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ABSTRACT
We consider fundamental scheduling problems motivated by en-
ergy issues. In this framework, we are given a set of jobs, each with
release time, deadline and required processing length. The jobs
need to be scheduled so that at most g jobs can be running on a ma-
chine at any given time. The duration for which a machine is active
(i.e., “on”) is referred to as its active time. The goal is to find a fea-
sible schedule for all jobs, minimizing the total active time. When
preemption is allowed at integer time points, we show that a min-
imal feasible schedule already yields a 3-approximation (and this
bound is tight) and we further improve this to a 2-approximation
via LP rounding. Our second contribution is for the non-preemptive
version of this problem. However, since even asking if a feasible
schedule on one machine exists is NP-hard, we allow for an un-
bounded number of virtual machines, each having capacity of g.
This problem is known as the busy time problem in the literature
and a 4-approximation is known for this problem. We develop a
new combinatorial algorithm that is a 3-approximation. Further-
more, we consider the preemptive busy time problem, giving a sim-
ple and exact greedy algorithm when unbounded parallelism is al-
lowed, that is, where g is unbounded. For arbitrary g, this yields an
algorithm that is 2-approximate.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Sequencing and scheduling;
G.2 [Discrete Mathematics]: Combinatorics
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1. INTRODUCTION
Scheduling jobs on multiple parallel or batch machines has re-

ceived extensive attention in the computer science and operations
research communities for decades [5, 15, 9]. For the most part,
these studies have focused primarily on “job-related” metrics such
as minimizing makespan, total completion time, flow time, tardi-
ness and maximizing throughput under various deadline constraints.
Despite this rich history, some of the most environmentally (not to
mention, financially) costly scheduling problems are those driven
by a pressing need to reduce energy consumption and power costs,
e.g., at data centers. Energy-aware algorithmic efforts notwith-
standing [1, 2, 4], the need to understand algorithmic design for en-
ergy efficiency remains largely unaddressed, particularly by tech-
niques and approaches of traditional scheduling objectives. Toward
that end, our work is most concerned with minimization of the total
time that a machine is on [6, 15, 11, 14, 17] to schedule a collec-
tion of jobs. This measure was recently introduced in an effort to
understand energy-related problems in cloud computing contexts,
and the busy and active time models cleanly capture many central
issues in this space. Furthermore, it has connections to several key
problems in optical network design, perhaps most notably in the
minimization of the fiber costs of Optical Add Drop Multiplexers
(OADMs) [11]. The application of busy time models to optical net-
work design has been extensively outlined in the literature [11, 12,
13, 18].

With the widespread adoption of data centers and cloud com-
puting, recent progress in virtualization has facilitated the consol-
idation of multiple virtual machines (VMs) into fewer hosts. As a
consequence, many computers can be shut off, resulting in substan-
tial power savings. Today, products such as Citrix XenServer and
VMware Distributed Resource Scheduler (DRS) offer VM consol-
idation as a feature. In this sense, minimizing busy time is closely
related to the basic problem of mapping VMs to physical hosts.

We first discuss the active time model [6]. In this model we have
a collection J of n jobs that need to be scheduled on one machine.
Each job j has release time rj , deadline dj and length pj . We
assume that time is slotted and that all job parameters are integral.
The jobs need to be scheduled on a machine so that at most g jobs
are running simultaneously. For a job j, we need to schedule pj
units in the window [rj , dj) and at most one unit can be scheduled
in any time slot. The goal is to minimize the active time of the
machine, that is, the total duration for which the machine is on.
If we are looking for a non-preemptive schedule, we can easily
show that this problem is strongly NP-hard (even the feasibility
question becomes NP-hard). In the special case that the jobs all
have unit length, there is a fast algorithm [6, 15] that yields an
optimal solution.



If we allow preemption at integer boundaries, the feasibility ques-
tion is easily resolved by a network flow computation, as discussed
by Chang and Khuller [7]. There is a node for every job and a node
for every time slot. There is an edge from the source to each job
node j with capacity pj , and unit capacity edges from job node j to
a slot node where j is feasible. Finally, all slot nodes are adjacent
to the sink, with an edge capacitiy of g. Thus a flow of value

∑
j pj

units corresponds to a feasible integral schedule for all the jobs.
Unfortunately, in such a construction, there is no control as to

which slot nodes receive flow; to minimize active time suggests a
shift from computing a maximum flow to computing a min-edge
cost flow, where we only wish to send non-zero amount of flow
through as few edges as possible that connect to the sink.

In this work, we first show that every minimal solution is a 3-
approximation to this problem. We also show that this bound is
tight. We then further improve the approximation ratio by con-
sidering a natural IP formulation and its LP relaxation to obtain
a solution within twice the integer optimum (again this bound is
tight). See Figure 1 for an example of an optimal solution, with
preemption allowed at integral boundaries. This presents substan-
tial progress on the problem left open earlier [6]. We also assume
that the input is feasible as this can be easily verified by a simple
network flow computation [7].
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Figure 1: An optimal solution for the active time problem with
integral preemption, for an instance of 6 jobs and g = 3.

