
On Finding Dense Subgraphs ∗

Samir Khuller†

Department of Computer Science
University of Maryland, College Park

samir@cs.umd.edu

Barna Saha‡

Department of Computer Science
University of Massachusetts Amherst

barna@cs.umass.edu

Abstract

Given an undirected graph G = (V,E), the density of a subgraph on vertex set S is defined as
d(S) = |E(S)|

|S| , where E(S) is the set of edges in the subgraph induced by nodes in S. Finding subgraphs
of maximum density is a very well studied problem. One can also generalize this notion to directed
graphs. For a directed graph one notion of density given by Kannan and Vinay is as follows: given
subsets S and T of vertices, the density of the subgraph is d(S, T) = |E(S,T)|√

|S||T |
, where E(S, T) is the

set of edges going from S to T . Without any size constraints, a subgraph of maximum density can
be found in polynomial time. When we require the subgraph to have a specified size, the problem of
finding a maximum density subgraph becomes NP -hard. In this paper we focus on developing fast
polynomial time algorithms for several variations of dense subgraph problems for both directed and
undirected graphs. When there is no size bound, we extend the flow based technique for obtaining a
densest subgraph in directed graphs and also give a linear time 2-approximation algorithm for it. When
a size lower bound is specified for both directed and undirected cases, we show that the problem is NP-
complete and give fast algorithms to find subgraphs within a factor 2 of the optimum density. We also
show that solving the densest subgraph problem with an upper bound on size is as hard as solving the
problem with an exact size constraint, within a constant factor.

1 Introduction

Given an undirected graph G = (V,E), the density of a subgraph on vertex set S is defined as d(S) =
|E(S)|
|S| , where E(S) is the set of edges in the subgraph induced by S. The problem of finding a densest

subgraph of a given graph G can be solved optimally in polynomial time, despite the fact that there are
exponentially many subgraphs to consider [20, 15]. In addition, Charikar [9] showed that we can find a 2
approximation to the densest subgraph problem in linear time using a very simple greedy algorithm (the
greedy algorithm was previously studied by [5]). This result is interesting because in many applications
of analyzing social networks, web graphs etc., the size of the graph involved could be very large and so
having a fast algorithm for finding an approximately dense subgraph is extremely useful. However when
there is a specified size constraint - namely find a densest subgraph of exactly k vertices (DkS), the densest
k subgraph problem becomes NP -hard [11, 4]. When k = Θ(|V |), Asahiro et al. [5] gave a constant factor
approximation algorithm for the DkS problem. However for general k, the algorithm developed by Feige,
Kortsarz and Peleg [11] achieves an approximation guarantee of O(na), where a < 1

3 . The best known
bound for this problem is by Bhaskara et al. [7] where an algorithm running in n

1
ε time is developed and

∗A preliminary version of this paper appeared in the proceedings of 36th International Colloquium on Automata, Languages and
Programming (ICALP 2009).
†Research supported by NSF Awards CCF-0728839 and CCF-0937865.
‡Work done while the author was a Ph.D. student at University of Maryland at College Park.

1

provides an approximation factor to n
1
4
+ε for any ε > 0. However, the technique does not extend to obtain

n
1
4 -approximation in polynomial time. [17] showed that there does not exist any PTAS for the DkS problem

under a reasonable complexity assumption. Recently, assuming stronger complexity assumptions, constant
factor approximations have been ruled out [1]. Closing the gap between the approximation factor and the
hardness guarantee for DkS remains as an outstanding open question.

Two interesting variations of the problem of finding a densest k subgraph was considered by Andersen
[3]. The first problem, the densest at-least-k-subgraph problem (DalkS) asks for an induced subgraph of
highest density among all subgraphs with at least k nodes. This relaxation makes DalkS significantly easier to
approximate and Andersen et al. gave a fast algorithm based on Charikar’s greedy algorithm that guarantees
a 3 approximation for the DalkS problem. In addition, they showed that this problem has a polynomial time
2 approximation, albeit with significantly higher running time. However it was left open as to whether or not
this problem is NP -complete. The second problem studied was the densest at-most-k-subgraph problem
(DamkS), that asks for an induced subgraph of the highest density among all the subgraphs with at most k
nodes. For the DamkS problem, Andersen et al. showed that if there exists an α approximation for DamkS,
then there is a Θ(α2) approximation for the DkS problem, indicating that this problem is likely to be quite
difficult as well.

For directed graphs, [16] defined a suitable notion of density to detect highly connected subgraphs and
provided a Θ(log n) approximation algorithm for finding such dense components. Let G = (V,E) be a
directed graph and S and T be two subsets of nodes of V . Density corresponding to S and T is defined
as d(S, T) = |E(S,T)|√

|S||T |
, where E(S, T) consists of the edges going from S to T . Charikar showed that

the problem can be solved in polynomial time by solving an LP using n2 different values of a parameter
[9]. However a max-flow based technique similar to the one developed by Goldberg [15] for the densest
subgraph problem in undirected graphs was not known for directed graphs. It was mentioned as one of the
open problems in [9]. In addition to providing a polynomial time solution for the densest subgraph problem
in directed graphs, Charikar also gave a 2 approximation algorithm that runs in O(|V |3 + |V |2|E|) time.

The densest subgraph problems have received significant attention for detecting important substructures
in massive graphs like web and different social networks. In a web graph, hubs (resource lists) and authorities
(authoritative pages) on a topic are characterized by large number of links between them [18]. Finding a
dense subgraph also acts as a useful primitive for discovering communities in web and social networks, for
compressed representation of a graph and for spam detection [10, 8, 14]. [14] provided effective heuristics
based on two-level fingerprints for finding large dense subgraphs in massive graphs. Their aim was to
incorporate this step into web search engine for link spam control. Dourisboure gave a scalable method for
identifying small dense communities in web graph [10]. Buehrer showed how large dense subgraphs can
be useful in web graph compression and sub-sampling a graph [8]. In all these applications the underlying
graph is massive and thus fast scalable algorithms for detecting dense subgraphs are required to be effective.

Following our work, the DalkS problem has received significant attention. Gajewar and Das Sharma
studied a generalization of DalkS problem where there are multiple groups of vertices and from each group
a minimum number of nodes must be selected [12]. The DkS and DalkS problem, both are studied in the
streaming and map reduce model by Bahmani, Kumar and Vassilvitskii [6].

One of the main new insights in this paper is to illustrate the power of the flow based methods [15, 20]
to find dense subgraphs not only when there is no requirement on the size of the obtained subgraph, but also
for cases when there is a constraint on the size of the obtained subgraph. Precisely our contributions are as
follows:

1.1 Contributions

• For the densest subgraph problem without any size restrictions (Section 2):

2

– We give a max-flow based polynomial time algorithm for solving the densest subgraph problem
in directed graphs.

– We give a linear time 2-approximation algorithm for the densest subgraph problem in directed
graphs.

– We show that a linear programming relaxation considered by [9] for the densest subgraph prob-
lem in undirected graphs has integrality gap 1, and a simpler algorithm exists to obtain the max-
imum density subgraph from the optimum LP solution.

• For the densest at least k subgraph problem (Section 3):

– We show that the densest at least k subgraph problem is NP-Hard.

– For undirected graphs, we give a flow-based and an LP based approximation algorithm, for the
densest at least k subgraph problem. These run much faster than the polynomial time approxi-
mation algorithm of Andersen and deliver the same worst case approximation factor of 2.

– We define the notion of the densest at least k1, k2 subgraph problem for directed graphs and give
a 2-approximation algorithm for it.

