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Abstract

We show that obtaining the lexicographically first four coloring of a planar graph is
NP–hard. This shows that planar graph four-coloring is not self-reducible, assuming P 6=
NP . One consequence of our result is that the schema of [JVV 86] cannot be used for
approximately counting the number of four colorings of a planar graph. These results
extend to planar graph k-coloring, for k ≥ 4.
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1. Introduction

Most known problems in NP are self-reducible. It is because of this property that the search

version of an NP problem is Turing-reducible to its decision version. By suitably carrying out

this reduction, the lexicographically first solution to the search problem can also be obtained.

This property also plays a crucial role in reducing the problem of approximately counting the

number of solutions of an NP problem to generating a random solution to a given instance of

this problem [JVV 86].

In this paper we show that planar graph four-colorability is not self-reducible unless P =

NP . To our knowledge, this is the first such result. The usual manner of carrying out self-

reducibility of the general graph k-colorability problem does not work for our problem since

the reduction destroys planarity (see Section 2). Is there some other way of achieving self-

reducibility ? We provide a negative answer as follows: the decision version of planar graph four-

colorability is in P [AH 77]. On the other hand we show that obtaining the lexicographically first

such solution is NP -hard, thereby proving that the problem is not self-reducible, if P 6= NP .

The NP -hardness of obtaining the lexicographically first solution contrasts with the fact that

there is a polynomial time algorithm for obtaining an arbitrary solution [AH 77].

One consequence of our result is that the schema of [JVV 86] cannot be used for approx-

imately counting the number of four-colorings of a planar graph. We extend these results to

planar graph k-colorability for any fixed k ≥ 4.

Our proofs are quite straightforward; the main interest lies in the peculiar situation that

obtaining the lexicographically first solution is NP -hard even though the decision version is in

P , which enables us to get the result. Clearly, this proof method will not work for showing the

lack of self-reducibility in problems whose decision version is NP -hard. It will be interesting to

find other such natural problems (possibly on restricted families) that exhibit this situation, as

well as discover other situations that yield proofs of lack of self-reducibility.

2. Self-Reducibility

In this section we introduce the formal definition of self-reducibility given by [Sc 76]. A different

notion of self-reducibility was given by [Se 88]; however the first notion appears to be more

useful for relating the complexities of search and decision problems, and random generation

and approximate counting. Let Σ be a fixed finite alphabet in which we are going to encode

both our problem instance and the solution. Let R ⊆ Σ∗ ×Σ∗ be a binary relation over Σ. For

each string (problem instance) x ∈ Σ∗, we denote by R(x) the corresponding solution set.

R(x) = {y ∈ Σ∗ : (x, y) ∈ R}
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By an example we illustrate what R is: Let x encode a boolean formula B, and y encode a

satisfying assignment. Then we define

R = {(x, y) : x, y ∈ Σ∗ and y is a satisfying assignment to instance x}

We call R self-reducible if

• There exists a polynomial time computable length function `R : Σ∗ → N such that

`R(x) = O(| x |kR) for some constant kR > 0, and

y ∈ R(x) ⇒| y |= `R(x) ∀x, y ∈ Σ∗.

• For all x ∈ Σ∗ with `R(x) = 0, the predicate Λ ∈ R(x) can be tested in polynomial time.

(Λ denotes the empty string over Σ.)

• There exist polynomial time computable functions ψ : Σ∗ × Σ∗ → Σ∗ and σ : Σ∗ → N

satisfying

σ(x) = O(log | x |)

∀x ∈ Σ∗ [`R(x) > 0 ⇔ σ(x) > 0 ]

∀x,w ∈ Σ∗ [| ψ(x,w) |≤ | x | ]

∀x,w ∈ Σ∗ [`R(ψ(x,w)) = max{`R(x)− | w |, 0} ]

and such that each solution set can be expressed in the form

R(x) =
⋃

w∈Σσ(x)

{wy : y ∈ R(ψ(x,w))}.

The first condition simply states that the length of the solution is bounded by some polyno-

mial function of the problem instance. The third condition provides an inductive construction of

the solution sets as follows: if the solution length is greater than 0, then R(x) is partitioned into

classes according to the initial segment w of length σ(x), and each class can then be expressed

as the solution set of another instance ψ(x,w) of the same problem, concatenated with w. For

the set of all possible solutions R(x), to a problem x, we can define the usual lexicographic

ordering between the strings.