We also consider a slight variant of the active time problem that
has been considered previously in the literature [11, 14], and re-
ferred to as the busy time problem. The main variation from the
active time problem is that an unbounded number of virtual ma-
chines is available, and we would like a non-preemptive schedule.
We are given a collection J of n jobs that need to be scheduled on
a set of identical machines. Each job j has release time rj , dead-
line dj and length pj . The jobs need to be partitioned into groups
(each group of jobs will be scheduled non-preemptively on a ma-
chine) so that at most g jobs are running simultaneously on a given
machine. We say that a machine is busy at time t if there is at least
one job running on the machine at t; otherwise the machine is idle.
The time intervals during which a machine M is busy is called its
busy time and we denote its length by busy(M). The objective is to
find a feasible schedule of all the jobs on the machines (partitioning
jobs into groups) to minimize the cumulative busy time over all the
machines. The schedule can potentially use an unbounded number
of machines since each group is really a virtual machine, and thus

every input instance is feasible as we can simply create a virtual
machine for each job.

A well-studied special case of this model is one in which each
job j is “rigid”, i.e., dj = pj + rj , in which there is no question
about when it must start. Jobs of this particular form are called in-
terval jobs. Even in this case, the busy time problem is NP -hard
for g = 2 [18]. We say the interval [rj , dj) is the span of job j. The
span of a job set J ′ is the union of the spans of jobs in J ′. Since
the problem is NP -hard, we will be interested in approximation
algorithms for this problem. What makes this special case particu-
larly central is that one can convert an instance of the general busy
time problem to an instance of interval jobs in polynomial time, by
solving a dynamic program with unbounded g [14]. The dynamic
program “fixes” the positions of the jobs to minimize their shadow,
i.e., projection onto the time-axis. The span of the solution with g
unbounded is the smallest possible span of any feasible solution to
the original problem and can be used as a lower bound on the opti-
mal solution. Then, one can adjust the release times and deadlines
to artificially “fix” the position of each job to where it was sched-
uled in the solution for unbounded g. This creates an instance of
interval jobs, on which we can then apply an approximation algo-
rithm for the case of interval jobs. Figure 2 shows a collection of
jobs and the corresponding packing that yields an optimal solution.
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Figure 2: (A) Collection of interval jobs with unit demand, num-
bered arbitrarily. (B) Optimal packing of the jobs on two machines
with g = 3 minimizing total busy time.

Busy time scheduling in this form was first studied by Flammini
et al. [11]. They present a simple greedy algorithm FIRSTFIT for
interval jobs and demonstrate that it always produces a solution of
busy time at most 4 times that of the optimal solution. The al-
gorithm considers jobs in non-increasing order by length, greedily
packing each job in the first group in which it fits. In the same
paper, they highlight an instance on which the cost of FIRSTFIT
is three times that of the optimal solution. Closing this gap would



be very interesting 1. However, unknown to Flammini et al., ear-
lier work by Alicherry and Bhatia [3] and Kumar and Rudra [16]
already considered a problem in the context of wavelength assign-
ment. One can show that their algorithms immediately yield two
different 2-approximations for the the problem of minimizing the
busy time for scheduling interval jobs.

Khandekar et al. [14] consider the generalization in which each
job has an associated width or “demand” on its machine. For any
set of jobs assigned to the same machine, the cumulative demand
of the active ones can be at most g at any time. The authors apply
FIRSTFIT principles to this problem to obtain a 5-approximation.
The main idea involves partitioning jobs into those of “narrow” and
“wide” demand. Each wide job is assigned to its own machine,
while FIRSTFIT is applied to the set of narrow jobs. In addition,
the authors give improved bounds for special cases of busy time
scheduling with jobs of unit demand. When the interval jobs form
a clique, they provide a PTAS. They also give an exact algorithm
when the intervals of the jobs are laminar, i.e., two jobs’ intervals
intersect only if one interval is contained in the other. However, we
note that for the case of unit width jobs, the same approach gives
a 4-approximation for flexible jobs, by solving a dynamic program
for unbounded g. With little effort [8] one can show via a similar
extension that the methods of Kumar and Rudra [16] and Alicherry
and Bhatia [3] also yield 4-approximations, and the bounds are
tight. Details are in the full version of the paper [8]. We develop an
improved algorithm with a bound of 3, using a completely different
approach.

