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Abstract
Motivated by issues of saving energy in data centers we
define a collection of new problems referred to as “machine
activation” problems. The central framework we introduce
considers a collection of m machines (unrelated or related)
with each machine i having an activation cost of ai. There
is also a collection of n jobs that need to be performed, and
pi,j is the processing time of job j on machine i. Standard
scheduling models assume that the set of machines is fixed
and all machines are available. However, in our setting, we
assume that there is an activation cost budget of A – we
would like to select a subset S of the machines to activate
with total cost a(S) ≤ A and find a schedule for the n jobs
on the machines in S minimizing the makespan (or any other
metric).

We consider both the unrelated machines setting, as
well as the setting of scheduling uniformly related parallel
machines, where machine i has activation cost ai and speed
si, and the processing time of job j on machine i is pi,j =

pj

si
,

where pj is the processing requirement of job j.
For the general unrelated machine activation problem,

our main results are that if there is a schedule with makespan
T and activation cost A then we can obtain a schedule with
makespan (2+ε)T and activation cost 2(1+ 1

ε
)(ln n

OPT
+1)A,

for any ε > 0. We also consider assignment costs for jobs
as in the generalized assignment problem, and using our
framework, provide algorithms that minimize the machine
activation and the assignment cost simultaneously. In
addition, we present a greedy algorithm which only works
for the basic version and yields a makespan of 2T and an
activation cost A(1 + ln n).

For the uniformly related parallel machine schedul-

ing problem, we develop a polynomial time approximation

scheme that outputs a schedule with the property that the

activation cost of the subset of machines is at most A and the

makespan is at most (1 + ε)T for any ε > 0. For the special

case of m identical speed machines, the machine activation

problem is trivial, since the cheapest subset of k machines

is always the best choice if the optimal solution activates k

machines. In addition, we consider the case when some jobs

can be dropped (and are treated as outliers).
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1 Introduction

Large scale data centers have emerged as an extremely
popular way to store and manage a large volume of
data. Most large corporations, such as Google, HP and
Amazon have dozens of data centers. These data centers
are typically composed of thousands of machines, and
have extremely high energy requirements. Data centers
are now being used by companies such as Amazon Web
Services, to run large scale computation tasks for other
companies who do not have the resources to create their
own data centers. This is in addition to their own
computing requirements.

These data centers are designed to be able to handle
extremely high work loads in periods of peak demand.
However, since the workload on these data centers
fluctuates over time, we could selectively shut down
part of the system to save energy when the demand
on the system is low. Energy savings results not just
from putting machines in a sleep state, but also from
savings in cooling costs.

Hamilton (see the recent SIGACT News article [3])
argues that a ten fold reduction in the power needs of
the data center may be possible if we can simply build
systems that are optimized with power management as
their primary goal. Suggested examples (summarizing
from the original text) are:

1. Explore ways to simply do less during surge load
periods.

2. Explore ways to migrate work in time. The work
load on modern cloud platforms is very cyclical,
with infrequent peaks and deep valleys. Even valley
time is made more expensive by the need to own
a power supply to be able to handle the peaks, a
number of nodes adequate to handle surge loads, a
network provisioned for worst case demand.

This leads to the issue of which machines can we
shut down, since all machines in a data center are not
necessarily identical. Each machine stores some data,
and is thus not capable of performing every single job
efficiently unless some data is first migrated to the
machine. We will formalize this question very shortly.

To quote from the recent article by Birman et
al. (SIGACT News [3]) “Scheduling mechanisms that



assign tasks to machines, but more broadly, play the
role of provisioning the data center as a whole. As
we’ll see below, this aspect of cloud computing is of
growing importance because of its organic connection
to power consumption: both to spin disks, and run
machines, but also because active machines produce
heat and demand cooling. Scheduling, it turns out,
comes down to deciding how to spend money.”

Data is replicated on storage systems for both
load balancing during peak demand periods, as well
as for fault tolerance. Typically many jobs have to be
scheduled on the machines in the data center. In many
cases profile information for a set of jobs is available
in advance, as well as estimates of cyclical workloads.
Jobs may be I/O intensive or CPU intensive, in either
case, an estimate of its processing time on each type of
machine is available. Jobs that need to access specific
data can be assigned to any one of the subset of machines
that store the needed data. Our goal is to first select
a subset of machines to activate, and then schedule
the jobs on the active machines. From this aspect our
problems differ from standard scheduling problems with
multiple machines, where the set of active machines is
the set of all machines. Here we have to decide which
machines to activate and then schedule all jobs on the
active machines.

The scheduling literature is vast, and one can for-
mulate a variety of interesting questions in this model.
We initiate this work by focusing our attention on per-
haps one of the most widely studied machine scheduling
problems since it matches the requirements of the ap-
plication. We have a collection of jobs and unrelated
machines, and need to decide which subset of machines
to activate. The jobs can only be scheduled on active
machines. This provides an additional dimension for
scheduling problems that was not previously considered.
This situation also makes sense when we have a certain
set of computational tasks to process, a cost budget,
and can purchase access to a set of machines.

One fundamental (and well studied) scheduling
problem is as follows: Given a collection of n jobs,
and m machines where the processing time of job
j on machine i is pi,j , assign all jobs to machines
such that the makespan, i.e., the time when all jobs
are complete, is minimized. This problem is widely
referred to as unrelated parallel machine scheduling
[17, 20]. If machine i does not have the data that
job j needs to run, then we set pi,j = ∞, otherwise
the processing time pi,j is some constant pj which only
depends on job j. This special case is the so-called
restricted scheduling problem and known to be NP -
hard. However, if a schedule exists with makespan
T , then the polynomial time algorithm developed by

Lenstra, Shmoys and Tardos [17] shows an elegant
rounding method to find a schedule with makespan 2T .
The subsequent generalization by Shmoys and Tardos
[20], shows in fact that even with a cost function to
map each job to a machine, if a mapping with cost C
and makespan T exists, then their algorithm finds a
schedule with cost C and makespan at most 2T .

Motivated by the problem of shutting down ma-
chines when the demand is low, we define the following
“machine activation” problem.

Given a set J of n jobs and a set M of m machines,
our goal is to activate a subset S of machines and then
map each job to an active machine in S, minimizing the
overall makespan. Each machine has an activation cost
of ai. The activation cost of the subset S is a(S) =∑

i∈S ai. We show that if there is a schedule with
activation cost A and makespan T , then we can find
a schedule with activation cost 2(1 + 1

ε )(ln n
OPT + 1)A

and makespan (2+ε)T for any ε > 0 by the LP-rounding
scheme (we call this is a ((2 + ε), 2(1 + 1

ε )(ln n
OPT + 1))-

approximation). We also present a greedy algorithm
which gives us a (2, 1 + lnn)-approximation. Actually,
the lnn term in the activation cost with this general
formulation is unavoidable, since this problem is at least
as hard to approximate as the set cover problem1, for
which a (1− ε) ln n approximation algorithm will imply
that NP ⊆ DTIME(nO(log log n)) [8].

