The Full Degree Spanning Tree Problem*

Randeep Bhatial Samir Khuller? Robert Pless®

Yoram J. Sussmann¥
Computer Science Department and Institute for Advanced Computer Studies

Univ. of Maryland, College Park, MD 20742.

Abstract

The full degree spanning tree problem is defined as follows: given a connected graph G =
(V, E) find a spanning tree T to maximize the number of vertices whose degree in T' is the same
as in G (these are called vertices of “full” degree). This problem is NP-hard. We present almost
optimal approximation algorithms for it assuming coR # N P. For the case of general graphs our
approximation factor is ©(y/n). Using Hastad’s result on the hardness of approximating clique,
we can show that if there is a polynomial time approximation algorithm for our problem with a
factor of O(n%_ﬁ) then coR = N P. Additionally, we present two algorithms for optimally solving
small instances of the general problem, and experimental results comparing our algorithm to
the optimal solution and the previous heuristic used for this problem.

KeyWords: Graph, Algorithm, Approximation, Spanning Tree, NP-Hardness, Full Degree.

* A preliminary version of this paper appeared in the 10th Annual ACM-STAM Symposium on Discrete Algorithms
(1999).

TCurrently at Bell Labs, Lucent Technologies, Murray Hill, NJ 07974 E-mail:randeep@research.bell-labs.con.
This research was done while this author was at the University of Maryland.

{Research supported by NSF CAREER Award CCR-9501355. E-mail:samir@cs.umd. edu.

$E-mail:pless@cs.und. edu.

Research supported by NSF CAREER Award CCR-9501355. E-mail:yoram@cs.und. edu.

1 Introduction

In this paper we study the problem of computing a spanning tree 7" in a connected graph G = (V, F)
to maximize the number of vertices of full degree. These are vertices whose degree in the tree T is
the same as their degree in the graph G. This problem was first mentioned by Lewinter [8]. Tree
optimization problems have been very well studied (see [3] for a survey).

The problem arises as a central problem in the work by Pothof and Schut [11] which has to do
with water distribution networks. To measure flow in pipes, you can install low-meters on edges.
However, you do not need to install flow-meters on all edges in the network. If you install flow
meters on edges of a cotree (a cotree H is a set of edges in the graph, such that the deletion of
edges in H leaves a spanning tree in the graph), then we can infer the flow on the edges of the
spanning tree due to flow conservation (and the flow into and out of terminals). This requires that
we install exactly m — n 4+ 1 flow meters where m is the number of edges and n is the number of
vertices in the network, since every cotree has m — (n — 1) edges. Unfortunately, “the cost of flow
meters is several times the cost of pressure meters” [11]. Pressure meters are installed at vertices,
and one can compute the flow on an edge by measuring the pressures on both the incident vertices.
Thus we are looking for a cotree that is incident on as few vertices as possible (to minimize cost).
The savings is exactly the number of full degree vertices in a spanning tree, since these vertices
have zero degree in the corresponding cotree and we do not have to install pressure meters at these
vertices. Hence we would like to maximize the number of vertices of full degree. One pressure meter
is installed at each vertex that does not have full degree; by using these meters, we can compute
the flow on each edge in the cotree, and then infer the flow on each edge in the tree due to flow
conservation (and the flow into and out of terminals).

Previous Work: Pothof and Schut [11] suggest the following heuristic to maximize the number

of full degree vertices. Define the weight of each edge to be the sum of the degrees of the incident

vertices, and compute a minimum weight spanning tree. As discussed in their paper, there are
cases when their algorithm does very poorly. Consider a wheel graph (a cycle with an additional
central vertex with edges to all vertices on the cycle); then their algorithm may find no vertices of
full degree! In fact, for this particular graph our full degree spanning tree algorithm (for arbitrary
graphs) finds a spanning tree with % vertices of full degree.

Our Results: The full degree spanning tree problem is NP-hard [1, 2]. We consider approximation
algorithms for this problem — these are algorithms that have a polynomial running time, and
produce a suboptimal solution. The ratio of the optimal solution to the solution we produce (for a
maximization problem) is referred to as the approximation ratio p.

In Subsection 2.1 we provide an algorithm with an approximation ratio of O(y/n) for the Full
Degree Spanning Tree (FDST) problem. In Subsection 2.2 we show that if there is a polynomial
time algorithm for the FDST problem with a worst case approximation ratio of O(n%_e), then
coR = N P. This proves that our worst case approximation ratio cannot be improved significantly,
if N P-complete problems do not have randomized polynomial algorithms. Section 3 discusses
absolute bounds on the size of the FDST solution.