1.1 Our Results
In the active time problem, we are allowed preemption at inte-

ger time points and time is slotted. We show in Section 2 that any
minimal feasible solution yields a 3-approximation. We then con-
sider a natural IP formulation for this problem and show how its
LP relaxation allows us to convert a fractional schedule to an inte-
gral one that is 2-approximate. We note that the integrality gap of
2 is tight. Earlier work [6] only addressed the special case where
job lengths were unit, for which an optimal polynomial-time algo-
rithm was given. Unfortunately, it is not clear how to extend that
framework for the case of non-unit length jobs.

Since the busy time problem for interval jobs is NP-hard [18],
the focus in this paper is on the development of a polynomial-time
algorithm GREEDYTRACKING with a worst case approximation
guarantee of 3. The central idea is to iteratively identify a set of
jobs whose spans are disjoint; we will reference this set as a “track”.
Then, the set of jobs assigned to a particular machine is the union
of g such tracks; we call the set of jobs assigned to the same ma-
chine a bundle of jobs. The busy time of a machine is the span of its
bundle. The goal is to assign jobs to bundles so that at no time does
a single bundle have more than g active jobs, and to do so in a way
that minimizes the cumulative busy time. Intuitively, this approach
is less myopic than FIRSTFIT, which schedules jobs one at a time.

1In an attempt to improve approximation guarantees, Flammini
et al. [11] consider two special cases. The first case pertains to
“proper intervals”, where no job’s interval is strictly contained in
that of another. For instances of this type, they show that the greedy
algorithm ordering jobs by release times is 2-approximate. The
second special case involve instances whose corresponding inter-
val graph is a clique - in other words, there exists a time t such that
each interval [rj , dj) contains it. In this case, a greedy algorithm
also yields a 2-approximation. As with proper intervals, it is not ob-
vious that minimizing busy time on clique instances is NP -hard.
However, when the interval jobs are both proper and form a clique,
a very simple dynamic program gives an optimal solution [17].

We also give instances of interval jobs where GREEDYTRACKING
yields a solution twice that of an optimum in the full version [8].

One important consequence of GREEDYTRACKING is an im-
proved bound for the busy time problem on instances in which jobs
may not be interval jobs. In the spirit of Khandekar et al. [14],
we first solve the problem assuming unbounded machine capacity
g to get a solution that minimizes the projection of the jobs onto
the time-axis. We use this to map the original instance to one of
interval jobs, forcing each job to start exactly as it did in the so-
lution for unbounded capacity, over which we compute a solution
via GREEDYTRACKING. We prove that in total, this approach has
busy time within thrice that of the optimal solution, and the bound
is tight. In addition, we explore the preemptive version of the prob-
lem, providing a greedy 2-approximation. However, we omit the
discussion of this result from the extended abstract; details can be
found in the full version of this paper [8].

2. ACTIVE TIME SCHEDULING OF PRE-
EMPTIVE JOBS

Let us denote by T the length of the time window, spanning the
union of the windows of the entire job instance. In other words,
T = |

⋃
j∈J [rj , dj)|. We assume without loss of generality that

the earliest release time of any job j ∈ J is 0 and the latest deadline
of any job in j ∈ J is T . In this notation, let T denote the set of
time slots {1, . . . , T}.

DEFINITION 1. A job j is live at slot t if t ∈ [rj , dj).

DEFINITION 2. A slot is active or open if at least one job is
scheduled in it. It is inactive or closed otherwise.

DEFINITION 3. An active slot is full if there are g jobs assigned
to it, otherwise non-full.

A feasible solution σ is specified by a set A ⊆ T of active time
slots and a mapping or assignment of jobs to time slots in A, such
that at most g jobs are scheduled in any slot in A, at most one unit
of any job j is scheduled in any time slot in A and every job j has
been assigned to pj active slots within its window [rj , dj). OnceA
has been determined, a feasible integral assignment can be found
via a max-flow computation [7].

The cost of a feasible solution σ is the number of active slots
in it, i.e., |A|. Let Af denote the set of active slots that are full,
and let An denote the set of active slots that are non-full. Then
|A| = |Af |+ |An|.

DEFINITION 4. A minimal feasible solution is one in which no
active slot can be made inactive, and still feasibly satisfy the entire
job set.

Given a feasible solution, one can easily find a minimal feasible
solution as follows. Assume that all the slots are initially active.
Now (in any order) make slots inactive, if one can feasibly do so
(this might change the actual slots to which jobs are assigned at
every iteration).

The cost |Af | of the full slots can be charged to OPT . On the
other hand, to bound the number of non-full active slots requires a
concept specific to minimal feasible solutions.

DEFINITION 5. A non-full-rigid job is one that is scheduled for
one unit in every non-full slot in which it is live.

LEMMA 1. For a minimal feasible solution σ, there exists a so-
lution σ′ of the same cost in which each active non-full slot has at
least one non-full-rigid job scheduled in it.