We also show that the recent PTAS developed by
Epstein and Sgall [7] can be extended to the framework
of machine activation problems for the case of schedul-
ing jobs on uniformly related parallel machines. (The
original PTAS by Hochbaum and Shmoys [12] is slightly
more complicated than the method suggested by Ep-
stein and Sgall [7].)

We also consider a version of the problem in which
a subset of the jobs may be dropped to save energy
(recall Hamilton’s point(1)). In this version of the
problem, each job j also has a benefit πj and we need
to process a subset of jobs with total benefit of at least
Π. Suppose that a schedule exists with cost CΠ and
makespan TΠ that obtains a total benefit at least Π.
We show that the method due to Shmoys and Tardos
[20] can be extended to find a collection of jobs to
perform with expected benefit at least Π and expected
cost CΠ, with a makespan guaranteed to be at most
2TΠ (see Appendix A) . (The recent work by Gupta
et al. [11] gives a clever deterministic scheme with

1This is easy to see – we can view a set cover instance as a
bipartite graph connecting elements (jobs) to corresponding sets
(machines). If the element belongs to a set, then the processing
time of the corresponding job on the corresponding machine is 0,
o.w. it is ∞. An optimal set cover solution corresponds to an
optimal set of machines to activate with 0 makespan.



makespan 3TΠ and cost (1 + ε)CΠ along with several
other results on scheduling with outliers. This has been
further improved to (2+ε)TΠ and cost (1+ε)CΠ in [18].)

1.1 Related Work on Scheduling Generalizations
of the work by Shmoys and Tardos [20], have consid-
ered the Lp norm. Azar and Epstein [2] give a 2-
approximation for any Lp norm for any p > 1, and a√

2-approximation for the L2 norm. The bounds for
p 6= 2 have been subsequently improved [16].

In addition, we can have release times rij associated
with each job – this specifies the earliest time when job
j can be started on machine i. Koulamas et al. [15]
give a heuristic solution to this problem on uniformly
related machines with a worst case approximation ratio
of O(

√
m).

Minimizing resource usage has been considered be-
fore. In this framework, a collection of jobs J needs
to be executed – each job has a processing time pj , a
release time rj and a deadline dj . In the continuous
setting, a job can be executed on any machine between
its release time and its deadline. In the discrete setting
each job has a set of intervals during which it can be
executed. The goal is to minimize the number of ma-
chines that are required to perform all the jobs. For
the continuous case, Chuzhoy and Codenotti [4] have
recently developed a constant factor approximation, im-
proving upon a previous algorithm given by Chuzhoy et
al [5]. For the discrete version Chuzhoy and Naor [6]
have shown an Ω(log log n) hardness of approximation.
However this framework does not model non-uniformity
of machines, which is one of the key issues in data cen-
ters. In addition, non-uniformity of activation costs is
not addressed in their work neither.

1.2 Related Work on Energy Minimization Au-
gustine, Irani and Swamy [1] develop online algorithms
to decide when a particular device should transition to
a sleep state when multiple sleep states are available.
Each sleep state has a different power consumption rate
and a different transition cost. They provide determin-
istic online algorithms with competitive ratio arbitrarily
close to optimal to decide in an online way which sleep
state to enter when there is an idle period. See also the
survey by Irani and Pruhs for other related work [14].

1.3 Our Contributions Our main contributions
are:

• A randomized rounding method that approximates
both activation cost and makespan for unrelated
parallel machines. This method is based on round-
ing the LP solution of a certain carefully defined LP
relaxation and uses ideas from work on dependent

rounding [10, 16] (Section 2).

• Extensions of the above method when we have
assignment costs in addition to activation costs as
part of the objective function (Section 3).

• A greedy algorithm that approximates both activa-
tion cost and makespan for unrelated parallel ma-
chines and gives a (2, 1+ lnn)-approximation (Sec-
tion 4).

• Extensions of these results to the case of handling
outliers using the methods from [11] as well as
release times (Section 5).

• A polynomial time approximation scheme for the
cost activation problem for uniformly related par-
allel machines extending the construction given for
the version of the problem with no activation costs
[7] (Section 6).

• A simple dependent rounding scheme for the partial
GAP problem (Appendix A).

2 LP Rounding for Machine Activation on
Unrelated Machines

In this section, we first provide a simple rounding-
ing scheme with an approximation ratio of
(O(log n), O(log n)). Then we improve it to a
(2 + ε, 2(1 + 1

ε )(ln n
OPT + 1))-approximation by a new

rounding scheme. We can formulate the scheduling
activation problem as an integer program. We define a
variable yi for each machine i, which is 1 if the machine
is open and 0, if it is closed. For every machine-job
pair, we have a variable xi,j , which is 1, if job j is
assigned to machine i and is 0, otherwise. In the
corresponding linear programming relaxation, we relax
the yi and xi,j variables to be in [0, 1]. The first set of
constraints require that each job is assigned to some
machine. The second set of constraints restrict the jobs
to be assigned to only active machines, and the third
set of constraints limit the workload on a machine.
We require that 1 ≥ xi,j , yj ≥ 0 and if pi,j > T then
xi,j = 0. The formulation is as shown below:

min
m∑

i=1

aiyi(2.1)

s.t.
∑
i∈M

xi,j = 1 ∀j ∈ J

xi,j ≤ yi ∀i ∈ M, j ∈ J∑
j

pi,jxi,j ≤ Tyi ∀i



Suppose an integral solution with activation cost A
and makespan T exist. The LP relaxation will have cost
at most A with the correct choice of T . All the bounds
we show are with respect to these terms. In Section 2.2
we show that unless we relax the makespan constraint,
there is a large integrality gap for this formulation.

2.1 Simple Rounding We first start with a simple
rounding scheme. Let us denote the optimum LP
solution by ȳ, x̄. The rounding consists of the following
four steps:

1. Round each yi to 1, with probability ȳi and 0 with
probability 1 − ȳi. If yi is rounded to 1, open
machine i.

2. For each open machine i, consider the set of jobs j,
that have fractional assignment > 0 on machine i.
For each such job, set Xi,j = x̄i,j

ȳi
. If

∑
j pi,jXi,j <

T , (it is always ≤ T ) then uniformly increase
Xi,j . Stop increasing any Xi,j that reaches 1.
Stop the process, when either the total fractional
makespan is T or all Xi,j ’s are 1. If Xi,j = 1,
assign job j to machine i. If machine i has no
job fractionally assigned to it, drop machine i from
further consideration. For each job j that has
fractional assignment Xi,j , assign it to machine i
with probability Xi,j .

3. Discard all assigned jobs. If there are some unas-
signed jobs, repeat the procedure.

4. If some job is assigned to multiple machine, choose
any one of them arbitrarily.

In the above rounding scheme, we use ȳi’s as prob-
abilities for opening machines and for each opened ma-
chine, we assign jobs following the probability distribu-
tion given by Xi,j ’s. It is obvious that the expected
activation cost of machines in each iteration is exactly
the cost of the fractional solution given by the LP. The
following lemmas bound the number of iterations and
the final load on each machine.

Lemma 2.1. The number of iterations required by the
rounding algorithm is O(log n).