• Densest at most k subgraph problem (Section 4):

– We show that approximating the densest at most k subgraph problem is as hard as the densest k
subgraph problem within a constant factor, specifically an α approximation for DamkS, implies
a 4α approximation for DkS.

2 Densest subgraph without any size restriction

In this section, first we give a max-flow based algorithm for the densest subgraph problem in directed graphs.
For undirected graphs, Goldberg developed a flow based algorithm that finds a densest subgraph in polyno-
mial time [15]. However for directed graphs no flow based algorithm was known. Next we consider the
greedy algorithm for the densest subgraph in undirected graphs proposed by Charikar [9] and develop an
extension of this algorithm to give a 2 approximation algorithm for finding a densest subgraph in directed
graphs. This improves the running time from O(|V |3 + |V |2|E|) to O(|V | + |E|). We also give a very
simple proof of 2-approximation for the greedy algorithm developed by [9] to obtain a densest subgraph in
undirected graphs.

2.1 Max-flow based algorithm for finding densest subgraphs in directed graphs

For a directed graphG = (V,E), we wish to find two subsets of nodes S and T , such that d(S, T) = |E(S,T)|√
|S||T |

is maximized. Let us denote the optimum subsets of nodes by S∗ and T ∗ respectively. To detect such subsets
of nodes, we first guess the value of |S

∗|
|T ∗| in the optimum solution. Since there are |V |2 possible values,

in Θ(|V |2) time, it is possible to guess this ratio exactly1. Let this ratio be a. We create a bipartite graph
G′ = (V1, V2, E), where V1 = V2 = V and for every directed edge (i, j) in the original graph, we add
an edge from vertex i ∈ V1 to j ∈ V2. We now wish to find S ⊆ V1 and T ⊆ V2, such that |E(S,T)|√

|S||T |
is

maximized. We also know, |S
∗|
|T ∗| = a.

We add a source s and a sink t to G′ = (V1, V2, E). We guess the value of the optimal (maximum)
density. Let the guessed value be g. Note that the optimal density involves computing the square-root. If

1If we want a (1 + ε) approximation, only O(log |V |
ε

) guessed values suffice.

3

we round off the values, there will necessarily be a small error introduced in the computation. If we imagine
ordering the (distinct) density values of all possible subgraphs, then the lower bound on the gap between two
consecutive values is Ω(1

n2). This enables the binary search to run in polynomial time.
The following edges with weights are then inserted into G′ = (V1, V2, E):

• We add an edge of weight 2m from source s to each vertex of V1 and V2, where m = |E|.

• We add an edge of weight (2m+ g√
a
) from each vertex of V1 to the sink t.

• We add an edge from each vertex j of V2 to sink t of weight 2m+
√
ag−2dj , where dj is the in-degree

of j.

• All the edges going from V1 to V2 are given weight 0. For each edge going from V1 to V2, a reverse
edge of weight 2 is added.

Now consider a s-t min-cut in this weighted graph. Since the cut {s}, {t, V1, V2} has weight 2m(|V1|+
|V2|), the min-cut value is ≤ 2m(|V1| + |V2|). Now consider the cut {s, S ⊆ V1, T ⊆ V2},{t, (V1 \ S) ⊆
V1, (V2 \ T) ⊆ V2}. The number of edges crossing the cut is,

2m(|V1| − |S|+ |V2| − |T |) + (2m+
g√
a

)|S|+
∑
i∈T

(2m+
√
ag − 2di) +

∑
i∈T,j∈V1\S,
(j,i)∈E(G)

2

= 2m(|V1|+ |V2|) + |S| g√
a

+ |T |
√
ag − 2|E(S, T)|

= 2m(|V1|+ |V2|) +
|S|√
a

(
g − |E(S, T)|

|S|/
√
a

)
+ |T |

√
a

(
g − |E(S, T)|

|T |
√
a

)
Let us denote the optimum density value by dOPT . If g < dOPT , then there exists S and T (correspond-

ing to the optimum solution), such that both
(
g − |E(S,T)|

|S|/
√
a

)
and

(
g − E(S,T)

|T |
√
a

)
are negative. Therefore S and

T are nonempty. If the guessed value g ≥ dOPT , let if possible S and T be non-empty. Let in this returned
solution, |S||T | = b. We have,

|S|√
a

(
g − |E(S, T)|

|S|/
√
a

)
+ |T |

√
a

(
g − E(S, T)

|T |
√
a

)
=

√
|S||T |

√
b√
a

(
g − d(S, T)√

b/
√
a

)
+
√
|S||T |

√
a√
b

(
g − d(S, T)
√
a/
√
b

)
=

√
|S||T |

((√
b√
a

+

√
a√
b

)
g − 2d(S, T)

)
(1)

Now,
(√

b√
a

+
√
a√
b

)
≥ 2 ∀ reals a, b and we have, g > dOPT ≥ d(S, T). Hence the value of (1) is > 0.

Thus if S and T are non-empty, then this cut has value > 2m(|V1| + |V2|). Hence if g > dOPT , min-cut is
({s}, {t, V1, V2}). If the guessed value g = dOPT , then we get a cut of the same cost as the trivial min-cut,
even by having S and T corresponding to S∗ and T ∗ respectively. We can always ensure that we obtain a
min-cut, which has the biggest size on the source side. Thus when the guessed value is correct, the optimum
subsets S and T are obtained from the subsets of vertices of V1 and V2 that belong to the side of the cut
that contains s. The algorithm detects the correct value of g using a binary search, similar to Goldberg’s
algorithm for finding a densest subgraph in undirected graphs [15]. Also it is easy to verify that, when the
correct value of g is guessed, we have b = a. Using a parametric max-flow algorithm [13], the total time
required is same as one flow computation within a constant factor.

4

2.2 2 approximation algorithm for the densest subgraph problem in undirected and directed
graphs

We first consider the greedy algorithm for the densest subgraphs in undirected graphs (first discovered by
Kortsarz and Peleg [19] and also considered by [9], [5]).

The greedy algorithm at each step chooses a vertex of minimum degree, deletes it and proceeds for
(n− 1) steps, where |V | = n. At every step the density of the remaining subgraph is calculated and finally
the one with maximum density is returned.

Algorithm 2.1: DENSEST-SUBGRAPH(G = (V,E))

n← |V |, Hn ← G
for i = n to 2

do
{

Let v be a vertex in Hi of minimum degree
Hi−1 ← Hi − {v}

return (Hj , which has the maximum density among H ′is, i = 1, 2, .., n)

The above greedy algorithm Densest-Subgraph achieves an approximation factor of 2 for undirected
networks, which is kind of a folklore result. Here we give a simple proof of it, much simpler than the one
provided in [9]. For directed graphs, Charikar developed a different greedy algorithm, that has a significantly
high time-complexity of O(|V |3 + |V |2|E|). We show that the algorithm Densest-Subgraph-Directed which
is a generalization of the algorithm Densest-Subgraph, detects a subgraph with density within a factor of 2 of
the optimum for directed graphs. This reduces the time complexity fromO(|V |3+ |V |2|E|) toO(|V |+ |E|).

Theorem 2.1. The greedy algorithm Densest-Subgraph achieves a 2-approximation for the densest sub-
graph problem in undirected networks.