PROOF. Consider any non-full slot of a minimal feasible solu-
tion σ that does not have any non-full-rigid job scheduled in it.
Move any job j in that slot to any other (non-full and active) slot
that it may be scheduled in, and where it is not already scheduled.
There must at least one such slot; otherwise j would be a non-full-
rigid job. Continue this process for as long as possible. Note that
in moving these jobs, we are not increasing the cost of the solution:
we only move jobs to slots that are already active. If this process
continues, eventually there will be no more jobs scheduled in this
slot, we would have found a solution of smaller cost, violating our
assumption of minimal feasibility. Thus, there must be at least one
job j′ scheduled in that slot that cannot be moved to any other ac-
tive slot. This can only happen if all the slots in the window of j′

are already assigned one unit of j′, or are full or inactive, i.e., if j′

is a non-full rigid job. Continue this process until each non-full slot
has at least one non-full-rigid job scheduled.

COROLLARY 1. There exists a set of jobsJ ∗ consisting of non-
full-rigid jobs, such that at least one of these jobs is scheduled in
every non-full slot of σ′.

We say that such a set J ∗ covers the non-full slots.

LEMMA 2. There exists a set J ∗ of non-full-rigid jobs cover-
ing all the non-full slots, such that no job window is completely
contained within the window of another job. J ∗ is called a mini-
mal set.

PROOF. Let us consider a set J ∗ of non-full-rigid jobs that are
covering all the non-full slots. Suppose it contains a pair of non-
full-rigid jobs j and j′, such that the [rj , dj) ⊆ [rj′ , dj′). One unit
of j′ must be scheduled in every non-full slot in the window of j′.
However, this also includes the non-full slots in the window of j,
hence we can discard j from J ∗ without any loss.

We repeat this with every pair of non-full-rigid jobs in J ∗, such
that the window of one is contained within the window of another,
till there exists no such pair.

It can be proven that there exists a minimal set J ∗ such that at
every time slot, at most two of the jobs in J ∗ are live. We charge
the cost of the non-full slots to J ∗.

LEMMA 3. There exists a minimal set J ∗ of non-full-rigid jobs
such that at least one of these jobs is scheduled in every non-full
slot, and at every time slot, at most two of the jobs in set J ∗ are
live.

PROOF. Consider the first time slot t where 3 or more jobs of
J ∗ are live. Let these jobs be numbered according to their dead-
lines (j1, j2, j3, . . . .j`, ` ≥ 3). By definition, the deadline of all
of these jobs must be ≥ t since they are all live at t. Moreover,
they are all non-full-rigid, being a part of J ∗, which means they
are scheduled one unit in every non-full active slot in their window.
Since the set J ∗ is minimal, no job window is contained within
another, hence none of the jobs j2, . . . , j` have release time earlier
than that of j1. Therefore, all non-full slots before the deadline of
j1 must be charging either j1 or some other job with an earlier re-
lease time. Consequently, discarding any of the jobs j2, . . . , j` will
not affect the charging of these slots.

Let t′ be the first non-full active slot after the deadline of j1.
t′ therefore needs to charge one of j2, j3, . . . , j`. Among these,
all jobs which have a deadline earlier than t′, can be discarded
from J ∗, without any loss, since no non-full slot needs to charge it.
Hence, let us assume that all of these jobs j2, j3, . . . , j` are live at
t′. However, all of them being non-full-rigid, and t′ being non-full

and active, all of them must have one unit scheduled in t′. There-
fore, if we discard all of the jobs j2, . . . , j`−1 and keep j` alone,
that would be enough since it can be charged all the non-full slots
between t′ and its deadline d`. Hence, after discarding these inter-
mediate jobs from J ∗, there would be only two jobs j1 and j` left
which overlap at t.

Repeat this for the next slot t′′ where 3 or more jobs of J ∗ are
live, till there are no such time slots left.

The cost of the non-full slots of the minimal feasible solution σ′

is |An| ≤
∑
j∈J ∗ pj .

THEOREM 1. The cost of any minimal feasible solution is at
most 3 times that of an optimal solution.

PROOF. J ∗ can be partitioned into two job sets J1 and J2 such
that the jobs in each set have windows disjoint from one another.
Therefore the sum of the processing times of the jobs in each such
partition is a lower bound on the cost of any optimal solution. Let
us denote the cost of an optimal solution as OPT . Hence, the
cost of the non-full slots is |An| ≤

∑
j∈J ∗ pj ≤

∑
j∈J1

pj +∑
j′∈J2

pj′ ≤ 2OPT . Furthermore, the full slots charge once to
OPT , since they have a mass of g scheduled in them. This is also a
lower bound on OPT . Thus, |Af | ≤

∑
j∈J pj
g

≤ OPT and in to-
tal the cost of any minimal feasible solution cost(σ) = cost(σ′) =
|A| = |Af |+ |An| ≤ 3OPT . This proves the theorem.