Proof. Consider a job j. In a single iteration,
Pr( job j is not assigned to machine i ) ≤ (1 − ȳi) +
ȳi(1− x̄i,j

ȳi
) = 1− x̄i,j . Hence,

Pr( job j is not assigned in an iteration )

≤
∏

i

(1− x̄i,j) ≤ (1− 1
m

)m ≤ 1
e

The second inequality holds since
∑

i x̄ij = 1 and the
quantity is maximized when all x̄ij ’s are equal. Then, it
is easy to see the probability that job j is not assigned
after 2 lnn iterations is at most 1

n2 . Therefore, by union
bound, with probability at least 1 − 1

n , all jobs can be
assigned in 2 lnn iterations. ut

Lemma 2.2. The load on any machine is O(T log n)
with high probability.

Proof. Consider any iteration h. Denote the value of
Xi,j at iteration h, by Xh

i,j . For each open machine i
and each job j, define a random variable
(2.2)

Zi,j,h =

{
pi,j

T , if job j is assigned to machine i

0 , otherwise

Clearly, 0 ≤ Zi,j,h ≤ 1. Define, Zi =
∑

j,h Zi,j,h.
Clearly,

E[Zi] =

∑
h

∑
j pi,jX

h
i,j

T
≤

∑
h

1 ≤ Θ(log n)

Denote by Mi the load on machine i. Therefore, Mi =
TZi, thus E[Mi] ≤ Θ(T log n). Now by the standard
Chernoff-Hoeffding bound [13, 19], we get the result.

ut

2.2 Integrality Gap of the Natural LP, for
Strict Makespan Let there be m jobs and m ma-
chines. Call these machines A1, A2, .., Am−1, and
B. Processing time for all jobs on machines
A1, A2, ..., Am−1 is T and on B it is T

m . Activation costs
of opening machines A1, A2, .., Am−1 is 1, and for B it
is very high compared to m, say R(R >> m). An in-
tegral optimum solution has to open machine B with
total cost at least R.

Now consider a fractional solution, where all ma-
chines A1, A2, .., Am−1 are fully open, but machine B is
open only to the extent of 1/m. All jobs are assigned to
the extent of 1/m on each machine A1, A2, .., Am−1. So
the total processing time on any machine Ai is m T

m = T .
The remaining 1

m part of each job is assigned to B. So
total processing time on B is T

m·m · m = T
m . It is easy

to see the optimal fractional cost is at most m + R
m (by

setting yB = 1
m ). Therefore, the integrality gap is at

least ≈ m.

2.3 Main Rounding Algorithm for Minimiz-
ing Scheduling Activation Cost with Makespan
Budget In this section, we describe our main round-
ing approach, that achieves an approximation factor of
2(1 + 1

ε )(ln n
OPT + 1) for activation cost and (2 + ε) for



makespan. Based on this new rounding scheme, we
show in Section 3 how to simultaneously approximate
both machine activation and job assignment cost along
with makespan, and how to extend it to handle outliers,
when some jobs can be dropped (Section 5). For the
basic problem with only activation cost and makespan,
we show in Section 4, that a greedy algorithm achieves
an approximation factor of (2, 1 + lnn). However, the
greedy algorithm is significantly slower than the LP
rounding approach, since it requires computations of
(m− i) linear programs at the ith step of greedy choice,
where i can run from 1 to min(m,n) and m,n are the
number of machines and jobs respectively.

The algorithm begins by solving LP (Eq(2.1)). As
before x̄, ȳ denote the optimum fractional solution of
the LP. Let M denote the set of machines and J denote
the set of jobs. Let |M | = m and |J | = n. We define a
bipartite graph G = (M∪J,E) as follows: M∪J are the
vertices of G and e = (i, j) ∈ E, if x̄i,j > 0. The weight
on edge (i, j) is x̄i,j and the weight on machine node i
is ȳi. Rounding consists of several iterations. Initialize
X = x̄ and Y = ȳ. The algorithm iteratively modifies
X and Y , such that at the end X and Y become integral.
Random variables at the end of iteration h are denoted
by Xh

i,j and Y h
i .

The three main steps of rounding are as follow:

1. Transforming the Solution: It consists of creating
two graphs G1 and G2 from G, where G1 has an
almost forest structure and in G2 the weight of an
edge and the weight of the incident machine node
is very close. In this step, only Xi,j ’s are modified,
while Yi’s remain fixed at ȳi’s.

2. Cycle Breaking: It breaks the remaining cycles of
G1 and convert it into a forest, by moving certain
edges to G2.

3. Exploiting the properties of G1 and G2, and round-
ing on G1 and G2 separately.

We now describe each of these steps in detail.

2.4 Transforming the Solution We decompose G
into two graphs G1 and G2 through several rounds.
Initially, V (G1) = V (G) = M ∪ J , E(G1) = E(G),
V (G2) = M and E(G2) = ∅. In each round, we either
move one job node and/or one edge from G1 to G2 or
delete an edge from G1. Thus we always make progress.
An edge moved to G2 retains its weight through the rest
of the iterations, while the weights of the edges in G1

keep on changing.
We maintain the following invariants,

(I1) ∀(i, j) ∈ E(G1), and ∀h, Xh
i,j ∈ (0, yi/γ), pi,j > 0.

(I2) ∀i ∈ M and ∀h,
∑

j Xh
i,jpi,j ≤ Tyi.

(I3) ∀(i, j) ∈ E(G2) and ∀h, 1 ≥ Xh
i,j ≥ yi/γ.

(I4) Once a variable is rounded to 0 or 1, it is never
changed.

Consider round one. Remove any machine node
that has Y 1

i = 0 from both G1 and G2. Activate any
machine that has Y 1

i = 1. Similarly, discard any edge
(i, j) with X1

i,j = 0, and if X1
i,j = 1, assign job j to

machine i and remove j. If X1
i,j ≥ ȳi/γ, then remove

the edge (i, j) from G1 and add the job j (if not added
yet) and the edge (i, j) with weight xi,j(≥ ȳi/γ) to G2.
Note that, if for some (i, j) ∈ G, pi,j = 0, then we can
simply take x̄i,j = ȳi and move the edge to G2. Thus we
can always assume for every edge (i, j) ∈ G1, pi,j > 0. It
is easy to see that, after iteration one, all the invariants
(I1-I4) are maintained.

Let us consider iteration (h + 1) and let J ′,M ′

denote the set of jobs and machine nodes in G1 with
degree at least 1 at the beginning of the iteration. Note
that Y h

i = Y 1
i = ȳi for all h. Let |M ′| = m′ and

|J ′| = n′. As in iteration one, any edge with Xh
i,j = 0

in G1 is discarded and any edge with Xh
i,j ≥ ȳi/γ is

moved to G2 (if node j does not belong to G2, add
it to G2 also). We denote by wi,j the weight of an
edge (i, j) ∈ G2. Any edge and its weight moved to
G2 will not be changed further. Since wij is fixed when
(i, j) is inserted to G2, we can treated it as a constant
thereafter. Consider the linear system (Ax = b) as in
Figure 1.