In Section 4 we give two algorithms to compute the optimal solution for small problem instances,
and compare and contrast our heuristic with the one given by Pothof and Schut [11]. For large
random graphs (we tried various kinds of general graphs and planar graphs generated by LEDA [9]
and Stanford Graphbase [7]) we found that our heuristic consistently gave better solutions. We also
performed tests to compare our algorithm’s solution to the optimal solution. For random planar
graphs, we found that in all cases except one, our heuristic gave the optimal solution. For arbitrary
random graphs, on half the tests our algorithm found the optimal solution, and on the other half
of the tests it missed by one vertex (in one case it missed by two vertices).

Another paper has independently considered the same question, giving algorithms to find exact

solutions to the FDST problem for interval graphs, cocomparability graphs, graphs of bounded
asteroidal number, and bounded tree-width graphs, and giving a polynomial time approximation

scheme for this problem when the input graph is planar [2].

2 Approximation Algorithms

2.1 Full Degree Spanning Tree Algorithm

Let the given graph be G = (V, E) and let G have n vertices. Let G be a graph defined on vertex
set V: G' = (V,E'), where E' C E. Let X C E be a set of edges. We define G' ¢ X (G' & X)
to be the graph with edge set £' U X (E'\ X) and vertex set V. Let Y C V be a set of vertices.
We define Fy C F to be the set of all edges at least one of whose endpoints is incident on some
vertex in Y. We define G1 Y (G1 5Y) to be the graph G'a& By (G1 & FEy). These operations
are augmentation (reduction) of G' by a given set of vertices or edges. Let N(v) be the set of
neighbors of vertex v.

We now present the Greedy Star-Insertion Algorithm that finds a good solution to the
FDST problem. The algorithm is extremely simple. We show how to implement it efficiently, and
then prove an O(y/n) bound for its worst case approximation factor.

High Level Description: The algorithm first sorts the vertices in nondecreasing order of degree,
then considers them one-by-one to be added to the current solution. Let S be the full degree
vertices (initially, S is empty) and F' the spanning tree that we are constructing. At each step
we insert a vertex into S, together with its incident edges (a “star”), as long as it does not create
a cycle. In some sense the algorithm is similar to Kruskal’s MST algorithm, except that we are
inserting vertices (along with all their incident edges) rather than simply adding single edges at

each step.

The main hurdle regarding an efficient implementation is to check if the vertex v; we are
considering can be legally inserted or not, without creating a cycle in F. The edges incident
on v; are in two categories: edges already in F and edges not in I as yet. If the set of vertices
{vi}U{u|(v;,u) ¢ F and u € N(v;)} all belong to distinct connected components of F, then we can
insert »; without creating a cycle in F’. However, if two vertices belong to the same component,
then adding the edges incident to v; will create a cycle in F.

The algorithm uses the well known Union-Find data structure (see Tarjan [12]) to maintain the
connected components induced by the current spanning forest F. Maintaining also a bit vector
encoding the edges in F allows the check (e € F'7) to be done in constant time. The algorithm
scans the adjacency list of the current vertex v; and, for each adjacent edge not already in the forest,
checks to see which component the opposite vertex lies in. If all the components thus discovered
along with the component in which v; lies are distinct, then »; can be added to the current solution.
We do this check using an array Validate[]. While processing v;, when we scan an edge (v;,u) ¢ I,
and u belongs to component ¢, we set Validate[c] = i. If for some other edge (v;,u') ¢ F, v’ also
belongs to component ¢, then we can detect that we are trying to write ¢ in location Validate|c]
that already contains ¢. This will detect the case when two neighbors of v; belong to the same
component.

A detailed description of the algorithm is given in Fig. 1. We assume that our input is a graph
G = (V, F), and the output is a spanning tree F' of G and a set of vertices S that have full degree

in F.

Theorem 1: The Greedy Star-Insertion Algorithm delivers a solution of size at least %

where O PT is the size of the optimal solution. Moreover, the algorithm has a worst case time bound
of O(ma(m,n)) where n, m denote the number of vertices and edges in the graph, respectively, and

a(m,n) is the inverse Ackermann function [12].