The above bound is asymptotically tight (see Figure 3).
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Figure 3: Instance where the minimal feasible solution is almost 3
times the optimal solution. The optimal solution keeps slots g + 1
and 2g open, assigning to them all of the flexible unit-length jobs.
However, the minimal solution that forces slots g + 1 and 2g to
inactive will necessarily schedule the two jobs of length g by them-
selves, thus incurring a total cost of 3g − 2.

3. AN LP-ROUNDING 2-APPROXIMATION
In this section, we develop a 2-approximation for the active time

problem via LP-rounding techniques. Recall that jobs may be non-
unit in length and that preemption is permitted only at integral
boundaries. In this section onwards, we will be using t to denote
the slot [t − 1, t) for ease of notation. Let yt ∈ {0, 1} denote the
indicator variable for every time slot t ∈ T . Let xt,j ∈ {0, 1}
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Figure 4: LP* is an optimal LP solution, and LP** is the right-
shifted solution of the same cost.

denote the indicator variable for job j ∈ J and slot t ∈ [rj , dj ].
The natural LP relaxation is as follows:

min
∑
t∈T

yt

xt,j ≤ yt ∀ j ∈ J , t ∈ [rj , dj ]∑
j∈J

xt,j ≤ gyt ∀ t ∈ T

∑
t∈T

xt,j ≥ pj ∀ j ∈ J

xt,j , yt ≥ 0 ∀ t ∈ T , j ∈ J

Our approach computes an optimal fractional solution and rounds it
to a feasible integral solution within twice the cost of the fractional
one. Before we can round, we pre-process the fractional solution to
get a certain structure without increasing the cost of the solution.

Let D = {d1, d2, . . . , d`} be the distinct deadlines of the in-
stance, sorted in increasing order. The pre-processing step iter-
atively transforms the fractional solution to have a right-shifted
structure: for deadline di, if any slot t ∈ (di−1, di] is open to any
extent, then every subsequent slot t′ ∈ (t, di] has the property that
yt′ = 1. Informally, this structure is obtained by iteratively “push-
ing” all yt values between di−1 and di toward the right until it runs
into di; details can be found in the full version of the paper [8].

See Figure 4 for an example of a right-shifted LP solution.

THEOREM 2. There exists an optimal fractional solution that is
right-shifted.

Henceforth, we work with a right-shifted optimal LP solution.

Overview of Rounding
We iteratively process the deadlines of D in increasing order. We
denote the set of jobs with deadline di as Ji. At the end of iter-
ation i, we have a set of integrally open slots Oi. Let the cumu-
lative y-value between consecutive deadlines be defined as Yi =∑
di−1<t≤di yt (d0 = 0). The rounding algorithm maintains the

invariant that at the end of the ith iteration, the number of integrally
open slots up to di is |Oi| ≤ 2

∑
j≤i Yj . Furthermore, there ex-

ists a feasible fractional assignment of
⋃
k≤i Jk in Oi. This will

yield the 2-approximation by the end of the `th iteration. We refer
to slots t with yt = 1 as “fully open”. Those with 1

2
≤ yt < 1

are denoted as “half-open”, and those with 0 < yt <
1
2

are“barely
open”. Finally, slots with yt = 0 are “closed”.

Fully open slots do not charge anything extra to the LP solu-
tion. Half-open slots will be opened at a cost of at most 2, charging
themselves. To open a barely open slot, we need to charge it to a
fully open slot. We say that a barely open slot is “dependent” on
the fully open slot that it charges. In this case, the y-value of the
barely open slot is not charged at all. In other cases, we allow two

barely open slots on either side of a fully open slot to open up along
with a fully open slot; this is permissible only when the sum of the
y-values of the barely open slots and the fully open slot is at least
3
2

. We refer to such slots as a “trio”. Note that in the case of a trio,
we charge the y-value of the barely open slots.

The algorithm maintains the invariant that in each iteration, every
barely open slot is either a dependent on a fully open slot or is part
of a trio, and every fully open slot has at most one dependent or it
is part of at most one trio. Half open slots charge themselves. This
will ensure that we have charged the LP solution at most twice.
Every time we open a barely open slot as a dependent, we make
it a dependent on the earliest fully open slot that does not have a
dependent and is not part of a trio.

Sometimes while processing a deadline di, the algorithm may
choose to close a barely open slot t ∈ (di−1, di]. In such a case,
it must also schedule elsewhere the job segments that were initially
assigned to t. In particular, the algorithm accommodates jobs of
later deadline by creating a proxy copy of the slot t and carrying
it over to the next iteration. The y-value of this proxy slot is the
y-value of the slot t we have just closed; note that we do not charge
the y-value of t in this iteration, so the proxy slot may charge its
y-value in the future.