We call the fractional solution x canonical, if xi,j ∈
(0, yi/γ), for all (i, j). Clearly {Xh

i,j}, for (i, j) ∈
E(G1) is a canonical feasible solution for the linear
system in Figure 1. Now, if a linear system is under-
determined, we can efficiently find a non-zero vector
r, with Ar = 0. Since x is canonical, we can also
efficiently identify strictly positive reals, α and β, such
that for all (i, j), xi,j+αri,j and xi,j−βri,j lie in [0, yi/γ]
and there exists at least one (i, j), such that one of the
two entries, xi,j + αri,j and xi,j − βri,j , is in {0, yi/γ}.
We now define the basic randomized rounding step,
RandStep(A,x,b) : with probability β

α+β , return the
vector x + αr and with complementary probability of

α
α+β , return the vector x− βr.

If X = RandStep(A,x,b), then the returned
solution has the following properties [16]:

(2.5) Pr (AX = b) = 1

(2.6) E [Xi,j ] = xi,j

If the linear system in Figure 1 is under-determined,
then we apply RandStep to obtain the updated vector



∀j ∈ J ′,
∑

i∈M ′,
(i,j)∈E(G1)

xi,j = 1−
∑

i∈M ′,
(i,j)∈E(G2)

wi,j(2.3)

∀i ∈ M ′,
∑

j∈J′,
(i,j)∈E(G1)

pi,jxi,j =
∑
j∈J′

pi,jX
h
i,j −

∑
j∈J′,

(i,j)∈E(G2)

pi,jwi,j(2.4)

Figure 1: Linear System at the beginning of iteration (h + 1)

Xh+1. If for some (i, j), Xh+1
i,j = 0, then we remove

that edge (variable) from G1. If Xh+1
i,j = ȳi/γ, then we

remove the edge from G1 and add it with weight ȳi/γ to
G2. Thus the invariants (I1, I3 and I4) are maintained.
Since the weight of any edge in G2 is never changed
and load constraints on all machine nodes belong to the
linear system, we get from [16],

Lemma 2.3. For all i, j, h, u, E
[
Xh+1

i,j | Xh
i,j = u

]
=

u. In particular, E
[
Xh+1

i,j

]
= x̄i,j. Also for each

machine i and iteration h,
∑

j Xh
i,jpi,j =

∑
j xi,jpi,j

with probability 1.

Thus the invariant (I2) is maintained as well.
If the linear system (Figure 1) becomes determined,

then this step ends and we proceed to the next step of
“Cycle Breaking”.

2.5 Cycle Breaking Let M ′ and N ′ be the machine
and job nodes respectively in G1, when the previous step
ended. If |M ′| = m′ and |N ′| = n′, then the number of
edges in G1 is |E(G1)| ≤ m′ + n′. Otherwise, the linear
system (Figure 1) remains underdetermined. Actually,
in each connected component of G1, the number of edges
is at most the number of vertices due to the same reason.
Therefore, each component of G1 can contain at most
one cycle.

If there is no cycle in G1, we are done; else there is
at most one cycle, say C = (v0, v1, v2, . . . , vk = v0), with
v0 = vk ∈ M , in each connected component of G1. Note
that since G1 is bipartite, C always has even length.
For simplicity of notation, let the current X value on
edge et = (vt−1, vt) be denoted by Zt. Note that if vt

is a machine node, then Zt ∈ (0, ȳvt/γ), else vt−1 is a
machine node and Zt ∈ (0, ȳvt−1/γ). We next choose
values µ1, µ2, . . . , µk deterministically, and update the
X value of each edge et = (vt−1, vt) to Zt +µt. Suppose
that we initialized some value for µ1, and have chosen
the increments µ1, µ2, . . . , µt, for some t ≥ 1. Then, the
value µt+1 (corresponding to edge et+1 = (vt, vt+1)) is
determined as follows:

(P1) If vt ∈ J (i.e., is a job node), then µt+1 = −µt

(i.e., we retain the total assignment value of wt);

(P2) If vt ∈ M (i.e., is a machine node), we set µt+1 in
such a way so that the load on machine vt remains
unchanged, i.e., we set µt+1 = −pvt,vt−1µt/pvt,vt+1 ,
which ensures that the incremental load pvt,vt−1µt+
pvt,vt+1µt+1 is zero. Since pvt,vt+1 is non-zero by
the property of G1 therefore, dividing by pvt,vt+1 is
admissible.

The vector µ = (µ1, µ2, . . . , µk) is completely deter-
mined by µ1, for the cycle C. Therefore, we can denote
this µ by f(µ1).

Let α be the smallest positive value, such that if we
set µ1 = α, then for all Xi,j values (after incrementing
by the vector µ as mentioned above stay in [0, ȳi/γ],
and at least one of them becomes 0 or ȳi/γ. Similarly
let β be the smallest positive value such that if we set
µ1 = −β, then again all Xi,j values after increments lie
in [0, ȳi/γ] and at least one of them is rounded to 0 or
ȳi/γ. (It is easy to see that α and β always exist and
they are strictly positive.) We now choose the vector µ
as follows:

(R1) Set µ = f(α), if pv0,v1 − pv0,vk−1µk/µ1 < 0.

(R2) Set µ = f(−β), if pv0,v1 − pv0,vk−1µk/µ1 ≥ 0.

If some Xi,j is rounded to 0, we remove that edge
from G1. If some edge Xi,j becomes ȳi/γ, then we
remove it from G1 and add it to G2, with weight ȳi/γ.
Since at least one of these occurs, we are able to break
the cycle.

Let φ denote the fractional assignment of x variables
at the beginning of the cycle breaking phase. Then
clearly, after this step, for all jobs j, considering both
G1 and G2,

∑
i Xi,j =

∑
i φi,j .

For any machine i ∈ M , if i /∈ C, then clearly∑
j pi,jXi,j =

∑
j pi,jφi,j . If i ∈ C, but i 6= v0, then

by property (P2), before inserting any edge to G2, we
have

∑
j pi,jXi,j =

∑
j pi,jφi,j . Any edge added to G2

after the cycle breaking step has the same weight as it
had in G1. Therefore, we have, for any i 6= w0, and
considering both G1 and G2,

∑
j pi,jXi,j =

∑
j pi,jφi,j .



Now consider the machine v0(= vk). Its change in load
is exactly µ1(pv0,v1 − pv0,vk−1µk/µ1). Therefore by the
choice of (R1) and (R2), the load on machine v0 can
only decrease. Hence, by property (2.5), we have the
following lemma,

Lemma 2.4. Considering both G1 and G2, we have af-
ter the cycle breaking step with probability 1:

∑
i Xi,j =

1 ∀j;
∑

j Xi,jpi,j ≤ T ȳi ∀i; , Xi,j ≤ ȳi ∀i, j.

2.6 Rounding on G1 and G2 The previous two
steps ensures, that G1 is a forest and in G2, Xi,j ≥ ȳi/γ,
for all (i, j) ∈ E(G2). We remove any isolated nodes
from G1 and G2, an round them separately.