The following proposition is well known:

Proposition 2.1: For a problem P that is self-reducible, given a polynomial time decision

oracle for the problem we can construct the lexicographically first solution in polynomial time.
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In this formal setting, we now illustrate that general graph k-coloring is self-reducible.

Problem : Given a graph G and a clique K of size k, is G ∪K k-colorable ?

CliqueK has been introduced in the problem instance since it yields an easy self-reducibility.

We use R to encode all possible solutions to the problem. Note that y ∈ R(x) if y denotes a

valid color assignment to the vertices (represented by a set of pairs (vi, ci) where vi has color

ci). Clearly G ∪K is k-colorable if and only if G is k-colorable. Assume that ui gets color i

(vertices ui belong to K).

Suppose we wish to color vertex vi with color j ∈ {1, . . . , k}. Here w = (vi, j). We now

produce the graph Gi as follows: delete vi from G, and add edges from uj (recall that uj has

color j) to N(vi) (neighbours of vi). It is easy to see that a coloring for Gi can be used to

obtain a coloring for G by coloring vi with the color j (same as uj). Moreover the size of the

graph Gi (measured in the number of vertices) is smaller than the size of G.

3. Lexicographic Colorings

Every legal k-coloring of a graph may be represented as a string C = c1c2c3...cn where ci is the

color of vertex vi. Assume that ci ∈ {1, 2, .., k}. Note that all strings are of length n (where

n is the number of vertices in the graph) and the LF -k coloring is the ‘smallest’ (in the usual

lexical ordering on strings) legal coloring which uses at most k colors.

We show that computing the LF -k coloring for a planar graph is NP -hard for any fixed

k (k ≥ 4) (even though the graph is k colorable) by a reduction from planar graph three

colorability which is known to be NP -hard [GJ 78].

Before illustrating the proof for arbitrary k we show a simple proof for the case k = 4.

Theorem 3.1: Obtaining the LF -4 coloring for a planar graph is NP -hard.

Proof: We prove the problem to be NP -hard by exhibiting a simple reduction from the graph

three colorability problem. Given G(V,E) (a planar graph) construct the following graph

G′(V ′, E′). Assuming G has n vertices, the graph G′ has 2n vertices.

Define V ′ = V ∪ {ui | vi ∈ V }.

Define E′ = E ∪ {(vi, ui) | vi ∈ V }.

The vertices of G′ are numbered as follows: Label each ui as i and each vi as n+ i (in G each

vi was numbered i). Note that G′ is planar, since each vertex ui can be embedded in a face

adjacent to vi.
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Now we obtain a LF -4 coloring for G′. If G was three colorable then the LF -4 coloring of

G′ has the property that all the ui vertices are colored with color 1. This coloring is valid since

no ui is adjacent to a uj and since

G is three colorable the rest of the graph can be assigned a legal coloring (without using the

color 1). If the LF -4 coloring has the property that all the ui vertices are colored with color

1, then it is easy to see that all the vertices vi use only the colors from the set {2, 3, 4} and

hence G must be three colorable. Thus from the LF -4 coloring it is easy to check whether the

original graph G is three colorable or not. 2

The proof for k = 5, 6 is very similar to the proof shown above, where instead of attaching

a single vertex to each node of the graph we attach a K2 and K3 respectively to each node of

the graph by adding edges from each node of the complete graph. The new vertices have to be

numbered carefully so that each K2 (K3) is colored with the colors 1 and 2 (1, 2 and 3) thus

making these two (three) colors ‘forbidden’ colors for the vertices in G. Note that the graph G ′

formed in each case will be planar. We cannot attach a K4 (for k = 7) since that would make

G′ non-planar. We develop a general ‘gadget’ which is planar, and which can be attached to

each vertex of the original graph, achieving the effect of introducing ‘forbidden’ colors at each

vertex.

Theorem 3.2: Obtaining the LF -k coloring (for any fixed k ≥ 3) for a planar graph is NP -

hard.

Proof: Obtaining a LF -3 coloring is obviously NP -hard so we concentrate our attention on the

case k > 3. The idea is similar to the one used in the previous theorem. We prove the problem

NP -hard by exhibiting a reduction from the graph three colorability problem. Given G(V,E)

(a planar graph) we construct a graph G′(V ′, E′) as follows: We first show the construction of

the subgraph Hk′(VH , EH) (where k′ = k − 3) which is used in the construction of the graph

G′.

The subgraphs Hk′ are defined recursively as follows:

If k′ ≤ 2 then Hk′ = Kk′ (complete graph on k′ vertices).