Intuitively, proxy slots permit the algorithm to delay the schedul-
ing of job segments, in the hope that the proxy slot can be merged
with fractional slots of future iterations. Unlike methods for con-
ventional scheduling problems, algorithms that minimize active time
must favor delaying early jobs in the hopes that they can be batched
with later jobs. The difficulty of the active time objective lies in
balancing the tension between this bias and feasibility constraints:
what should the algorithm do if it delays jobs only to discover later
that the number of jobs needing to be scheduled (including those
that were delayed) exceeds the time and resources available? To
handle this, proxy slots maintain a pointer initialized to the actual
slot from which it was derived; in this way, the proxy slot keeps
track of a “safe” slot to which it can fall back in such cases of ex-
cess demand. As a proxy slot is propagated from one iteration to
the next, it may update its y-value or the pointer to an actual slot.

If a proxy slot is passed to an iteration, the algorithm treats it as a
regular fractionally open slot (though there may be no actual slot at
that point). If this slot remains closed after the rounding, the proxy
slot is propagated to the next iteration. If the algorithm determines
that the proxy slot should be “opened”, the actual slot to which the
proxy slot points is opened. It is at this point that the cost of the
proxy is charged to its y-value.

Thus, in each iteration i of the rounding algorithm, the y-value of
any proxy slot (if it exists) is considered along with Yi. In a single
iteration, slots are opened from right to left, i.e., starting with di,
then di − 1, and so forth. The algorithm first opens as many fully
open slots as possible. If the remaining y-value is at least half,
then the next slot (denote t′′) is opened and charged to itself. If
the remaining y-value is positive but less than half, the algorithm
attempts to close t′′ and find a feasible assignment of all jobs in⋃
j≤i Jj , using max-flow. If such an assignment exists, then t′′

will remain closed and any remaining jobs that are not in Ji are
passed on via a proxy slot. (Notice that there can exist at most
one proxy slot at any time.) If such an assignment does not exist,
then the algorithm is forced to open t′′ as barely open. The cost of
opening t′′ will be charged to the earliest fully open slot that does
not yet have a dependent; if no such fully open slot exists, then t′′

forms a trio with the preceding fully open slot and its dependent.
See Figure 5 for an example.

We will next argue that the algorithm will always be able to
charge a barely open slot di that the rounding needs to open.
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if ydk−1 + ydk + ydi ≥ 3
2:

Figure 5: Three possible ways by which we can charge a barely
open slot when max-flow cannot close it.

LEMMA 4. If we need to open a barely open slot di in an iter-
ation, then we will always find a fully open slot to charge it as a
dependent or as a trio.

In order to prove the above, let us first assume that it is not true,
and we are in the situation where we could not close di which is
barely open, and there are no fully open slots that we can charge it
to. The rounding procedure (described in details in the full version
[8]) ensures that this can only happen if the closest open slot to di is
fully open. Since we could not charge di as a trio or as a dependent
on any of the fully open earlier slots, all the fully open slots before
di must have dependents.

The following lemma argues that if all the fully open slots before
di have dependents, then the structure of the solution must have a
specific form. There must be a deadline dz , with the closest open
slot before dz being dw (there may be no dw if dz is the first fully
open deadline), such that either (1) there are at least g + 1 jobs in
Jz with release time later than dw; or (2) the sum of the number
of rigid (unit) jobs with release time dz and the length 2 jobs with
release time at least dw is at least g + 1. Let us call such a dz
a stopping deadline. In other words, any integral solution would
have to open at least one slot in dw + 1, . . . , dz − 1, along with
dz , since there are g + 1 job units to be scheduled between dw + 1
and dz . Between stopping deadline dz and di, the fully open slots
will be a subset of the set of deadlines, and for each deadline dx
that is fully open, the slot dx − 1 is barely open and dependent on
dx. (Note that dx−1 can be another deadline itself). This structure
is called an alternating structure.

LEMMA 5. If the closest open slot to deadline di is fully open,
and all the fully open slots before di have dependents, then without
loss of generality, there is a stopping deadline dz and between dz
and di, the structure of the solution must be alternating.

PROOF. Let dk be the closest open slot to di, and dk is fully
open. Given the structure of the solution that we start out with and
the rounding process, this must be a deadline. All the fully open
slots before di have dependents. Since no slot between dk and di
are open, the dependent on dk has to be some earlier slot. Either
it is a barely open slot t such that dk−1 + 1 ≤ t ≤ dk − 1. Or it
must be a proxy slot carried over from an earlier deadline than dk.
Only one barely open slot is opened in any iteration by the rounding
process. Therefore, if we open a proxy slot in an iteration, then
there can be no other local barely open slots open in this iteration.
Any barely open slot is dependent on the earliest fully open slot
without a dependent. If Yk ≥ 2, dk would not have got charged in
iteration k, and hence would have no dependents even at iteration
i. Therefore, Yk < 2 and only dk is fully open in the slots after
dk−1.