2.6.1 Further Relaxing the Solution Let us
denote the job and the machine nodes in G1 (G2)
by J(G1) (or J(G2)) and M(G1) (or M(G2)) re-
spectively. Consider a job node j ∈ J(G2). If∑

i:(i,j)∈E(G2)
Xi,j < 1/δ (we choose δ later), we sim-

ply remove all the edges (i, j) from G2 and the follow-
ing must hold:

∑
i:(i,j)∈E(G1)

Xi,j ≥ 1 − 1/δ. Other-
wise, if

∑
i:(i,j)∈E(G2)

Xi,j ≥ 1/δ, we remove all edges
(i, j) ∈ E(G1) from G1. Therefore at the end of this
modification, a job node can belong to either J(G1)
or J(G2), but not both. If j ∈ J(G1), we have∑

i∈M Xi,j ≥ 1− 1/δ. Else, if j ∈ J(G2),
∑

i∈M Xi,j ≥
1/δ.

For the makespan analysis it will be easier to
partition the edges incident on a machine node i into
two parts – the job nodes incident to it in G1 and
in G2. The fractional processing time due to jobs in
J(G1) (or J(G2)) will be denoted by T ′ȳi (or T ′′ȳi), i.e.,
T ′ȳi =

∑
j∈J(G1)

pi,jXi,j (or T ′′ȳi =
∑

j∈J(G2)
pi,jXi,j).

2.6.2 Rounding on G2 In G2, for any machine node
i, recall

∑
j∈J(G2)

Xi,jpi,j = T ′′yi. Since we have for
all i ∈ M(G2), j ∈ J(G2), Xi,j ≥ yi/γ, we have∑

j∈J(G2)
pi,j ≤ T ′′γ. Therefore, if we decide to open

a machine node i ∈ M(G2), then we can assign all the
nodes j ∈ J(G2), that have an edge (i, j) ∈ E(G2), by
paying at most T ′′γ in the makespan.

Hence, we only concentrate on opening a machine
in G2, and then if the machine is opened, we assign
it all the jobs incident to it in G2. For each machine
i ∈ M(G2), we define Yi = min{1, ȳiδ}. Since, for all job
nodes j ∈ J(G2), we know

∑
i∈M(G2)

Xi,j ≥ 1/δ, after
scaling we have for all j ∈ J(G2),

∑
(i,j)∈E(G2)

Yi ≥
1. Therefore, this exactly forms a fractional set-cover
instance, which can be rounded using the randomized
rounding method developed in [22] to get activation cost
within a factor of δ(log n

OPT + 1). The instance in G2

thus nicely captures the hard part of the problem, which

comes from the hardness of approximation of set cover.
Thus we have the following lemma.

Lemma 2.5. Considering only the job nodes in G2, the
final load on any machine i ∈ M(G2) is at most T ′′γ
and the total activation cost is at most δ(log n

OPT +
1)OPT , where T ′′ is the fractional load on machine
i ∈ M(G2) before rounding on G2 and OPT is the
optimum activation cost.

2.6.3 Rounding on G1 For rounding in G1, we
traverse each tree in G1 bottom up. If there is a job node
j, that is a child of a machine node i, then if Xi,j < 1/η
(η to be fixed later), we remove the edge (i, j) from G1.
Since initially j ∈ J(G1),

∑
i∈M Xi,j ≥ 1 − 1/δ, even

after these edges are removed, we have for j ∈ J(G1),∑
i∈M(G1)

Xi,j ≥ 1− 1/δ − 1/η. However if Xi,j ≥ 1/η,
simply open machine i, if it is not already open and
add job j to machine i. Initially ȳi ≥ 1/η, since
ȳi ≥ Xi,j . The initial contribution to cost by machine
i was ≥ 1

η ai. Now it becomes ai. If
∑

j
Xi,j

yi
pi,j = T ′,

with Xi,j ≥ 1/η, now it can become at most ηT ′.
After the above modification, the yet to be assigned

jobs in J(G1) form disjoint stars, with the job nodes at
their centers. Consider each star, Sj with job node j
at its center. Let i1, i2, ., i`j be all the machine nodes
in Sj , then we have,

∑`j

k=1 Xik,j ≥ 1 − 1/δ − 1/η.
Therefore

∑`j

k=1 ȳik
≥ 1 − 1/δ − 1/η. If there is

already some opened machine, il, assign j to il by
increasing the makespan at most by an additive T .
Otherwise, open machine il with the cheapest ail

. Since
the total contribution of these machines to the cost is∑`j

k=1 ȳik
aik

≥
∑`j

k=1 ȳik
ail

≥ (1− 1/δ− 1/η)ail
, we are

within a factor 1
1−1/δ−1/η of the total cost contributed

from G1.
Hence, we have the following lemma,

Lemma 2.6. Considering only the job nodes in G1,
the final load on any machine i ∈ M(G1) is at most
T ′η +maxi,j pi,j and the total activation cost is at most
max( 1

η , 1
(1−1/δ−1/η) )OPT , where T ′ is the fractional

load on machine i ∈ M(G1) before rounding on G1 and
OPT is the optimum activation cost.

Now combining, Lemma 2.4, 2.5 and 2.6, and by
optimizing the values of δ, η and γ, we get the following
theorem.

Theorem 2.1. A schedule can be constructed effi-
ciently with machine activation cost 2(1 + 1

ε )(ln n
OPT +

1)OPT and makespan (2+ε)T , where T is the optimum
makespan possible for any schedule with activation cost
OPT .



Proof. From Lemma 2.5 and 2.6, we have,

• Machine opening cost is at most(
max( 1

η , 1
(1−1/δ−1/η)

)
+ δ

(
ln n

OPT + 1)
)
OPT

• Makespan is at most T (max(γ, η)) + maxi,j pi,j

Now η ≥ γ, since otherwise any edge with Xi,j ≥
1/η will be moved to G2 and 1 − 1/δ ≥ 1/η. Now set,
γ = η, δ = 1+ζ, for some ζ > 0. So 1−1/δ = ζ/(1+ζ).
Set 1/η = ζ/(1 + ζ)− 1/(1 + ζ)(ln n

OPT + 1). Thus, we
have an activation cost at most 2(1+ζ)(ln n

OPT +1)OPT

and makespan ≤ T (1+ ln n+1
ζ ln n−1 )+maxi,j pi,j . Therefore,

if we set ζ = 1+2/ lnn, we get an activation cost bound
of 4(ln n

OPT +1)OPT and makespan ≤ 2T +maxi,j pi,j .
In general, by setting ε = 1

ζ , we get an activation cost at
most 2(1+ 1

ε )(ln n
OPT +1)OPT and makespan≤ (2+ε)T .

ut

3 Minimizing Machine Activation Cost and
Assignment Cost

We now consider the scheduling problem with assign-
ment costs and machine activation costs. As before,
each job can be scheduled only on one machine, and
processing job j on machine i requires pi,j time and in-
curs a cost of ci,j . Each machine is available for T time
units and the objective is to minimize the total incurred
cost. In this version of the machine activation model,
we wish to minimize the sum of the machine activation
and job assignment costs. Our objective now is

min
∑
i∈M

aiyi +
∑
(i,j)

ci,jxi,j

subject to the same constraints as the LP defined in
Eq(2.1).

Our algorithm for simultaneous minimization of
machine activation and assignment cost follows the
same paradigm as has been developed in Section 2.3,
with some problem specific changes. We mention the
differences here.