If k′ > 2 then the subgraphs Hk′ are defined recursively as follows: Each Hk′ consists of a

spine, which is a set of k′ vertices {u1
k′ , u2

k′ , ..., uk′

k′} with u`
k′ adjacent to u`+1

k′ (1 ≤ ` < k′). On

each vertex u`
k′(2 < ` ≤ k′) of the spine we ‘attach’ the subgraph H`−2 by adding edges from

u`
k′ to each vertex uj

`−2
on the spine of H`−2 (1 ≤ j ≤ `− 2). More formally, we introduce the

edges {(u`
k′ , u

j
`−2

) | 2 < ` ≤ k′, 1 ≤ j ≤ `− 2}. We refer to um
k′ as the mth vertex on the spine of

Hk′ . The sub-spines of Hk′ are the spine and sub-spines of H` (1 ≤ ` ≤ k′− 2) if H` is attached

to u`+2

k′ . Similarly, we can refer to a vertex as the mth vertex on a sub-spine of Hk′ if it is the
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Figure 1: Graphs Hk used in Theorem 3.2
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mth vertex on the spine of some H` that was used in forming Hk′ . The spine of Hk′ is also a

sub-spine of Hk′.

The graphs Hi (i ≤ 5) are shown in Fig 1(a). The general structure of Hk′ is shown in Fig

1(b). It is easy to prove by induction on k ′ that Hk′ is planar.

The graph G′ is constructed by ‘attaching’ copies of Hk′ (call them H i
k′(V i

H , Ei
H)) to each

vertex vi of G. We add edges from vi to each vertex uj
k′ (1 ≤ j ≤ k′) on the spine of H i

k′. More

formally, we have V ′ = V ∪ V i
H(1 ≤ i ≤ n). Also we have E ′ = E ∪ Ei

H ∪ {(vi, u
j
k′) | uj

k′ ∈

spine ofH i
k′(1 ≤ j ≤ k′)}(1 ≤ i ≤ n).

Each vertex vi ∈ V is given the number i + nfk′ where fk′ is the number of vertices in

Hk′ . The graphs Hk′ may be embedded with all the sub-spines aligned vertically as shown in

Fig 1(b). Vertices belonging to Hk′ are assigned numbers from the set {1, 2, , .., fk′}, with each

vertex being assigned a distinct number. We assign the mth vertex of a sub-spine belonging to

Hk′ a smaller number than the pth vertex of a sub-spine belonging to Hk′ if m < p, regardless

of them belonging to the same sub-spine or different sub-spines. One scheme to obtain the

numbering, is to number the rows left to right starting from the topmost row (see Fig 1(a)).

Each vertex in V i
H is given the number (i− 1)fk′ + j where j is the number of the vertex in the

numbering of Hk′.

Now we obtain a LF -k coloring for G′. Assume G is three colorable. The LF -k coloring of

G′ has the property that the mth vertices in sub-spine’s are colored with color m. The coloring

is valid since each Hk′ subgraph can be legally colored with k ′ colors. This coloring can now

be extended to a complete k-coloring for the graph since all the original vertices of G can be

colored using only three colors. In fact, it is easy to see that the LF -k coloring will have exactly

this property and will color the original vertices in a lexicographically first manner using only

three colors.

If the LF -k coloring has the property that all the vertices in H i
k′ (for 1 ≤ i ≤ n) in row j

are colored with color j then the graph G is three colorable since every vertex of the graph has

vertices of the k′ colors {1,2,3,...,k′} adjacent to it (these colors are ‘forbidden’ colors for the

original vertices of the graph and since the graph is k colorable all the original nodes use only

3 colors).

The size of the graphs we generate in our reductions are easily seen to be exponential in k.

The reduction however is still a polynomial time reduction since k is a constant. 2

From the proof of the previous theorem and the proposition of Section 2, we have:

Corollary 3.3: Planar Graph k-coloring is not self reducible, assuming NP 6= P .
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4. Open Problems

As mentioned in the introduction, it will be interesting to identify other problems that do not

possess self-reducibility. Another interesting problem is to determine the complexity of (a)

exactly, (b) approximately computing the number of four colorings of a planar graph. The

former appears to be #P -complete. The latter also appears to be intractable – perhaps in

the sense that if it were doable in random polynomial time, then NP = RP . Finally, notice

that our proof technique breaks down for three-colorability of planar graphs – is this problem

self-reducible?

Acknowledgments: We would like to thank Howard Karloff and Mihalis Yannakakis for useful

discussions.
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