Greedy Star-Insertion Algorithm

S — 0.
F — (V,0).
Fori=1ton
Validate[i] — 0.
Sort the vertices in nondecreasing order of degree.
Let the sorted list of vertices be vy, vg,...,v,.
For each vertex v; do (* scan vertices in degree order *)
Validate[Find(v;)] < 1.
Flag — TRUE.
For each edge e = (v;,u) ¢ F do (* scan new edges *)
¢ — Find(u).
If Validate[c] = i then (* cycle will be created on adding »;*)
Flag — FALSE.
Else Validate[c] < 1.
If F'lag then (* insert v; into S and F' *)
¢ — Find(v;).
For each edge e = (v;,u) ¢ I do
Union(c, Find(u)).
F — F®{v}.
S — SuU{v}.
End
Add edges to F' to make it a spanning tree.
Output F, 5.

Figure 1: Algorithm for finding a good FDST

Proof: Let Topr be an optimal solution to the FDST problem. Let OPT be the number of
vertices of full degree. Let d be a degree threshold. Let A4 (Bg) be the set of full degree vertices
of degree < (>) d in an optimal solution. Hence O PT = |A4| + |B4|. We will bound Ay and By
separately. Let I; denote the set of vertices of degree < d in 5, where S is the set of full degree
vertices obtained by the Greedy Star-Insertion Algorithm. Note the vertices in [; have full degree
in the final solution /. Lemma 2 shows that |A4| < 2d|I,| and Lemma 4 shows that |By| < 2=2.
Therefore since |S| > max{1,|I4]} we have:

2d| 1| + 2=2
OPT§|Ad|+|Bd|_ |d|‘|‘d_1§2d+L‘
19| 19| max{1, |4} d—1

Let d = \/n/2. Then we have:

OPT

S| > .
1512 2V 2n

Finally note that in the Greedy Star-Insertion Algorithm each edge is considered at most
twice, once for each one of its incident vertices, and each vertex is considered once. Also note that
for each edge considered by the algorithm a constant number of Union and Find operations are
invoked. This therefore implies the bound on the running time. The first sorting step can be done

in linear time, as we are only sorting degrees which are integral valued in the range 1,...,n. a

Lemma 2: (Bound on Low Degree Vertices) |44 < 2d|I4

, where A; (I;) is the set of full degree

vertices of degree < d in the optimal solution (the tree I’ output by the algorithm).

Proof: Let us first delete all the common vertices from Az and I;. Now we have A;N1; = (0. We
will prove the lemma for these new sets without any common vertices. Note that this will imply
that the lemma also holds for the original sets as well.

For ease of presentation we drop the subscripts on A; and I in the following proof.

Note that || < d|I] and that both G4 = (V, E4) and G = (V, EJ) are forests (acyclic graphs).

Let Grg = G4 1, that is G4 is obtained from G 4 by adding all the edges incident on vertices in
(Gra = G4 @ Ey). Since both Gy and G 4 are forests, there must exist a set of edges £y C F4\ £y
and |E| < |Ep| such that Gy4 © E' is a forest. Since E’y N E; = (), then by the definition of E;
none of the edges in £/ is incident on any vertex in /. Therefore, if A’ is the set of vertices each of
which is incident on some edge in E’;, then A’ N[= (). Therefore by our construction, all vertices
in I and A\ A’ have full degree in G'74 & £’ and in addition G4 & £y is a forest. But if 3v € A\ A’
then v ¢ I (since I N A = 0) and v has degree < d. Therefore when the Greedy Star-Insertion
Algorithm executes its outer For loop (for each vertex v;) with S = I, it must add one more
vertex of degree at most d to S, a contradiction since [is the set of all vertices of degree at most
din S. Therefore A\ A" =) or A C A’. Note that by the definition of A" (A" = {u|(u,v) € E4}),
we have |A’| < 2|E’|. This is because an edge is incident on two vertices. But |E%| < |Ef| < d|I].
Hence |A| < |A'| < 2d|I]. O

The following corollary follows easily from Lemma 2.

Corollary 3: For graphs with degree bounded by d the Greedy Star-Insertion Algorithm delivers

a solution of size at least % where OPT is the size of the optimal solution.

Lemma 4: (Bound on High Degree Vertices) |By| < %=2, where B is the set of full degree vertices

of degree > d in the optimal solution.

Proof: For ease of presentation we drop the subscript on By in the following proof.