If dk is not charged by a proxy slot, then necessarily dk − 1
is barely open. However, even if dk is charged by a proxy slot,
we show that any such proxy slot can be considered to be a lo-
cal barely open slot without any loss of generality. Let us suppose

that the dependent on dk is a proxy slot. In that case, the alter-
nating structure may not hold when we open the actual slot for the
proxy. That means, the actual slot must be occurring in at some t′,
dj−1 ≤ t′ ≤ dj , where j < k. No barely open or half open slots
could have opened between j and k as otherwise it would have ac-
counted for the proxy slot. If there is a fully open slot between dj
(inclusive of dj) and dk then the proxy can charge this slot as it
must have been uncharged so far. Since the proxy is a dependent
on dk, dk must be the first fully open slot from iteration j onwards.
Moreover, all the jobs in

⋃
x<k Jx do not need the proxy value for

a feasible assignment. Hence, we can change the pointer of the
proxy slot to dk − 1 without any loss of generality and consider
dk − 1 as dependent on dk. Note that dk − 1 may also be equal to
dj . Therefore, even if dk is charged by proxy slot, we can convert
it to a local barely open slot dk − 1.

Now, consider the rounding process in the iteration k. We must
have first tried to close dk − 1 and find a feasible assignment using
max-flow. Clearly that must have failed. Also, no job in J with
release time> dk−1 can be of length> 1, because Yk < 2. There-
fore, one reason can be that there are ≥ g + 1 unit jobs in Jk with
release time ≥ dk−1. In that case, dk is the stopping deadline, and
we have the alternating structure trivially.

If that is not the case, then that necessarily means the closest
earlier open slot, say dp,was half-open or fully open. The closest
open slot cannot be barely open in a feasible LP solution, otherwise
max-flow would have been able to find a feasible assignment of the
jobs in

⋃
p≤x≤k Jk even after closing the barely open slot dk−1. If

half-open, then clearly, ydp+ydk−1 > 1, otherwise, an assignment
could be found by max-flow. However, in this case, the rounding
would have made dp fully open, and charged the new ydk−1 =
ydp+ydk−1−1 as a dependent to it, if no other fully open slots were
available for charging. Therefore, the only possibility is that dp is
fully open, and has a dependent already. Then the same argument
can be be repeated for dp and dp − 1. We repeat this argument for
next closest open slot (which must be fully open with a dependent)
till we come to a stopping deadline. We are guaranteed to find a
stopping deadline because, if we ultimately come d1, then that must
also have a dependent d1−1 (so no jobs inJ1 can be of length> 1),
and we know from our rounding rule for d1, that d1 − 1 is opened
only when max flow failed, which implies there are ≥ g + 1 unit
jobs in J1. Hence, without loss we can convert our LP solution to
the alternating form between di and the stopping deadline dz .

The following lemma shows that for any pair of intermediate
deadlines, du and dx in the alternating structure, there are 2g + 1
units of jobs that need to be scheduled in the window (du, dx].

LEMMA 6. Suppose dz is the latest stopping deadline in the
alternating structure going backwards from di. Then for every in-
termediate fully open deadline dx /∈ {dz, di}, at least 2g + 1 job
units in Ju ∪ Jx must have release time at least du, where du is
the latest open deadline before dx.

PROOF. We shall prove this by induction. Let the closest open
slot before dz be dw. There are ≥ g + 1 job units in dz that need
to be scheduled in slots {dw + 1, . . . , dz} due to release time con-
straints. This follows from the definition of a stopping deadline.
Let the next fully open deadline after dz in the alternating structure
be da (da > dz). Note that the total mass scheduled by the LP in
{dz − 1, dz, da − 1, da} is ≤ 5g

2
, by the definition of the alter-

nating structure. (The barely open slots could not form trio with
each other.) We want to prove that there are 2g + 1 job units in
Jz ∪ Ja with release time at least dz . Let us assume there are at
most 2g units of jobs in Jz ∪ Ja with release time at least dz , by
way of contradiction. No job in Ja can be greater than or equal to



2 in length for a feasible LP solution since Ya < 2. Let nz denote
the rigid jobs in Jx (those releasing at dz), n′z denote the flexible
jobs in Jz which need to be assigned before dw (if there is any
dw), na,2 denote the number of length 2 jobs in Ja, na,1 denote
the unit length jobs in Ja with release time da and n′a,1 denote
the unit length jobs in Ja with release time ≥ dz . We know that
nz + 2na,2 + na,1 + n′a,1 ≤ 2g by assumption, nz + n′z ≥ g + 1
by definition of dz , and since dz is the latest stopping deadline,
na,1 + na,2 ≤ g. Since max flow failed, the only possibility is that
nz+na,2 ≥ g+1. For LP feasibility, nz+

n′z
2
+
na,2

2
≤ g. How-

ever, nz + n′z + nz + na,2 > 2g. Hence we get a contradiction.
Therefore, there must be ≥ 2g + 1 job units Jz ∪ Ja with release
time ≥ dz .