Proof. Let dOPT denote the optimal density. Observe that in an optimal solution, every vertex has degree
≥ dOPT . Otherwise removing a vertex of degree < dOPT , will get a subgraph with higher density. Consider
the iteration of the greedy algorithm when the first vertex of the optimum solution is removed. At this stage
all the vertices in the remaining subgraph have degree ≥ dOPT . If the number of vertices in the subgraph is
s, then the total number of edges is ≥ dOPT s/2, and the density is ≥ dOPT /2. Since the greedy algorithm
returns the subgraph with the highest density over all the iterations, it always returns a subgraph with density
at least 1

2 of the optimum.

One can make examples showing that the bound of 2 is tight for Charikar’s algorithm. Let G be the
union of two graphs G1 and G2. G1 is a complete bipartite graph having d and D nodes respectively in each
partition. G2 is a disjoint union of D cliques, each of size d + 1. The density of G1 is dD

d+D and if we fix d
and let D become very large, this approaches d. If we run Charikar’s algorithm then the nodes in G2 have
degree d and the nodes in G1 have degree D or d. If we delete all the noes of degree d in G1, then the best
subgraph we can return will have density d

2 . However the optimal solution has density approaching d.

Structure of LP The optimal densest subgraph for undirected graph can also be computed using the fol-
lowing LP.

5

maximize
∑
i,j

xi,j (2)

xi,j ≤ min(yi, yj) ,∀(i, j) ∈ E(G)∑
i

yi = 1 ,∀i ∈ V (G)

xi,j , yi ≥ 0 ,∀(i, j) ∈ E(G),∀i ∈ V (G)

Charikar [9] showed that there exists an i ∈ {1, .., |V (G)|} such that the density of the subgraph induced
by the vertices with y value at least yi is equal to the optimal density. Thus by considering each value of
yi, i = 1, . . . , |V (G)| and checking their density, we can obtain the maximum density subgraph. However
here we show that there exists an LP solution where all the yi values are equal and hence the integrality gap
of the above LP (2) is 1. We also show that for any LP optimal solution, picking all the vertices with positive
y values returns a maximum density subgraph.

Theorem 2.2. There exists a solution of the LP (2) such that all the yi variables are equal. Also for any
solution of LP (2), the vertices with non-zero yi constitute a densest subgraph.

Proof. Consider an optimal solution of LP (2) that creates the minimum number of different values for y
variables. Let these different values be r1 > r2, . . . > rs > 0, s ≥ 2. Let the number of vertices with
corresponding y value equaling to ri be Vi. Thus, we have

∑
i Viri = 1. Since xi,j = min(yi, yj), edge

variables xi,j can also be classified into s groups. Let the number of edges with value ri be Ei. These are the
edges with end vertices having values at least ri. We have the value of LP (2) to be

∑s
i=1Eiri. Now modify

the solution by setting each vertex with value rs to 0 and updating the value of r1 to rnew1 = r1 + Vsrs
V1

.
Clearly, rnew1 V1 +

∑s−1
i=2 riVi = 1. Hence we have,

s∑
i=1

riEi ≥ rnew1 E1 +
s−1∑
i=2

riEi

Thus we get,

Esrs ≥
E1Vsrs
V1

,

or,
Es
Vs
≥ E1

V1
(3)

Now consider another perturbation of the LP solution. Let γ = min((r1 − r2)V1/Vs, rs−1 − rs) and set all
the vertices with value r1 to rnew1 = r1−γVs/V1 and update the value of rs to rnews = rs+γ. Clearly again,
rnew1 V1 +

∑s−1
i=2 riVi + rnews Vs = 1. Thus this perturbed solution is feasible. Hence we have,

s∑
i=1

riEi ≥ rnew1 E1 +
s−1∑
i=2

riEi + rnews Es

Thus we get,

(r1 − rnew1)E1 ≥ (rnews − rs)Es
or, E1γVs/V1 ≥ Esγ

or,
E1

V1
≥ Es
Vs

(4)

6

Thus from Equations [(3), (4)], we get Es
Vs

= E1
V1

. Using similar argument, by fixing all but the values of
vertices with ri and rs, i ∈ [2, s − 1], we get E1

V1
= E2

V2
= . . . = Es

Vs
. Let the density of the optimal densest

subgraph in G be λ. Then E1
V1
≤ λ. Let E1

V1
= E2

V2
= . . . = Es

Vs
= λ′ ≤ λ. Therefore we have the LP optimal

solution,
∑s

i=1Eiri = λ′
∑s

i=1 Viri = λ′ ≤ λ. Since we know any optimal solution of LP (2) is at least
λ, it must be the case that E1

V1
= E2

V2
= . . . = Es

Vs
= λ. Thus one possible optimal solution of LP 2 is to set

all the vertices counted in V1 to 1
V1

and rest to 0. In fact, for any i ∈ [1, s], we can consider all the vertices
counted in Vj , for j ∈ [1, i] and set their values to 1∑i

j=1 Vj
. This is true for j = s, thus for any LP solution,

we can consider all the vertices with nonzero y values and that gives the optimum solution.

We now consider the case of directed graphs. In a directed graph, for each vertex we count its in-degree
and out-degree separately. Let vi be a vertex with minimum in-degree and vo be a vertex with minimum
out-degree. Then we say vi has minimum degree, if the in-degree of vi is at most the out-degree of vo, else
vo is said to have the minimum degree. In the first case, the vertex with minimum degree belongs to category
IN. In the second case, it belongs to category OUT. The greedy algorithm for directed graphs deletes the
vertex with minimum degree and then depending on whether it is of category IN or OUT, either deletes all
the incoming edges or all the outgoing edges incident on that vertex, respectively. If the vertex becomes a
singleton, the vertex is deleted. To compute the density of the remaining graph after an iteration of Densest-
Subgraph-Directed, any vertex that has nonzero out-degree is counted in the S side and all the vertices with
non-zero in-degree are counted in the T side. Therefore the same vertex might appear both in S and T and
will be counted once in S and once in T . We denote the optimum solution by (S∗, T ∗).

Algorithm 2.2: DENSEST-SUBGRAPH-DIRECTED(G = (V,E))

n← |V |, H2n ← G, i← 2n
while Hi 6= ∅

do

Let v be a vertex in Hi of minimum degree
if category(v) = IN

then Delete all the incoming edges incident on v
else Delete all the outgoing edges incident on v

if v has no edges incident on it then Delete v
Call the new graph Hi−1, i← i− 1

return (Hj which has the maximum density among H ′is)

Define λi = |E(S∗, T ∗)|
(

1−
√

1− 1
|T ∗|

)
and λo = |E(S∗, T ∗)|

(
1−

√
1− 1

|S∗|

)
.

Lemma 2.3. In an optimal solution, each vertex in S∗, has out-degree ≥ λo and each vertex in T ∗ has
in-degree ≥ λi.

Proof. The proof is by simply observing that otherwise removing the vertex with minimum degree from
either S or T , gives a higher density subgraph. Suppose if possible, ∃v ∈ S∗ with out-degree < λo. Remove
v from S∗. The density of the remaining subgraph is > E(S∗,T ∗)−λo√

(|S∗|−1)|T ∗|
= dOPT , which is not possible. Here

we get the last equality by plugging in the value of λo. Similarly, every vertex v ∈ T ∗ has degree ≥ λi.

Theorem 2.4. The greedy algorithm Densest-Subgraph-Directed achieves a 2 approximation for the dens-
est subgraph problem in directed networks.