Note that Gg = (V, Fg) must be a forest. For each vertex v € B, let OUT(v) be the number of
edges incident to v whose other end point is not in B. Let I N(v) be the number of edges incident
to v whose other end point is in B. Since for each such v, we have IN(v)+ OUT(v) > d, by
summing we obtain) g(IN(v) + OUT(v)) > d|B|. Let E% be the edges between vertices in

B. On the left hand side of the summation, the edges in E} are counted twice, and the edges in

Ep — Eg are counted once. We thus obtain |Eg| + |Eg| > |B|d. Since |Eg| < |B| — 1, we obtain

|B| =1+ (n—1) > |Bl|d. Simplifying gives the bound of |B| < Z=2, 0

2.2 Lower Bounds on Approximation Factor for FDST

Let the input graph be G = (V, F') and let G have n vertices. We show that it is not possible to
design an O(n(%_ﬁ))(e > 0) approximation algorithm for the FDST problem unless coR = N P.
This shows that our approximation algorithm is almost optimal assuming that coR # N P. In
addition our lower bound results hold for bipartite graphs.
We establish the lower bound by a linear reduction from the independent set problem to the
FDST problem. It is known that no polynomial time O(n'~¢)(e > 0) approximation algorithm

exists for the independent set problem, unless coR = N P [5].

Theorem 5: No O(n(%_e))(e > 0) approximation algorithm exists for the FDST problem, unless

coR = NP.

Proof: Given a graph H, an input instance of the independent set problem (we will assume w.l.o.g
that H has at least two edges, and that there are no isolated vertices in H), we create an instance
graph G of the FDST problem as follows. We also assume that the maximum independent set in
H has size at least three. G can be viewed as a four layer graph whose edges only connect vertices
in adjacent layers. Hence (G is bipartite. Layer one consists of just one vertex a. Layer two has one
vertex for every vertex of H, and every vertex in the second layer is connected to a. Layer three
has one vertex for every edge of H, and if (u,v) is an edge in H then the corresponding vertex in
the third layer is connected to the vertices in layer two, corresponding to the vertices v and v of H.
Finally layer four has two vertices b and ¢, which are both connected to every vertex in the third
layer.

Let T be a feasible solution to the FDST problem for graph G. First note that if any two

vertices have at least two common neighbors in G then they both cannot have full degree in T.
Hence only one vertex from among {b, ¢} has full degree in T'. This is because H has at least two
edges and hence b and ¢ have at least two common neighbors. Similarly, at most one vertex in the
third layer of G has full degree in T". This is because both b and ¢ are in the neighborhood of every
vertex in the third layer. If vertex ¢ has full degree in 7" then none of the vertices in the third layer
of GG have full degree in T, since these vertices have two common neighbors in layer two. Finally
note that all vertices in the second layer with full degree in T" must form an independent set in H.

The above implies that if H has an independent set of size 7 then there is a feasible solution of
size 1 4+ 1, to the FDST problem, for the graph G. In this solution vertex a, and the vertices in the
independent set have full degree. Similarly, if there is a feasible solution to the FDST problem for
the graph G of size i + 1, then if b or ¢ has full degree (only one of them can be a full degree vertex)
then no pair of vertices in the second layer can have full degree. To see this note that if » and v are
two vertices in the second layer that have full degree, then since they have edges to vertex a, and
since each one of them has an edge to a vertex in layer three (corresponding to the edge incident
on these vertices in H), which are both connected to either vertex b or ¢. By the assumption that
one of the vertex b or ¢ has full degree, this would thus imply the presence of a cycle in the solution
to the FDST, a contradiction. We cannot pick more than one full degree vertex in layer three in
any case, and also we can only pick vertex a or a vertex in layer three of full degree, but not both.
Therefore we will be able to pick at most three vertices of full degree. Hence at least ¢ vertices in
layer two have full degree in this feasible solution and therefore H has an independent set of size 1.