3.1 Transforming the Solution After solving the
LP, we obtain, C =

∑
i,j ci,jxi,j . Though, we have an

additional constraint C =
∑

i,j ci,jxi,j to care about,
we do not include it in the linear system and proceed
exactly as in Subsection 2.4. As long as the system is
underdetermined, we can repeatedly apply RandStep
to form the two graphs G1 and G2. By Property 2.6,
∀i, j, h,E

[
Xh

i,j

]
= x̄i,j and hence, we have that the

expected cost is
∑

i,j ci,j x̄i,j . The procedure can be
directly derandomized by the method of conditional
expectation giving an 1-approximation to assignment
cost.

When the system becomes determined, we move to
the next step. Thus at that point, in every component
of G1, the number of edges is at most the number of
vertices. Thus again each component of G1, can consist
of at most one cycle. In G2, for all (i, j) ∈ E(G2), we
have Xi,j ≥ ȳi/γ.

3.2 Cycle Breaking For breaking the cycle in every
component of G1, we proceed in a slightly different
manner from the previous section. However, we now
have two parameters, pi,j and ci,j associated with each
edge. Suppose (i′, j) is an edge in a cycle.

If the Xi′,j value of this edge exceeds 1
2 then

we can assign job j to machine i′ and increase the
processing load on the machine by pi′,j . This increases
the makespan at most by an additive T

2 , since the job
was already assigned to an extent of 1

2 on that machine.
The assignment cost also goes up, but since we pay
ci′,j to assign j to i′, and the LP solution pays at least
1
2ci′,j , this cost causes a penalty by a factor of 2 even
after summing up all such assignment costs. Similarly,
activation cost is also only affected by a factor of 2.

If the Xi′,j value is at most 1
2 , then we simply delete

the edge (i′, j). We scale up all the Xi,j values and ȳi

values by a factor of 2. Thus the total assignment of
any job remains at least 1 and the cost of activation
and assignment can go up only by a factor of 2.

3.3 Rounding on G1, G2 The first part involves
further relaxing the solution, that is identical to the
one described in Subsection 2.6.1. Therefore, we now
concentrate on rounding G1 and G2 separately.

3.3.1 Rounding on G2 In G2, since we have for
all (i, j) ∈ E(G2), Xi,j = ȳi/γ, if we decide to open
machine i, all the jobs j ∈ J(G2) can be assigned to i,
by losing only a factor of γ in the makespan. Therefore,
we just need to concentrate on minimizing the cost of
opening machines and the total assignment cost, subject
to the constraint that all the jobs in J(G2) must have
an open machine to get assigned. This is exactly the
case of non-metric uncapacitated facility location and
we can employ the rounding approach developed in [21]
to obtain an approximation factor of O(log n+m

OPT )+O(1)
on the machine activation and assignment costs.

3.3.2 Rounding on G1 Rounding on G1 is similar
to the case when there is no assignment costs with a
few modifications. We proceed in the same manner and
obtain the stars with job nodes at the centers. Now
for each star Sj , with j at its center, we consider all
the machine nodes in Sj . If some machine i ∈ Sj is
already open, we make its opening cost 0. Now we open



the machine, ` ∈ Sj , for which cj + a`,j is minimum.
Again using the same reasoning as in Subsection 2.6.3,
the total cost does not exceed by more than a factor of

1
1−1/δ−1/η .

Now optimizing α, β, γ, we get the following theo-
rem,

Theorem 3.1. If there is a schedule with total machine
activation and assignment cost as OPT and makespan
T , then a schedule can be constructed efficiently in
polynomial time, with total cost O(log n+m

OPT + 1)OPT
and makespan ≤ (3 + ε)T .

4 The Greedy Algorithm

In this section, we present a greedy algorithm that
achieves an approximation factor of (2, 1 + lnn). The
algorithm is similar to the standard set cover type
greedy algorithm and runs in iterations. In each
iteration, the most “cost-effective” set, the set that
maximizes the ratio of the incremental benefit of the
set, to its cost, is chosen and added to our solution set,
until all elements are covered.

Given that a solution with activation cost A and
makespan T exists, at each step we wish to select a
machine to activate based on its “cost-effectiveness”.
Given a set S of active machines, let F (S) denote
the maximum number of jobs that can be scheduled
with makespan T . However, in this case, the quantity
F (S), is NP-hard to compute, thus it is unlikely to have
efficient procedures either to test the feasibility of the
current set of active machines or to find the most cost-
effective machine to activate. The central idea is that
instead of using the integral function F (S) that is hard
to compute, we use a fractional relaxation that is much
easier to compute, and allows us to apply the greedy
framework.

Formally, for a value T , we first set all pi,j ’s that are
larger than T to infinity (or the corresponding xi,j to
0). Let f(S) be the maximum number of jobs that can
be fractionally processed by a set S of machines that
are allowed to run for time T each. In other words,

f(S) = max
∑
i,j

xi,j(4.7)

s.t.
∑
i∈M

xi,j ≤ 1 ∀j ∈ J∑
j∈J

pijxi,j ≤ T ∀i ∈ S

0 ≤ xi,j ≤ 1 ∀i, j; xi,j = 0 if i /∈ S or pij > T

Note that f(S) can be computed by using a general
LP solver or by a generalized flow computation. The
generalized flow problem is the same as the traditional

network flow problem except that, for each arc e, there
is a gain factor γ(e) and for each unit of flow that
enters the arc γ(e) units exit. To see that f can be
computed by a generalized flow computation, we add a
sink t to the bipartite graph G(M ∪ J,E) and connect
each job to t with an arc with capacity 1. Each edge
(i, j), i ∈ M, j ∈ J has a capacity pij and gain factor
1/pij . Every machine i ∈ S has a flow excess of T . It is
easy to see the maximum amount of flow that reaches t
is exactly the optimal solution of LP (4.7).

A function z : 2N → R is submodular if z(S) +
z(P ) ≥ z(S ∩P )+ z(S ∪P ) for any S, P ⊆ N . Let z(S)
be the maximum amount of flow that reach t starting
with the excesses at nodes in S: Recently, Fleischer [9]
proved the following:

Lemma 4.1. (Fleischer) For any generalized flow in-
stance, z(S) is a submodular function.

It is a direct consequence that f(S) is submodular.
Define gain(i, S) = f(S∪i)−f(i) for any i ∈ M and

S ⊆ M . Our greedy algorithm starts with an empty set
S of active machines, and activates a machine s in each
iteration that maximizes gain(i,S)

ai
, until f(S) > n − 1.

We then round the fractional solution to an integral one
using the scheme by Shmoys and Tardos [20].

Algorithm GREEDY-SCHEDULING
S = ∅;
While(f(S) ≤ n− 1) do

Choose i ∈ M \ S such that gain(i,S)
ai

is maximized;
S = S ∪ {i};

Activate the machines in set S;
Round f(S) to an integer solution to find an assignment.

The problem is actually a special case of the sub-
modular set cover problem: min{

∑
j∈S aj | z(S) =

z(N), S ⊂ N} where z is a nondecreasing submodular
function. In fact, Wolsey [23] shows the following result
about the greedy algorithm, rephrased in our notation.