Proof. Consider the iteration of the greedy algorithm, when the vertices in S have out-degree ≥ λo and
the vertices in T have in-degree ≥ λi. Let us call the set of vertices on the side of S and T by S′

7

and T ′ respectively. Then the number of edges, E′ ≥ |S′|λo, and also E′ ≥ |T ′|λi. Hence, the den-

sity d(S′, T ′) ≥
√
|S′|λo|T ′|λi
|S′||T ′| =

√
λoλi. Substituting the values of λo and λi from Lemma 2.3, we get

d(S′, T ′)2 ≥ |E(S∗, T ∗)|2
(

1−
√

1− 1
|S∗|

)(
1−

√
1− 1

|T ∗|

)
. Now putting |S∗| = 1

sin2 θ
and |T ∗| =

1
sin2 α

, we get d(S′, T ′) ≥ |E(S∗,T ∗)|√
|S∗||T ∗|

√
(1−cosθ)(1−cosα)

sinθsinα = dOPT
2cos θ

2
cosα

2

≥ dOPT
2 .

3 Densest at least k subgraph problem

For undirected graphs, the DalkS algorithm tries to find a subgraph of highest density among all subgraphs,
that have size at least k. We prove that the DalkS problem is NP-complete. and develop two algorithms; a
combinatorial algorithm and one based on solving a linear programming formulation of the DalkS problem.
Each algorithm achieves an approximation factor of 2. Finally we consider the DalkS problem in directed
graphs, and give a combinatorial 2-approximation algorithm for the problem. We complement it by showing
an LP based approximation for directed DalkS; but it achieves a worse approximation ratio of 3.

Theorem 3.1. DalkS is NP-Hard.

Proof. We reduce the densest k subgraph problem (this problem is NP -hard [11, 4]) to densest at least k
subgraph problem. Suppose we are given a graph G and a value l and we want to know whether a subgraph
of size l, with density ≥ λ exists. We construct a clique G′ of size n2, where |V (G)| = n. We then consider
the graph formed by the union of G and G′ and ask for a subgraph of size at least n2 + l of highest density.
The following properties are satisfied by the solution S returned by DalkS on the union of G and G′.

• G′ ⊂ S: Suppose not. Let G′ − S = T 6= ∅. Observe that the density of S is < (n2 − 1)/2, since
the density of any proper subgraph of G′ and any subgraph of G is strictly less than (n2 − 1)/2. Let
|S| = r and the density of S be λ(S). By adding T to S, we get additional ET edges (edges incident
on nodes in T). ET = T (n2− 1

2(T − 1)). So the new density of S ∪ T becomes λ(S)r+ET

r+|T | . We claim
that this is > λ(S). To prove this we need to show that λ(S)T < ET . This is easy to verify by the
earlier observation on λ(S). We thus obtain λ(S)r+ET

r+|T | > λ(S)r+λ(S)|T |
r+|T | > λ(S). Therefore G′ must

be entirely contained in S.

• |S∩G| = l: Let us denote by, SG = S∩G. Since |S| ≥ n2+ l, |SG| ≥ l. If possible let |SG| = l′ > l.
Let the density of SG be λ(SG). Therefore the density of S is

λ(SG) ∗ l′ + E(G′)

l′ + V (G′)
≤ l′(l′ − 1)/2 + E(G)

l′ + V (G′)

≤ 1 + E(G)

l′ − 1 + V (G′)
(5)

Hence the density of S is a decreasing function of |SG|. Thus we must have |SG| = l.

It follows from the above two properties that SG is the densest subgraph of size l inG, since otherwise we
can replace the size l subgraph of SG with the densest l subgraph of G and get a better solution. Therefore

if the solution returned by DalkS has density ≥ (n
2

2)+λl
n2+l

, then the answer is yes, otherwise the answer is
no.

We develop two algorithms for DalkS that both achieve an approximation factor of 2. We note that [2]
proposed a 2 approximation algorithm, that requires n3 max-flow computations. Even using the parametric

8

flow computation [13] the running time is within a constant factor of n2 flow computations. Whereas our first
algorithm uses at most max(1, (k − γ)) flow computations using parametric flow algorithm and in general
much less than that. Here γ is the size of the densest subgraph without any size constraint. The second
algorithm is based on a linear programming formulation for DalkS and requires only a single solution of a
LP.

3.1 Algorithm 1: Densest at least k subgraph

Let H∗ denote the optimum subgraph and let d∗ be the optimum density. The algorithm starts with the
original graph G as G0, and D0 as ∅. In the ith iteration, the algorithm finds the densest subgraph Hi from
Gi−1 without any size constraint. If |V (Di−1)|+ |V (Hi)| ≥ k, the algorithm stops. Otherwise the algorithm
adds Hi to Di−1 to obtain Di. All the edges and the vertices of Hi are removed from Gi−1. For every vertex
v ∈ Gi−1 \ Hi, if v has l edges to the vertices in Hi, then in Gi a self loop of weight l is added to v. The
algorithm then continues with Gi. When the algorithm stops, each subgraph Di is padded with arbitrary
vertices to make their size k. The algorithm then returns the Dj with maximum density.

Algorithm 3.1: DENSEST AT LEAST-K(G, k)

D0 ← ∅, G0 ← G, i← 1
while |V (Di)| < k

do

Hi ← maximum-density-subgraph(Gi−1)
Di ← Di−1 ∪Hi

Gi = shrink(Gi−1, Hi), i← i+ 1
for each Di

do Add an arbitrary set of max(k − |V (Di)|, 0) vertices to it to form D′i
return (D′j , which has the maximum density among the D′is)

We prove that algorithm Densest At least-k achieves an approximation factor of 2.

Theorem 3.2. The algorithm Densest At least-k achieves an approximation factor of 2 for the DalkS prob-
lem.

Proof. If the number of iterations is 1, thenH1 is the maximum density subgraph of the original graph whose
size is ≥ k. Therefore H∗ = H1 and the algorithm returns it. Otherwise, say the algorithm iterates for l ≥ 2
rounds. There can be two cases:

Case 1: There exists a l′ < l such that E(Dl′−1) ∩ E(H∗) ≤ E(H∗)
2 and E(Dl′) ∩ E(H∗) ≥ E(H∗)

2 .
Case 2: There exists no such l′ ≤ l.
For case 2, we have for any j ≤ l− 1, E(Dj)∩E(H∗) ≤ E(H∗)

2 . Therefore, E(Gj)∩E(H∗) ≥ E(H∗)
2 .

Consider V ′ = V (Gj) ∩ V (H∗). The density of the subgraph induced by V ′ in Gj is ≥ E(Gj)∩E(H∗)
|V ′| ≥

E(H∗)
2V (H∗) = d∗/2. Hence the density of Hl must be ≥ d∗/2. So in case 1, for each j ≤ l, the density of Hj is

≥ d∗/2. Therefore the total number of edges in the subgraph Dl is ≥ d∗
∑l′
j=1 |V (Hj)|

2 , or the density of Dl′

is ≥ d∗/2 and it has ≥ k vertices.
For case 1, the subgraph Dl′ has at least E(H∗)/2 edges and since V (Dl′) ≤ k, the density of D′l′ is

≥ d∗

2 .
Since the algorithm returns the subgraph D′j with maximum density among all the D′is, the returned

subgraph has density at least d∗/2.

We now give an example where Algorithm 1 of DalkS achieves the worst case approximation ratio of 2.
Let G = H1∪H2∪H3∪H4, where H1, H2, H3, H4 are disjoint. H1 is a clique of size

√
2v, H2 is a tree on

9

v vertices, H3 is a cycle on v2 vertices and H4 are v disjoint vertices. We have
√

2v+ 2v+ v2 = n. Density
of H1 is ≈

√
2v/2 and it is the densest subgraph of G. we have E(H1) ≈ v. We also have density of H2

is 1 − 1/v and density of H3 is 1. The optimum densest subgraph of size at least v +
√

2v is H1 ∪H2. Its
density is E(H1)+E(H2)

|H1|+|H2| ≈ 2v/(v+
√

2v) ≈ 2. The algorithm will find H1 in the first iteration. In the second
iteration it will find H3. So the algorithm has the option of returning H1 ∪H3 or append arbitrary v vertices
toH1 to satisfy the size requirement. In the first case, the density is E(H1)+E(H3)

|H1|+|H3| ≈ v+v2/(
√

2v+v2) ≈ 1.

