S);

9 σ(k)← j;

10 end
11 else if rσ(k) ≤ κ · Lµ(k) then

12 j′ = arg minj∈J

(
wj−

∑
i∈M

∑
S3j Li,jβi,S

Lµ(k),j

)
;

13 βµ(k),J =
(
wj′−

∑
i∈M

∑
S3j′ Li,j′βi,S

Lµ(k),j′

)
;

14 σ(k)← j′;

15 end
16 J ← J \ σ(k);
17 Li ← Li − Li,σ(k), ∀i ∈M ;

18 end
19 Output permutation σ(1), σ(2), · · · , σ(n);

8



4.2 Scheduling Coflows According to a Permutation

Now there is a permutation of coflows. We assume without loss of generality that
the coflows are ordered based on this permutation, i.e. σ(j) = j.

As we discussed in Section 3, näıvely scheduling the coflows sequentially in
this order may not be a good idea. However, by appropriately moving edges
from a coflow j to an earlier coflow k (k < j), we can get a provably good
scheduling. The crux of our algorithm lies in the subroutine MoveEdgesBack
defined in Algorithm 2.

Algorithm 2: The MoveEdgesBack subroutine.

1 Function MoveEdgesBack(Gk, Gj)
2 for e = (u, v) ∈ Gj do
3 δ = min(∆(Gk)− degGk (u),∆(Gk)− degGk (v), wGj (e));

4 wGj (e) = wGj (e)− δ;
5 wGk (e) = wGk (e) + δ;

6 end
7 return Gk, Gj ;

Given two bipartite graphs Gk and Gj (k < j), MoveEdgesBack greedily
moves weighted edges from graph Gj to Gk so long as the maximum degree of
graph Gk does not increase. The key idea behind this subroutine is that since
the coflow k requires ∆(Gk) time units to be scheduled feasibly, the edges moved
back can now also be scheduled in those ∆(Gk) time units for “free”.

If all coflows have zero release times, then we can safely move edges of a
coflow Gj to any Gk such that k < j. However, with the presence of arbitrary
release times, we need to ensure that edges of coflow Gj do not violate their
release time, i.e. they are scheduled only after they are released. Algorithm 3
describes the pseudo-code for coflow scheduling with arbitrary release times.
Here q denote the number of distinct values taken by the release times of the n
coflows. Further, let t1 < t2 < . . . < tq be the ordered set of the release times.
For simplicity, we define tq+1 = T as a sufficiently large time horizon.

At any time step ti, let G′j ⊆ Gj denote the subgraph of coflow j that has
not been scheduled yet. We consider every ordered pair of coflows k < j such
that both the coflows have been released and MoveEdgesBack from graph G′j to
graph G′k. Finally, we begin to schedule the coflows sequentially in order using
Corollary 1 until all coflows are scheduled completely or we reach time ti+1 when
a new set of coflows gets released and the process repeats.

5 Analysis

We first analyze Algorithm 3 and upper bound the completion time of a coflow j
in terms of the maximum degree of the cumulative graph obtained by combining

9



Algorithm 3: Coflow Scheduling

1 q ← number of distinct release times; tq+1 ← T ;
2 t1, t2, . . . , tq ← distinct release time in increasing order ;
3 for i = 1, 2, . . . , q do
4 // Each loop finds a schedule for time interval (ti, ti+1]
5 for j = 1, 2, . . . , n do
6 G′j ← unscheduled part of Gj ;
7 end
8 for k = 1, 2, . . . , n− 1 do
9 if rk ≤ ti then

10 for j = k + 1, . . . , n do
11 if rj ≤ ti then G′k, G

′
j ← MoveEdgesBack(G′k, G

′
j) ;

12 end

13 end

14 end
15 Schedule (G′1, G

′
2, . . . , G

′
n) in (ti, ti+1] using Corollary 1;

16 end

the first j coflows in the given permutation. To make life easy, we first state the
proof when all release times are zero, then proceed to the case with non-zero
release time

5.1 Coflows with Zero Release Times

For ease of presentation we first analyze the special case when all coflows are
released at time zero. In this case, we have q = 1 in Algorithm 3 and thus the
outer for loop is only executed once. The following lemma shows that after the
MoveEdgesBack subroutine has been executed on every ordered pair of coflows,
for any coflow j, the sum of maximum degrees of graphs G′k (k < j) is at most
twice the maximum degree of the cumulative graph obtained by combining the
first j coflows.

Lemma 2. For all j ∈ {1, 2, . . . n},
∑
k≤j ∆(G′k) ≤ 2∆(

⋃
k≤j Gk).

Lemma 3. Consider any coflow j and let Cj(alg) denote the completion time
of coflow j when scheduled as per Algorithm 3. Then Cj(alg) ≤ 2∆(

⋃
k≤j Gk).

5.2 Coflows with Arbitrary Release Times

When the coflows have arbitrary release times, we can bound the completion
time of each coflow j in terms of the maximum degree of the cumulative graph
obtained by combining the first j coflows and the largest release time of all the
jobs before j in the permutation.