Theorem 4.1. (Wolsey) Let St be the solution set we
have chosen after iteration t in the greedy algorithm.
Then, ∑

i∈St

ai ≤ OPT

(
1 + ln

z(N)− z(∅)
z(N)− z(St−1)

)
where OPT is the optimal solution.

In particular, if f() is integer-valued, the theorem yields
a 1+lnn approximation. However, f() is not necessarily
integral in our problem. Therefore, we terminate



iterations only when more than n − 1 (rather than n)
fractional jobs are satisfied, thus f(M) − f(St−1) ≥ 1
and Theorem 4.1 gives us a (1+ln n)-approximation for
the activation cost.

Finally, we would like to remark that the rounding
step guarantees to find a feasible integral solution
although the fractional solution we start with only
satisfies more than n − 1 jobs. The reason lies in
the construction by Shmoys and Tardos (refer to [20]
for more details). Therefore, there exists an integral
matching such that all jobs are matched. Moreover, it
is also proven that the job assignment induced by any
integral matching has a makespan at most T + max pij .
Therefore, our final makespan is at most 2T .

Theorem 4.2. Algorithm GREEDY-SCHEDULING
chooses a subset of machines to activate with activation
cost at most A(1 + lnn) and makespan no more than
2T .

5 Extensions

5.1 Handling Release Times Suppose each job j
has a machine related release time rij , i.e, job j can only
be processed on machine i after time rij . We can modify
the algorithm in Section 2 to handle release times as
follows.

For any “guess” of the makespan T , we let xi,j = 0
if rij + pi,j > T in the LP formulation. Then, we
run the ((2 + ε), 2(1 + 1

ε )(ln n
OPT + 1))-approximation

regardless of the release times and obtain a subset of
active machines and an assignment of jobs to these
machines. Suppose the subset Ji of jobs is assigned
to machine i. We can now schedule the jobs in Ji on
machine i in order by release time. It is not hard to
see the makespan of machine i is at most T +

∑
j∈Ji

pi,j

since every job can be scheduled on machine i after time
T . Therefore, we get a (3+ ε, 2(1+ 1

ε )(log n
OPT +O(1)))

approximation. Similar extensions can be done for the
case with activation and assignment costs.

5.2 Scheduling with Outliers We now consider
the case where each job j has profit πj and we are
not required to schedule all the jobs. Some jobs can
be dropped but the total profit that can be dropped
is at most Π′. Therefore the total profit earned must
be at least

∑
j πj − Π′ = Π. We now show how

using our framework and a clever trick used in [11], we
can obtain a bound of (3 + ε) on the makespan and
2(1 + 1

ε )(ln n
OPT + 1) on the machine activation cost,

while guaranteeing that profit of at most Π′(1 + ε) is
not scheduled. If we consider both machine activation
and assignment cost, then we obtain a total cost within
O(log n+m

OPT +O(1)) of the optimum without altering the

makespan and the profit approximation factor.
We create a dummy machine dum, which has cost

adum = 0 and for all j, ci,j = 0. Processing time of
job j on dum is πj . It is a trivial exercise to show
that both the algorithms of the previous sections work
when the makespan constraint is different on different
machines. If the makespan constraint on machine i
is Ti, then we the makespan for machine i is at most
(1 + ε)Ti + maxj pi,j . For the dummy machine dum, we
set a makespan constraint of Π′. Since after the final
assignment the makespan at the dummy node can be at
most (1 + ε)Π′ + maxj πj . With some work it can be
shown that we can regain the lost profit for a job with
maximum profit on dum, to either an existing machine
or by opening a new machine. This either increases
our cost slightly, or increases the makespan to at most
(3 + ε)T .

6 Minimizing Machine Activation Cost in
Uniformly Related Machines

In this section, we show that for related parallel
machines, there is an polynomial time (1 + ε, 1)-
approximation for any ε > 0. If a schedule with ac-
tivation cost A and makespan T exists, then we find a
schedule with activation cost A and makespan at most
(1 + ε)T .

We briefly sketch the algorithm which is a
slight generalization of the approximation scheme for
makespan minimization on related parallel machines by
Epstein and Sgall [7]. Actually, their algorithm can op-
timize a class of objective functions which includes for
example makespan, Lp norm of the load vector etc. We
only discuss the makespan objective in our paper. The
extensions to other objectives are straightforward.

Roughly speaking, Epstein and Sgall’s algorithm
works as follows (see [7] for detailed definitions and
proofs). They define the notion of a principal configura-
tion which is a vector of constant dimension and is used
to succinctly represent a set of jobs (after rounding their
sizes). A principal configuration (see Appendix B for
more details) is of the form (w,~n) where w = 0 or w = 2i

for some integer i and ~n is a vector of non-negative inte-
gers. The number of different principal configurations is
polynomially bounded (for any fixed ε > 0). They also
construct the graph of configurations in which each ver-
tex is of the form (i, α(A)) for any 1 ≤ i ≤ m and prin-
cipal configuration α(A) of the job set A ⊂ J . There is
a directed edge from (i−1, α) to (i, α′) if α′ represents a
set of jobs that is a superset of what α represents and its
length is the (1+ε)-approximated ratio of the weights of
the jobs in the difference of these two sets to the speed
si of machine i. Intuitively, an assignment J1, . . . , Jm

with jobs in Ji assigned to machine i corresponds to a



path P = {(i, αi)}i in G such that αi represents ∪i
j=1Jj

and the length of edge ((i− 1, αi−1), (i, αi)) is approxi-
mately the load of machine i. By computing a path P in
G from (0, α(∅)) to (m,α(J)) such that the maximum
length of any edge in P is minimized, we can find an
1 + ε approximation for minimizing the makespan.

To obtain a (1 + ε, 1)-approximation of the ma-
chine activation problem, we slightly modify the above
construction of the graph as follows. The sets of ver-
tices and edges are the same as before. We asso-
ciate each edge with a cost. If both endpoints of edge
((i− 1, αi−1), (i, αi)) have the same principal configura-
tion αi−1 = αi , then the cost of the edge is 0; Other-
wise, the cost is the activation cost ai of machine i. For
the guess of the makespan T#, we compute a path from
(0, α(∅)) to (m,α(J)) such that the maximum length of
any edge in P is at most T# and the cost is minimized.
If T ≤ (1 + ε)T ∗, we are guaranteed to find a path of
cost at most A.

7 Conclusions

Current research includes considering different Lp

norms as well as other measures such as weighted com-
pletion time. The greedy approach currently only works
for the most basic version giving a makespan of 2T and
an activation cost of A(1 + ln n) . Extending it to han-
dle other generalizations of the basic problem is ongoing
research.
Acknowledgments: We thank Leana Golubchik
(USC) and Shankar Ramaswamy (Amazon) for useful
discussions.
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Appendix

A Partial GAP (No activation costs)

Suppose each job earns a profit of πj . There are n jobs
and m machines. We wish to schedule a subset SJ of
jobs of total profit at least Π. Job j has a processing
time of pi,j if it is assigned to machine i and has an
assignment cost of cij . We show that if an assignment
exists for a subset of jobs SJ with the property that
π(Sj) ≥ Π, such that this assignment has cost C and
makespan T , then in polynomial time we can find an
assignment with expected cost C and expected profit Π
with makespan at most 2T .