In the second case if the arbitrary vertices chosen are from H4, we get a density of E(H1)√
2v+v

≈ 1.

3.2 Algorithm 2: Densest at least k subgraph

Next we give a LP based solution for the DalkS problem. Define a variable xi,j for every edge (i, j) ∈ E(G)
and a variable yi for every vertex i ∈ V (G). Consider now the following LP:

maximize
∑
i,j

xi,j (6)

xi,j ≤ yi , ∀(i, j) ∈ E(G); xi,j ≤ yj ,∀(i, j) ∈ E(G)

∑
i

yi = 1; yi ≤
1

l
,∀i ∈ V (G); xi,j , yi ≥ 0 , ∀(i, j) ∈ E(G), ∀i ∈ V (G)

Here l ≥ k is the size of the optimal solution of the DalkS problem. Since there can be n−k+1 possible
sizes of the optimal solution, we can guess this value, plugging in different values of l. In Section 3.3 we
show that by first running the algorithm Densest-Subgraph and then solving one single LP, we can guarantee
a 2-approximation.

Lemma 3.3. The optimal solution of LP (6) is greater than or equal to the optimal value of DalkS.

Proof. Let the optimal solution for DalkS be obtained for a subgraph H having l ≥ k vertices and density
λ. Consider a solution for the above LP, where each of the variables yi corresponding to the vertices of H
have value 1

l . All the variable xi,j corresponding to the induced edges of H have value 1
l . The solution

is feasible, since it satisfies all the constraints of LP (6). The value of the objective function of the LP is∑
(i,j)∈H xi,j = E(H)

l = E(H)
V (H) = λ. Therefore the optimal value of the LP is ≥ λ

Lemma 3.4. If the value of an optimal solution of LP (6) is λ, then a subgraph of size ≥ k with density
≥ λ/2 can be constructed from that solution of LP (6).

Proof. Define S(r) = {i|yi ≥ r} and E(r) = {(i, j)|xi,j ≥ r}. As observed in [9], E(r) is the set of edges
induced by the subgraph S(r). This follows from the fact that xi,j = min(yi, yj). Hence if xi,j ∈ E(r),
then both yi and yj are in S(r). On the other hand if yi and yj are in S(r), then xi,j ∈ E(r). Now∫ 1/l
r=0 |S(r)|dr =

∑
i∈V (G) yi = 1. Also

∫ 1/l
r=0 |E(r)|dr =

∑
(i,j)∈E(G) xi,j ≥ λ. Consider E(δ), where δ is

the smallest step by which xi,j increases. Let H∗ denote the optimal solution for DalkS. Then it must hold
that |E(δ)| ≥ |E(H∗)|. Otherwise since E(r′) ⊆ E(r), ∀r′ ≥ r, |E(r)| ≤ |E(δ)|. Therefore we have,∫ 1/l
r=0 |E(r)|dr ≤ |E(H∗)|

∫ 1/l
r=0 dr = |E(H∗)|

l = λ.
So, if |S(δ)| = l (|S(δ)| is always ≥ l), then since |E(δ)| ≥ |E(H∗)|, we get the optimal solution by

considering the induced subgraph S(δ).
Let r be the minimum index, such that |S(r)| = l. If any one of the following two cases holds, we get a

2 approximation:
Case 1: For r′ < r, E(r′)/S(r′) ≥ λ

2 . It is obvious that in this case we get a 2 approximation.

10

Case 2: For r′ ≥ r, E(r′) ≥ E(H∗)/2. In this case we can add arbitrary vertices to the subgraph
induced by the vertices in S(r′), to make its size l, since |S(r′)| ≤ |S(r)| = l.

Case 3: Neither case 1 nor case 2 holds. We show by contradiction, that case 3 cannot occur. If
possible, let us assume that case 3 occurs. Then |E(r)| < E(H∗)

2 . Since E(r) is a decreasing function of r,
∀r′ ≥ r, |E(r)| < |E(H∗)|

2 . Hence we have,∫ 1/l

x=r
|E(x)|dx < |E(H∗)|

2

∫ 1/l

x=r
dr =

|E(H∗)|
2

(
1

l
− r
)

(7)

Also we have ∀r′ < r, |E(r′)|
|S(r′)| <

λ
2 . Hence we get,∫ r−δ

x=0
|E(x)|dx ≤ λ

2

∫ r−δ

x=0
|S(x)|dx ≤ λ

2

∫ 1/l

x=0
|S(x)|dx =

λ

2
=
E(H∗)

2l
(8)

Therefore we get,∫ x=1/l

x=0
|E(x)|dx =

∫ r−δ

x=0
|E(x)|dx+

∫ 1/l

x=r
|E(x)|dx =

|E(H∗)|
l

− |E(H∗)|r
2

< λ

Here we get the second equality by adding Equation (7) and (8) and the last inequality by noting r > 0.
But we have

∫ 1/l
r=0 |E(r)|dr =

∑
(i,j)∈E(G) xi,j ≥ λ. Hence we arrive at a contradiction.

Theorem 3.5. If the value of an optimal solution of LP (6) is λ, a subset S of vertices can be computed from
that solution such that

d(G(S)) ≥ λ

2
and |S| ≥ k

Proof. Consider every possible subgraph by setting r = yi for all distinct values of yi. By Lemma 3.4, there
exists a value of r such that |S(r)| ≥ k and |E(r)|

|S(r)| ≥ v/2, where v is an optimal solution of the LP. By
Lemma 3.3 , v ≥ λ and hence the proof.

3.3 Reducing the number of LP solutions

To reduce the number of LP solutions, we first run the algorithm Densest-Subgraph, consider the solutions
over all the iterations that have more than k vertices and obtain the one with maximum density. We call this
modified algorithm Densest-Subgraph>k. We compare the obtained subgraph from Densest-Subgraph>k
with the solution returned by the LP based algorithm with l = k. The final solution is the one which has the
higher density.

When the optimal solution for DalkS has exactly k vertices, Theorem 3.5 guarantees that we obtain a 2
approximation. Otherwise, the optimum subgraph has size> k. In this situation, the following lemma shows
that the solution returned by Densest-Subgraph>k has density at least 1

2 of the optimal solution of DalkS.
Therefore using only a single solution of LP (6) along with the linear time algorithm Densest-Subgraph>k,
we can guarantee a solution for DalkSwithin a factor of 2 of the optimum.

Lemma 3.6. If the optimum subgraph of DalkS problem has size > k, then Densest-Subgraph>k returns a
2 approximate solution.

Proof. Let the optimal density be λ. Since the size of the optimal solution is > k, if there exists any vertex
in the optimum solution with degree < λ, then removing that we would get higher density and the size of
the subgraph still remains ≥ k. Hence all the vertices in the optimum solution has degree ≥ λ. Now from
Theorem 2.1, we get the required claim.