By our reduction an a-approximation algorithm for the FDST problem implies an -
approximation algorithm (up to an additive term) for the independent set problem. Let N be
the number of vertices in /. Then the lower bound for the independent set problem [5] establishes

that o = Q(N(=9))(¢ > 0) unless coR = N P. Note that G has n = O(N?) vertices where N is the

10

number of vertices in H. This therefore yields the claimed lower bound on « in terms of n. O

3 Absolute Size of the Solution to the FDST Problem

In this section we show that we can always find a solution to the FDST problem of size Q(n/A?),
where A is the maximum degree in the input graph G. In addition we give an example of a graph,
with maximum degree A, for which the size of any solution to the FDST problem is O(n/A?).
Let G2 be the graph obtained from G by adding additional edges between those vertices of G
that have a common neighbor in G. Note that any two vertices that belong to an independent
set of G2, do not have a common neighbor in (. Hence the set of edges of G incident on the
vertices in any independent set of G? do not contain any cycles. Hence, the set of vertices in any
independent set of G2 form a solution to the FDST problem on the graph GG. Observe that we can
pick a maximal independent set in G? of size Q(n/A?). Therefore we can always find a solution
to the FDST problem, of size Q(n/A?). The following example shows that in general, the biggest

possible solution to the FDST problem will be of size O(n/A?).

Figure 2: Tight example for the size of the FDST solution.

For our example we use the graph shown in Fig. 2 (A > 4). The vertices of this graph can
be thought of as the points on a grid of size (A/2+ 1) X (A/2+ 1): there are A/2 + 1 vertices

in any horizontal strip and there are A/2 + 1 vertices in any vertical strip. Thus n ~ A?/4. For

11

every horizontal (vertical) strip there is a horizontal (vertical) clique that connects the vertices of
the strip. Thus, every vertex is in two cliques, each of size A/2 4 1: one vertical and the other
horizontal. Every vertex thus has degree A. Clearly no two vertices that belong to a common
clique can be of full degree in the FDST, since any three vertices in a clique are connected in a
cycle. Also, every pair of vertices that are not in a common clique have two common neighbors,
one in a horizontal clique and one in a vertical clique. Thus the maximum number of full-degree
vertices in an 'DST on this graph is 1. Clearly, this can be extended for larger values of n by
duplicating this structure.

Note: For planar graphs, there are excellent (absolute) bounds on the size of independent sets
obtained by the greedy algorithm (see Papadimitriou and Yannakakis [10]). Perhaps such bounds
can be obtained for independent sets in the square () of bounded degree planar graphs? (If the
degree is unbounded, then K3 ,_5 is an example of a planar graph whose square is a clique, and

there is only one vertex of full degree.)

4 Optimal Solutions and Experimental Results

We implemented the Pothof and Schut heuristic [11], as well as our Greedy Star-Insertion heuristic
and compared the performance of the two heuristics. We refer to the heuristics as P.S and BK PS
respectively. In order to experimentally determine the empirical efficiency of the Greedy Star-
Insertion Algorithm, it is necessary to find the optimal solution. We give an integer program that
is feasible to run for small graphs, up to about 30 nodes with arbitrary connectivity, and then we

give an algorithm that is especially efficient for larger, dense graphs.

12

4.1 Integer Program Formulation

Ve,z. € {0,1}, z.=1iff e € Spanning Tree

Vo, f, € {0,1}, f, = 1iff v has full degree

maximize Yovev o
with constraints: Yeze=|V]|—-1
Vv,V e incident on v, fo <z
This integer program, as written, does not ensure that the set of edges with z. = 1 forms a

spanning tree. To enforce this condition, the Integer Program must be augmented with constraints
that enforce connectivity. This can be implemented by arbitrarily defining a root node, creating a
commodity for each vertex, and enforcing that there is a valid flow, along the spanning tree edges,
from each node to the root. If the set of edges for which z. = 1 has size |V| — 1 and connects every

vertex to an arbitrary vertex, it must be a spanning tree.

4.2 Dense Graphs

A different algorithm can find the optimal solution efficiently for dense graphs. No pair of nodes
can simultaneously have full degree if they have at least two paths of length at most two between
them. Thus, in dense graphs, choosing one node as having full degree immediately eliminates the
possibility for many other nodes to have full degree. This leads to a recursive algorithm which
we outline as follows (see Fig. 3). Initially color all nodes gray. Start each recursive iteration by

choosing any gray vertex v, which may or may not be a full degree node in the OPT solution. We

13

follow both possibilities. In case one, we assume v does not have full degree, we color v black, and
recursively choose another gray node to continue. In the other case v does have full degree, we
color v white, and then color black all the nodes in the graph which can now no longer have full
degree in the spanning tree. The point is, while the running time of this algorithm is exponential,
it grows slowly for dense graphs, because we get to color many nodes black each time we postulate

a node as having full degree.