The idea is extremely simple. We first solve the
following LP relaxation. We have an integer variable yi

which is 1 if and only if job i is scheduled. The first
constraint states that the total profit of scheduled jobs
is at least 1. The second constraint ensures that all jobs
that are scheduled are assigned to a machine. The third
constraint ensures that the total cost is not too high.∑

j∈J

πjyj ≥ Π

∑
i∈M

xi,j = yj ∀j ∈ J

∑
j∈J,i∈M

xi,jcij ≤ C

∑
j∈J

xi,jpi,j ≤ T ∀i ∈ M

0 ≤ xi,j ≤ 1, 0 ≤ yi ≤ 1

The high level idea is as follows: suppose we have a
fractional solution satisfying the above constraints (as
in [20], if pi,j > T then we set xi,j = 0). We create
a bipartite graph as follows – let G = (J, P,E) be a
bipartite graph where J is the set of job nodes (one
vertex for each job) associated with a yj value (the
extent to which this job is done). For each machine node
i in M , let

∑
j∈J xi,j = Zi. We create Pi = dZie nodes

corresponding to each machine i. Set P = {(i, k)|∀i ∈
M,∀k = 1 . . . Pi}. For each machine node i, we order
the jobs assigned to it by the fractional solution in non-
increasing pi,j order such that the fractional load on
each copy, except for the last copy, is exactly 1. The
main insight here is that this lets us essentially ignore
the processing times of jobs, as long as we can map this
solution to an integral assignment in which the set of
jobs assigned to a particular machine are the set of jobs
that are matched to the copies of i in P . This part is
almost identical to the construction in [20].

From this fractional solution we can compute an in-
tegral solution by using dependent rounding on bipartite

graphs [10] to convert the fractional solution to an inte-
gral solution. Each edge is associated with a value xi,j

defined by the solution to the linear program. In ad-
dition the fractional degree of each job node is exactly
yi. The randomized rounding converts each xi,j to xi,j

(an integral value), such that Pr[Xij = 1] = xi,j . In
addition, each node has degree exactly 0 or 1, such that
a job node j node is matched with probability exactly
yi. These properties ensure that the expected cost is
C, and the expected benefit is at least

∑
j∈J πjyj ≥ Π.

The proof that the makespan is at most 2T is the same
as the proof given in [20].

Derandomizing this method achieving the cost and
benefit bounds would be quite interesting. If all the
πi values are identical, then instead of using dependent
rounding, one can use a direct conversion of the frac-
tional matching to an integral matching, maintaining
the benefit value and cost values.

B More Details of the Construction [7]

Let A ⊆ J be a set of jobs. Suppose w is 0 or 2i for some
integer i (possibly negative). Let the relative rounding
precision be δ > 0 and λ be such that λ = 1/δ is an even
integer. Given A and w, define A(w) = {j ∈ A|pj ≤
δw}.

Definition B.1. 1. The rounding function r(p) :
Let w be the largest power of two such that p > δw
and i be the smallest integer such that p ≤ iδ2w.
r(p) = iδ2w. It is easy to see pj ≤ r(pj) < (1+δ)pj.

2. A configuration is of the form (w,~n) where ~n =
{nλ, nλ+1, . . . , nλ2} is a vector of nonnegative inte-
gers. A configuration (w,~n) represents A if (i) pj ≤
w for all j ∈ A; (2) for λ < i ≤ λ2, ni equals the
number of jobs j ∈ A with r(pj) = iδ2w; (3) nλ ∈
{b

∑
j∈A(w) r(pj)/(δw)c, d

∑
j∈A(w) r(pj)/(δw)e}.

3. The principal configuration α(A) of A is a config-
uration (w,~n) with the smallest w which represents
A and nλ = d

∑
j∈A(w) r(pj)/(δw)e.

4. The scaled configuration for (w,~n) and w′ ≥ w is
defined as a vector scalew→w′(~n) = ~n′ such that
(w′, ~n′) represents the set K containing exactly ni

jobs with processing time iδ2w for i = λ, . . . , λ2,
and no other jobs. Choose the configuration with
|(

∑
j∈K(w′) r(pj)) − n′λδw′| ≤ δw′/2, breaking ties

arbitrarily.

Intuitively, a single principal configuration suc-
cinctly represent many different sets of jobs that are
approximately equivalent. It is also not hard to see
the number of principal configurations is polynomially
bounded for any fixed δ.



The following definition describes the construction
of the configuration graph G. The construction is the
same as in [7], except that we have two metrics on edges,
length and cost, which are used to capture respectively
the makespan and machine opening cost.

Definition B.2. Assume that the machines are num-
bered in non-decreasing speed order. The configuration
graph G: each vertex is of the form (i, α(A)) for any
1 ≤ i ≤ m where α(A) is the principal configuration of
the job set A ⊂ J . The source is (0, α(∅)) and the sink
is (m,α(J)). There is a directed edge from (i−1, (w,~n))
to (i, (w′, ~n′)) iff either (w,~n) = (w′, ~n′) or ~n′′ ≤ ~n′ and∑λ2

i=λ(n′i − n′′i )δ2w′ ≥ w′/3 where ~n′′ = scalew→w′(~n).

The length of the edge is (
∑λ2

i=λ(n′i − n′′i )δ2w′)/si. The
cost of the edge is 0 if (w,~n) = (w′, ~n′) and the opening
cost ai of machine i otherwise.

The following definition is essential for establishing
the relation between a path of the configuration graph
and an job assignment.

Definition B.3. Let J1, . . . , Jm be a schedule as-
signing jobs in Ji to machine Mi. A sequence
{i, (wi, ~ni)}m

i=0 of vertices of the graph G represents (is
a principal configuration of) the assignment if (wi, ~ni)
represent (is a principal configuration of) ∪i

i′=1Ji′ .

Lemma B.1. Let (i − 1, (w,~n)) be a configuration rep-
resenting A ⊆ J , and ((i− 1, (w,~n), (i− 1, (w′, ~n′)))) be
an edge in G. We can find in linear time a set of jobs
B such that A ⊂ B and (w′, ~n′) represents B.

Lemma B.2. 1. Let {Ji} be an assignment. Then its
principal representation {(i, (wi, ~ni)} is a path in
G.

2. Let {i, (wi, ~ni)}m
i=0 be a path in G representing an

assignment {Ji}. Let T# be the maximum length
of any edge in P and T be the makespan of the
assignment. Then |T − T#| ≤ δT .

For the guess of the makespan T#, we compute a
path from (0, α(∅)) to (m,α(J)) such that the maximum
length of any edge in P is at most T# and the cost is
minimized. By Lemma B.1, we can efficiently construct
an assignment represented by this path. Let {J∗i } be
the assignment with makespan T ∗ and cost A∗. From
Lemma B.2, we know there is path of cost A∗ and the
maximum edge length at most (1 + δ)T ∗. Hence, if our
guess T# ≥ (1 + δ)T ∗, we can guarantee to find a path
of cost at most A∗. Again by Lemma B.2(2), we know
the makespan of the assignment represented by the path
is at most T#/(1− δ) ≤

(
1+δ
1−δ

)
T ∗.