11

3.4 Integrality Gap of LP (6) for DalkS and the worst case example for Algorithm 2

Let a, b, c be three positive integers, values to be fixed later. Consider a graph G which is a union of a
complete graph L and a random graph H . So G = L

⋃
H , L is a complete graph of size an and H is a

graph on bn vertices with each edge existing with probability p < 1. Therefore the expected number of
edges of H is bn(bn−1)p

2 edges. We pick a H which has exactly bn(bn−1)p
2 edges. Set k = (a + c)n and let

a < c < b. Let us now compute the optimum integral solution of DalkSin G.
We claim that the optimum integral solution is L ∪ H ′ where H ′ ⊂ H with exactly cn vertices when

p ≤ a2(b−c)
b2(a+c)−c2(a+b) and b ≤ c + 2a. Suppose not and let if possible the optimum consists of some dn

vertices of H and rn < an vertices of L. Then by removing any (a − r) vertices of H and adding the
remaining (a− r) vertices of L, we get more edges. Therefore the optimum solution must contain the entire
L. Now let if possible d be greater than c. LetH ′′ be the subgraph ofH that appears in the optimum solution
and has size dn. Consider the cn vertices of H that has the highest density and call it Hcn. We have density
of L

⋃
Hcn is d1 ≈ a2n+c2np

2(a+c) and the density of L
⋃
H ′′ is d2 ≤ a2n+d2np

2(a+d) . Now plugging back the value of
p and noting that b ≤ c+ 2a, we get d1 > d2 and hence a contradiction.

Now consider an LP feasible solution. Assign each vertex of L a value of 1
(a+c)n . Therefore the total

contribution of these vertices is a
a+c . Assign each vertex of H a value of

1− a
a+c

bn = c
(a+c)bn . Hence the

objective of the LP solution has a value of at least

≈ 1

(a+ c)n

a2n2

2
+

c

(a+ c)bn

b2n2p

2

=
a2n+ cbnp

2(a+ c)
.

Thus the integrality gap is at least a
2+cbp
a+c2p

, where p = a2(b−c)
b2(a+c)−c2(a+b) and b ≤ c+ 2a. Setting a = 1, c =

1, b = 3, we get p = 1
7 and the integrality gap is at least 1+3/7

1+1/7 = 5
4 .

However using the same worst case example as in Algorithm 1 for DalkS, it can be shown that our
specific algorithm cannot do better than 1

2 approximation. We leave open the question of designing a new
rounding technique to achieve a better approximation than 2 or improving the integrality gap of 5/4 of LP
(6).

3.5 Densest at least k subgraph problem for directed graphs

Given a directed graph G = (V,E) and integers k1, k2, the densest at least k directed subgraph (DaLkDS)
problem finds two subsets of nodes S and T containing at least k1 and k2 vertices respectively for which
E(S,T)√
|S||T |

is maximized.

In this section we give a 2 approximation algorithm for the DaLkDS problem. Since there are two
parameters, k1, k2; we refer to this problem by densest at least-k1, k2 problem from now on.

3.6 Densest at least k1, k2 directed subgraph problem

Let S∗, T ∗ represent the optimum solution of DaLkDS and d∗ represent the value of the density correspond-
ing to S∗, T ∗. Let the ratio |S

∗|
|T ∗| be a. Since the possible values of a can be i

j , where i ≥ k1, j ≥ k2 and
i, j ≤ |V |, we can guess the value of a. We run the max-flow based algorithm of Section 2.1 (maximum-
directed-density-subgraph) with the chosen a to obtain the densest directed subgraph without any size con-
straints. Instead of shrinking and removing the vertices and the edges in the densest directed subgraph, as in
algorithm Densest At least-k for DalkS, we only remove the edges and maintain the vertices. We continue

12

this procedure for the same choice of a, until at some round both the sizes of S and T thus obtained exceed k1
and k2 respectively. Let Si and Ti be the partial subsets of vertices obtained up to the ith round. We append
arbitrary vertices A and B to Si and Ti to form S′i and T ′i respectively, such that |S′i| ≥ k1 and |T ′i | ≥ k2.
The algorithm returns S′j , T

′
j , such that the density d(S′j , T

′
j) is maximum over all the iterations.

Algorithm 3.2: DENSEST AT LEAST-k1, k2(G, k1, k2, a)

S0 ← ∅, T0 ← ∅, G0 ← G, i← 1
while |Si−1| < k1 or |Ti−1| < k2

do

Hi(S, T)← maximum-directed-density-subgraph(Gi−1, a)
Si ← Si−1 ∪Hi(S)
Ti ← Ti−1 ∪Hi(T)
Gi = shrink(Gi−1, Hi), i← i+ 1

for each Si, Ti

do
{

Add arbitrary max(k1 − |Si|, 0) vertices to Si to form S′i
Add arbitrary max(k2 − |Ti|, 0) vertices to Ti to form T ′i

return (S′j , T
′
j) which has maximum density among the (S′i, T

′
i)s

Theorem 3.7. Algorithm Densest At least-k1, k2 achieves an approximation factor of 2 for the DaLkDS prob-
lem.

Proof. For a chosen a, algorithm Densest At least-k1, k2 returns subsetsHi(S) andHi(T) at iteration i, such
that |Hi(S)||Hi(T)| = a. Suppose up to l1th iteration, |Sl1 | < k1 and |Tl1 | < k2. Let |Sl1+1| ≥ k1, but up to l2th
iteration, |Tl2 | < k2. At iteration l2 + 1, |Tl2+1| ≥ k2. Now we consider the following cases,

Case 1: |E(Sl1 , Tl1)| ≥ |E(S∗, T ∗)|/2.
Case 2: |E(Sl2 , Tl2)

⋂
E(S∗, T ∗)| ≤ |E(S∗, T ∗)|/2.

Case 3: ∃l′, l1 < l′ ≤ l2, such that |E(Sl′ , Tl′)| > |E(S∗, T ∗)|/2 and
|E(Sl′−1, Tl′−1)| ≤ |E(S∗, T ∗)|/2.

These three cases are mutually exclusive and exhaustive. When case 1 occurs, we can append arbitrary

vertices to Sl1 and Tl1 to make their sizes respectively k1 and k2. In that case
E(S′l1

,T ′l1
)√

|S′l1 ||T
′
l1
|
≥ E(S∗,T ∗)

2
√
|S∗||T ∗|

=

d∗/2. When case 2 occurs, at iteration l2 at least half of the edges of the optimum are still not covered. Since
no vertices are ever deleted, choice of S∗ and T ∗ maintains the ratio a and returns a density that is at least
d∗

2 . Then

∀i = 1, 2, .., l2,
E(Hi(S), Hi(T))√
|Hi(S)||Hi(T)|

≥ d∗

2
;

which implies

E(Hi(S), Hi(T)) ≥
√
|Hi(S)||Hi(T)|d

∗

2
=
√
a|Hi(T)|d

∗

2
.

Hence by summing over the iterations 1 to l2 + 1 we get,

E(Sl2+1, Tl2+1) ≥
√
a

l2+1∑
i=1

|Hi(T)|d
∗

2

≥ d∗

2

√
a|Tl2+1|

=
d∗

2

√
|Tl2+1||Sl2+1|.

13

Hence we have,
E(S′l2+1, T

′
l2+1)√

|S′l2+1||T ′l2+1|
=
E(Sl2+1, Tl2+1)√
|Sl2+1||Tl2+1|

≥ d∗

2
.

When case 3 occurs, again

∀i = 1, 2, .., l′,
E(Hi(S), Hi(T))√
|Hi(S)||Hi(T)|

≥ d∗

2
.

Now following an analysis identical to case 2 we get,

E(Sl′ , Tl′)√
|Sl′ ||Tl′ |

≥ d∗

2
.