Assign node as @ Assign node as
full degree not full degree

() (8
A/K

Figure 3: The recursive call structure for dense graphs — the number inside the circle is the number
of unassigned nodes, a measure of how much work the algorithm has left to do. For the instance
shown here, making one node full degree prohibits 20 others, leading to a slow exponential growth.

4.3 Experiments

Preliminary testing has been done on various kinds of graphs generated in LEDA [9] and Stanford
Graphbase [7] (random planar and non-planar graphs) of sizes ranging from 10 vertices to 200
vertices. Figure 4 displays the results of tests on graphs with 100 vertices for various edge densities.

The first chart shows the performance of the two algorithms on random planar graphs of 100
vertices. The second chart shows the performance on random graphs of 100 vertices. The z axis
records the number of edges in the graph, and the y axis records the number of full degree nodes

that we find.

14

For small graphs we were able to compare the algorithm solution with the optimal solution,
computed as described above. For random planar graphs only in one case (out of about 35 tests) was
there a difference between the optimal solution and BK PS, and that too by only one vertex. For
arbitrary random graphs (out of 25 tests), for half the tests BK PS obtained an optimal solution,
and for the other half of the tests the optimal solution had one more vertex (in one case, BK PS
missed by two vertices). The BK PS algorithm can be further improved in two ways. The degree
of a node may be viewed as a measure of “how many vertices of full degree are possibly prevented
from being picked”. The “effective” degree of a node is computed as if the edges of the star were
deleted from the graph; the performance is improved by dynamically updating the degree ordering
of the nodes. An additional strategy that uses local search to improve the final solution of BK PS5
is discussed in [6].

Planar Graphs: average simulated results Random Graphs: average simulated results
80; T T T T T T T T T 920

40

number of full degree nodes found

W
S

number of full degree nodes found

20

10 I I I I I I I I I 0 I I I I I I T
100 120 140 160 180 200 220 240 260 280 300 100 200 300 400 500 600 700 800 900 1000
m (number of edges) m (number of edges)

Figure 4: Experimental comparison of new approximation algorithm, BK PS, and previous heuris-
tic PS5, for random planar and random arbitrary graphs.

Acknowledgments: We thank Jan Schut for sending us a copy of [11] and Sudipto Guha for

useful comments.

15

References

[1] R. Bhatia, S. Khuller, R. Pless and Y. Sussmann, “The full degree spanning tree problem”,

Tech. Report CS-TR-3931, Univ. of Maryland, (1998).

[2] H.J. Broersma, A. Huck, T. Kloks, O. Koppius, D. Kratsch, H. Miiller, H. Tuinstra, Degree-

preserving forests, Networks, 35 (1) 2000, 26-39.

[3] G. Galbiati, A. Morzenti and F. Maffioli, On the approximability of some maximum spanning

tree problems, Theoretical Computer Science, Vol 181(1), 1997, pp. 107-118.

[4] M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory of

NP-completeness. Freeman, San Francisco, 1979.

[5] J. Hastad, Clique is hard to approximate within n'=¢, 37th Annual Symposium on Foundations

of Computer Science, 1996, 627-636.

[6] S. Khuller, R. Bhatia, R. Pless, On local search and placement of meters in networks, 11th

Annual ACM-SIAM Symposium on Discrete Algorithms, 2000, 319-328.

[7] Donald E. Knuth. The Stanford Graphbase. ACM/Addison Wesley, 1993.

[8] M. Lewinter, Interpolation theorem for the number of degree-preserving vertices of spanning

trees, IEEFE Trans. Circ. Syst., CAS-34, (1987), 205.

[9] K. Mehlhorn and S. Néher, LEDA: A
platform for combinatorial and geometric computing, Communications of the ACM, Vol 38

(1), 1995, 96-102. http://mpi-sb.mpg.de/LEDA/leda.html.

16

[10] C. H. Papadimitriou and M. Yannakakis, Worst-case ratios in planar graphs and the method of
induction on faces, 22nd Annual Symposium on Foundations of Computer Science, 1981, 358—

363.

[11] I. W. M. Pothof and J. Schut, Graph-theoretic approach to identifiability in a water distribution

network, Memorandum No 1283, Universiteit Twente 1995.

[12] R. E. Tarjan, Data Structures and Network Algorithms. Society for Industrial and Applied

Mathematics, Philadelphia, 1983.

17