Lemma 4. For any coflow j, let Cj(alg) denote the completion time of coflow j
when scheduled as per Algorithm 3. Then Cj(alg) ≤ maxk≤j rk + 2∆(

⋃
k≤j Gk)

10



5.3 Analyzing the Primal-Dual Algorithm

We are now in a position to analyze Algorithm 1. Recall that we assume that
the jobs are sorted as per the permutation obtained by Algorithm 1, i.e., σ(k) =
k, ∀k ∈ [n]. We first give a lemma,

Lemma 5. If there is an algorithm that generates a feasible coflow schedule such
that for any coflow j, Cj(alg) ≤ amaxk≤j rk + b∆(

⋃
k≤j Gk) for some constants

a and b, then the total cost of the schedule is bounded as follows.

∑
j

wjCj(alg) ≤ (a+
b

κ
)

n∑
j=1

∑
i∈M

αi,jrj + 2(aκ+ b)
∑
i∈M

∑
S⊆J

βi,Sfi(S)

Proof Sketch. Algorithm 1 judiciously sets the dual variables such that the dual
constraint for an coflow j is tight. Analyzing the cost of schedule obtained in
terms of the dual variables yields the lemma. The formal proof is available in
our journal version

Lemmas 4 and 3 along with Lemma 5 and an appropriate choice of κ now give
the desired theorems. Proof in journal version.

Theorem 1 There exists a deterministic, polynomial time 5-approximation al-
gorithm for coflow scheduling with release times.

Theorem 2 There exists a deterministic, polynomial time 4-approximation al-
gorithm for coflow scheduling without release times.

6 An Alternative Approach Using LP Rounding

This alternative approach also consists of two stages. First, we find a good per-
mutation of coflows and after that we schedule the coflows sequentially in this
ordering using Algorithm 3.

Let Cj denote the completion time of job j in an optimal LP1 solution.
We assume without loss of generality that the coflows are ordered so that the
following holds.

C1 ≤ C2 ≤ . . . ≤ Cn (5)

We can use the LP-constraints to provide a lower bound on Cj in terms of
the maximum degree of the cumulative graph obtained by combining the first j
coflows. In particular, the following lemma follows from the constraints of LP1.

Lemma 6. For each coflow j = 1, 2, . . . , n, the following inequality holds.

Cj ≥
1

2
max
i

{
j∑

k=1

Li,k

}
=

1

2
∆(

⋃
k≤j

Gk)

Lemmas 4 and 3 along with Lemma 6 give alternative proofs for theorems 1
and 2.

11



References

1. https://hadoop.apache.org.

2. N. Bansal and S. Khot. Inapproximability of hypergraph vertex cover and appli-
cations to scheduling problems. In ICALP, pages 250–261. Springer, 2010.

3. Z.-L. Chen and N. G. Hall. Supply chain scheduling: Conflict and cooperation in
assembly systems. Operations Research, 55(6):1072–1089, 2007.

4. M. Chowdhury and I. Stoica. Coflow: A networking abstraction for cluster ap-
plications. In ACM Workshop on Hot Topics in Networks, pages 31–36. ACM,
2012.

5. M. Chowdhury and I. Stoica. Efficient coflow scheduling without prior knowledge.
In SIGCOMM, pages 393–406. ACM, 2015.

6. M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow scheduling with varys. In
SIGCOMM, SIGCOMM ’14, pages 443–454, New York, NY, USA, 2014. ACM.

7. J. M. Davis, R. Gandhi, and V. H. Kothari. Combinatorial algorithms for min-
imizing the weighted sum of completion times on a single machine. Operations
Research Letters, 41(2):121–125, 2013.

8. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

9. N. Garg, A. Kumar, and V. Pandit. Order scheduling models: Hardness and algo-
rithms. In FSTTCS, pages 96–107. Springer, 2007.

10. S. Khuller, J. Li, P. Sturmfels, K. Sun, and P. Venkat. Select and permute: An
improved online framework for scheduling to minimize weighted completion time.
Submitted, 2016.

11. J. Y.-T. Leung, H. Li, and M. Pinedo. Scheduling orders for multiple product
types to minimize total weighted completion time. Discrete Applied Mathematics,
155(8):945–970, 2007.

12. S. Luo, H. Yu, Y. Zhao, S. Wang, S. Yu, and L. Li. Towards practical and near-
optimal coflow scheduling for data center networks. IEEE Transactions on Parallel
and Distributed Systems, PP(99):1–1, 2016.

13. M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson, and N. A. Uhan. Minimiz-
ing the sum of weighted completion times in a concurrent open shop. Operations
Research Letters, 38(5):390–395, 2010.

14. Z. Qiu, C. Stein, and Y. Zhong. Minimizing the total weighted completion time
of coflows in datacenter networks. In SPAA, SPAA ’15, pages 294–303, New York,
NY, USA, 2015. ACM.

15. M. Queyranne. Structure of a simple scheduling polyhedron. Mathematical Pro-
gramming, 58(1-3):263–285, 1993.

16. S. Sachdeva and R. Saket. Optimal inapproximability for scheduling problems via
structural hardness for hypergraph vertex cover. In IEEE Conference on Compu-
tational Complexity, pages 219–229. IEEE, 2013.

17. G. Wang and T. E. Cheng. Customer order scheduling to minimize total weighted
completion time. Omega, 35(5):623–626, 2007.

18. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
cluster computing with working sets. HotCloud, 10:10–10, 2010.

19. Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y. Zhang, D. Li, and S. Wang.
Rapier: Integrating routing and scheduling for coflow-aware data center networks.
In INFOCOM, pages 424–432. IEEE, 2015.

12

https://hadoop.apache.org.

	On Scheduling CoflowsThis work is supported by NSF grant CNS 156019.