Since |S′l′ | = |Sl′ | might be much larger than k1, an analysis similar to case 1 cannot guarantee a 2-
approximation. Let X1 = |

⋃l′

i=1Hi(S)| = |Sl′ | and X2 =
∑l′

i=1|Hi(S)|. Similarly Y1 = |
⋃l′

i=1Hi(T)| =
|Tl′ | and Y2 =

∑l′

i=1|Hi(T)|. We have

Y2 =
X2

a
≥ X1

a
≥ k1

a
= k2.

We also have,
E(X1, Y1)√
|X2||Y2|

≥ d∗

2
.

Therefore,
E(X1, Y1)√
|S′l′ |

=
E(X1, Y1)√
|X1|

≥ E(X1, Y1)√
|X2|

≥
√
Y2
d∗

2
≥
√
k2
d∗

2
.

We add arbitrary vertices to Y1 to make its size equal to k2. Hence,

E(X1, Y1)√
|S′l′ |

≥
√
|T ′l′ |

d∗

2
.

Also
E(X1, Y1)√
|T ′l′ |

=
E(X1, Y1)√

k2
≥ E(X1, Y1)√

|Y2|
≥
√
|X2|

d∗

2
≥
√
|S′l′ |

d∗

2
.

Multiplying we get,
E(S′l′ , T

′
l′)

2√
|S′l′ ||T ′l′ |

≥
√
|S′l′ ||T ′l′ |

d∗2

4
,

or we have,
E(S′l′ , T

′
l′)√

|S′l′ ||T ′l′ |
≥ d∗

2

.

For a particular value of a, using parametric max-flow algorithm Densest At least-k1, k2 requires time of
a single flow computation within a constant factor. However there are |V |2 possible choices of a. Improving
the time complexity for this variant is open. Next we present an LP based algorithm for densest at least k1, k2
directed subgraph problem. It achieves an approximation factor of 3, worse than 2 that is obtained here. But
we don’t know whether the integrality gap is tight and thus an LP based approach is a viable one for future
improvements.

14

3.7 Algorithm 2: Densest at least k1, k2 directed subgraph problem

Define a variable xi,j for every edge (i, j) ∈ E(G), variables si and tj for every vertex i ∈ S = V (G) and
j ∈ T = V (G). We guess the value of c = |SOPT |

|TOPT | and solve the following LP for each value of c.

maximize
∑
i,j

xi,j (9)

xi,j ≤ si , ∀(i, j) ∈ E(G)

xi,j ≤ tj ,∀(i, j) ∈ E(G)∑
i

si =
√
c , ∀i ∈ S

∑
j

tj =
1√
c
,∀j ∈ T

si ≤
√
c

l1
, ∀i ∈ S

tj ≤
1

l2
√
c
,∀j ∈ T

xi,j , si, tj ≥ 0 , ∀(i, j) ∈ E(G),∀i ∈ S, j ∈ T

Here l1 ≥ k1 and l2 ≥ k2 are the size of SOPT and TOPT respectively. Since there can be n − k1 + 1
possible choices for SOPT and similarly n − k2 + 1 choices for TOPT , we can guess these values as well.
Denote by λ an optmal solution for LP (9) and by dOPT an optimal value of DaLkDS.

Lemma 3.8. λOPT ≥ dOPT .

Proof. Let |SOPT ||TOPT | = l1
l2
c. Consider a solution for LP (9), where each of the variables si for i ∈ SOPT have

value
√
c
l1

and each of the variables tj , for j ∈ TOPT have value 1
l2
√
c
. Since, l1 = l2 ∗ c, si =

√
c
l1

= 1√
l1l2

=
1

l2
√
c

= tj for all i ∈ SOPT and j ∈ TOPT . Thus, we can set the variable xi,j = si = tj for all edges
(i, j) ∈ SOPT × TOPT . The solution is feasible, since it satisfies all the constraints of LP (9). The value
of the objective function is

∑
(i,j)∈SOPT×TOPT xi,j = E(SOPT ,TOPT)√

l1l2
= E(SOPT ,TOPT)√

|SOPT ||TOPT |
= dOPT . Therefore

the optimal value of the LP, λ ≥ dOPT

Theorem 3.9. Subsets S′, T ′ of vertices can be computed from an optimal solution of LP (9), such that

d(S′, T ′) ≥ λ

3
;

|S′| ≥ k1and |T ′| ≥ k2
Proof. Consider an optimal solution of LP (9) where the guessed values of c, l1, l2 are correct. Therefore,
c = l1

l2
and each si, tj ≤

√
l1l2. Define S(r) = {i|si ≥ r}, T (r) = {j|tj ≥ r} andE(r) = {(i, j)|xi,j ≥ r}.

It can be easily seen that E(r) is the set of edges that goes from S(r) to T (r). Now∫ √l1l2
r=0

|S(r)|dr =
∑

i∈V (G)

si =
√
c

and ∫ √l1l2
r=0

|T (r)|dr =
∑

j∈V (G)

tj = 1/
√
c.

15

Hence by Cauchy-Schwarz inequality,

∫ √l1l2
r=0

√
|S(r)||T (r)|dr ≤

√∫ √l1l2
r=0

|S(r)|dr
∫ √l1l2
r=0

|T (r)|dr ≤ 1.

Also ∫ √l1l2
r=0

|E(r)|dr =
∑

(i,j)∈E(S,T)

xi,j ≥ λ.

ConsiderE(δ), where δ is the smallest step by which xi,j increases. It must hold that |E(δ)| ≥ |E(SOPT , TOPT)|.
Otherwise since E(r′) ⊆ E(r), ∀r′ ≥ r, we have ∀r, |E(r)| ≤ |E(δ)|. Therefore∫ √l1l2

r=0
|E(r)|dr ≤ |E(SOPT , TOPT)|

∫ √l1l2
r=0

dr =
|E(H∗)|√

l1l2
= λ.

So, if |S(δ)| = l1, |T (δ)| = l2 (|S(δ)| is always ≥ l1 and similarly |T (δ)| is always ≥ l2), then since
|E(δ)| ≥ |E(SOPT , TOPT)|, we get an optimal solution by considering the induced subgraph S(δ), T (δ).

Let r1, r2 be the minimum indices, such that |S(r1)| = l1 and |T (r2)| = l2.
First consider the case r1 ≤ r2. The case with r2 < r1 is similar.
If any one of Case 1 or Case 2 holds, we get a 3 approximation:
Case 1: ∃r′ < r1, E(r′)/

√
S(r′)T (r′) ≥ λ

3 . It is obvious that in this case we get a 3 approximation.
Case 2: ∃r′ ≥ r2,E(r′) ≥ E(SOPT , TOPT)/3. In this case we can add arbitrary vertices to the subgraph

induced by the vertices in S(r′), to fulfill the size requirements.
Case 3: ∃r1 < r′ < r2, E(r′)/

√
l1|T (r′)| ≥ λ

3 . In this case, we can append arbitrary vertices to S(r′)
to make its size exactly l1 and thus get a 3 approximation for DaLkDS. Now we show that one of these three
cases always occur. Suppose, if possible neither of these three cases occur. Since Case 1 does not occur, we
have, ∫ r1

0
|E(r)|dr <

λ

3

∫ r1

0

√
|S(r)||T (r)|dr

≤ λ

3

√∫ r1

0
|S(r)|dr

∫ r1

0
|T (r)|dr

≤ λ

3
(10)

Since Case 2 does not occur, we have,∫ 1/
√
l1l2

r2

|E(r)|dr <
E(SOPT , TOPT)

3

∫ 1/
√
l1l2

r2

dr

=
E(SOPT , TOPT)

3

(
1√
l1l2
− r2

)
<

λ

3
(11)

16

Since Case 3 does not occur, we have,∫ r2

r1

|E(r)|dr <
λ

3

√
l1

∫ r2

r1

√
|T (r)|dr

=
E(SOPT , TOPT)

3
√
l2

∫ r2

r1

√
|T (r)|dr

<
E(SOPT , TOPT)

3
√
l1l2

∫ r2

r1

√
l1|T (r)|dr

=
E(SOPT , TOPT)

3
√
l1l2

∫ r2

r1

√
cl2|T (r)|dr

<
E(SOPT , TOPT)

3
√
l1l2

∫ r2

r1

√
c|T (r)|dr

≤ E(SOPT , TOPT)

3
√
l1l2

<
λ

3
(12)

Therefore from Equations (10), (11) and (12), we get;∫ 1/
√
l1l2

0
|E(r)|dr < λ

This gives a contradiction.
Therefore there exists a value of r, for which one of the three cases hold. We can try every possible

subgraph (S(r), T (r), E(r)) by setting r = si and tj for all distinct values of si, tj .

4 Densest at most k subgraph problem

The densest at most k subgraph problem (DamkS) tries to find a subgraph of the highest density whose size
is at most k. Andersen et al. [3] showed that an α approximation for DamkS implies a Θ(α2) approximation
for the densest k subgraph problem. We prove that approximating DamkS is as hard as the DkS problem,
within a constant factor. Precisely we prove the following theorem:

Theorem 4.1. An α approximation algorithm for DamkS implies an 4α approximation algorithm for the
densest k subgraph problem

Proof. Let algorithm A be an α approximation algorithm for DamkS problem. We run algorithm A on
graph G. If the returned subgraph H1 has k vertices, then we get an α approximation for the densest
k subgraph problem. Otherwise if the returned subgraph has less than k vertices, then we use the same
shrinking procedure as in algorithm Densest At least-k. We shrink H1 to a single vertex. For every vertex,
v ∈ G \H1, if v has c edges to H1, we add a self loop to v of weight c. The shrunk vertex is deleted. We
run algorithm A but maintain the same size threshold of k to compute H2. Call D2 = H1 ∪H2. In general,
Di = Hi ∪ Di−1, where Hi is the subgraph obtained on running the ith iteration of algorithm A on the
remaining graph. Note that we do not change the size threshold in any iteration. The procedure is repeated
until at round l the size ofDl exceeds k. LetH∗ be the optimum solution for the densest k subgraph problem
and λ be the density of H∗. Since H∗ is a feasible solution for DamkS, the optimum solution for DamkS has
density ≥ λ. The following two cases might occur:

17

Case 1: At step j, E(Dj) ∩ E(H∗) ≥ |E(H∗)|/2 and |Dj | <= k. Add arbitrary vertices to Dj

to make its size k and call the new subgraph thus created, H(Dj). Clearly |H(Dj)| = k and density of
H(Dj) ≥ |E(H∗)|

2k = λ/2. Hence we get a 2 approximation for the densest k subgraph problem
Case 2: The algorithm iterates for l rounds and there does not exist any j ≤ l such that E(Dj) ∩

E(H∗) ≥ |E(H∗)|/2. Since at step j, E(Dj)∩E(H∗) ≤ |E(H∗)|/2, then following the same argument as
in Theorem 3.2, the algorithm finds Hj+1 whose density is at least λ

2α . This relation holds till the l-th round.
So up to (l − 1)-th round we have |Di−1| < k and d(Di−1) >= λ

2α . We also have |Hi| ≤ k and density of
Hi ≥ λ

2α . Now there can be two subcases:
Subcase 1: |Di−1| ≥ k/2. We add arbitrary r vertices to Di−1 to make its size k. r < |Di−1|. So we

have, the density of the subgraph thus formed ≥ λ
4α .

Subcase 2: |Di−1| ≤ k/2. Then we need to add r = k−|Di−1| ≥ k/2 vertices. Since |Di−1|+|Hi| ≥ k,
k ≥ |Hi| ≥ r. We use the greedy algorithm of [11] to pick r vertices from Hi. Since r ≥ |Hi|/2, by the
greedy algorithm we get a subgraph H ′ of size r whose density is ≥ d(Hi)/2 ≥ λ

4α . Since the density of
Di−1 and H ′ are both ≥ λ

4α , we get a 4α approximation for the densest k subgraph problem.

5 Conclusion

In this paper, we have discussed different variations of the densest subgraph problems with and without
size constraints. We have considered hardness issues related to these problems and have developed fast
algorithms for them for both undirected and directed networks. All these problems can be generalized to
weighted setting, with same time-complexity or sometimes with only a log |V | increase in running time. An
interesting open question will be to design linear time algorithm with an approximation factor better than 2
for densest subgraph without any size constraint or to improve the approximation factor for DalkS problem.
Obtaining faster algorithms for densest at least-k1, k2 subgraph problem, or removing the requirement of
guessing a in it or in the flow graph construction of maximum density directed subgraph will also be useful
since it will improve the running time significantly.

References

[1] N. Alon, S. Arora, R. Manokaran, D. Moshkovitz, and O. Weinstein. Inapproximability of densest
k-subgraph from average case hardness. Manuscript.

[2] R. Andersen. Finding large and small dense subgraphs. CoRR, abs/cs/0702032, 2007.

[3] R. Andersen and K. Chellapilla. Finding dense subgraphs with size bounds. In WAW ’09, pages 25–36,
2009.

[4] Y. Asahiro, R. Hassin, and K Iwama. Complexity of finding dense subgraphs. Discrete Appl. Math.,
121(1-3):15–26, 2002.

[5] Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding a dense subgraph. In SWAT ’96,
pages 136–148, 1996.

[6] B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest subgraph in streaming and mapreduce. PVLDB,
5(5):454–465, 2012.

[7] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detecting high log-densities:
an o (n 1/4) approximation for densest k-subgraph. In STOC’10, pages 201–210. ACM, 2010.

18

[8] G. Buehrer and K. Chellapilla. A scalable pattern mining approach to web graph compression with
communities. In WSDM ’08, pages 95–106, 2008.

[9] M Charikar. Greedy approximation algorithms for finding dense components in a graph. In APPROX,
pages 84–95, 2000.

[10] Y. Dourisboure, F. Geraci, and M. Pellegrini. Extraction and classification of dense communities in the
web. In WWW ’07, pages 461–470, 2007.

[11] U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. Algorithmica, 29:410–421, 1997.

[12] A. Gajewar and A. Das Sarma. Multi-skill collaborative teams based on densest subgraphs. In SDM,
pages 165–176, 2012.

[13] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm and appli-
cations. SIAM J. Comput., 18(1):30–55, 1989.

[14] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs in massive graphs. In VLDB
’05, pages 721–732, 2005.

[15] A. V. Goldberg. Finding a maximum density subgraph. Technical report, 1984.

[16] R. Kannan and V. Vinay. Analyzing the structure of large graphs. Technical report, 1999.

[17] S. Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM J.
Comput., 36(4):1025–1071, 2006.

[18] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 46(5):604–632, 1999.

[19] Guy Kortsarz and David Peleg. On choosing a dense subgraph. In FOCS’ 93, pages 692–701. IEEE,
1993.

[20] E. Lawler. Combinatorial optimization - networks and matroids. Holt, Rinehart and Winston, New
York, 1976.

19