For ease of notation, without loss of generality, assume that the
deadlines are consecutive. Then, deadlines {dz, dz+1, . . . , dk} are
fully open (here, da = dz+1). Now, assume by induction hypothe-
sis, that the claim is true for all deadlines up to dk in the alternating
structure, and the next fully open slot is dk+1. For any deadline
dp which is fully open in the alternating structure between dz and
dk+1, let us denote by np,1 the unit length rigid jobs in Jp, np,2 the
length 2 jobs of release time ≥ dp−1, and n′p,1 the unit length jobs
of release time≥ dp−1 inJp. By induction hypothesis, for any two
adjacent open deadlines dp−1 and dp, where p ≥ 2, in the alternat-
ing structure, there are≥ 2g+1 job units inJp−1∪Jp with release
time≥ dp−1, i.e., n(p−1),1+np,1+n

′
p,1+2np,2 ≥ 2g+1. As in the

base case, assume for contradiction, that there are≤ 2g job units in
Jk ∪ Jk+1 with release time ≥ dk. Therefore, nk,1 + n(k+1),1 +
n′(k+1),1 + 2n(k+1),2 ≤ 2g. Since the latest stopping deadline
dz < dk+1, it also holds that n(k+1),1 + n(k+1),2 ≤ g. Therefore,
for max-flow to fail, it must be that nk,1+nk+1,2 ≥ g+1. For LP

feasibility, the
∑
z≤p≤k np,1+

∑
z≤p≤k

n′p,1
2

+
∑
z≤p≤k

3n′p,2
2

+
n(k+1),2

2
≤ g(k − z + 1). However, by the induction hypothesis,

2
∑
z≤p≤k np,1 +

∑
z≤p≤k n

′
p,1 + 2

∑
z≤p≤k n

′
p,2 + n(k+1),2 >

2g(k − z + 1). Hence this case is also not possible. Therefore,
max-flow can fail only if there are at least 2g+1 job units (includ-
ing flexible, unit length and non-unit length) in Jk ∪ Jk+1 whose
jobs are released by dk.

Therefore, we have proved the claim by induction.

Proof of Lemma 4 continued:
Since we cannot charge di as a dependent or a trio, by arguments
similar to those proving Lemma 6, it can be shown that there must
be at least g + 1 unit jobs with release time dk in Ji ∪ Jk.

Without loss of generality, we assume the deadlines are open
in consecutive order. The alternating structure is over some set
of deadlines {dz, dz+1, . . . , di}. From Lemmas 5 and 6, the fol-
lowing hold: for dz , we have that n′z + nz ≥ g + 1, where dz
is the stopping deadline, and n′z denotes the number of length 2
jobs plus the flexible unit length jobs which must be scheduled be-
fore the closest earlier open deadline. For any dz < dp < di,
np−1 + np,1 + 2np,2 + n′p,1 ≥ 2g + 1, where np,1 denotes the
number of unit length rigid jobs with release time dp, np,2 denotes
the number of length 2 jobs with release time at least dp−1 and
n′p,1 denotes the number of flexible unit length jobs with dead-
line at least dp−1. Therefore,

∑
z≤p≤i n

′
p,1 + 2

∑
z≤p≤i np,1 +

2
∑
z≤p≤i np,2 > 2(i−z)g. However, for LP feasibility, jobs must

be assigned to an extent of strictly less than 1
2

in the barely open

slots. Hence,
∑
z≤p≤i

n′p,1
2

+
∑
z≤p≤i

3np,2

2
+

∑
z≤p≤i np,1 ≤

(i−z)g, which is a contradiction. Therefore we will always be able
to charge a barely open slot which cannot be closed by max-flow
assignment.

THEOREM 3. There exists an algorithm whose active time is
within twice the optimum, on non-unit length jobs that can be pre-
empted on the integer time boundary.

PROOF. From Lemma 4 and the rounding procedure, it follows
that at the end of iteration i, the total number of integrally open
slots |Oi| ≤ 2

∑
1≤k≤i Yk, and there exists a LP feasible fractional

assignment of jobs in
⋃
x≤i Jx inOi. Hence the proof follows. An

integral feasible assignment of all jobs can be found in the slotsO`
via max-flow.

4. BUSY TIME: NOTATIONS AND PRELIM-
INARIES

DEFINITION 6. Job j is an interval job means that its length pj
is equal to dj − rj .

A job j is active on machinem at some time t ∈ [rj , dj) if j is one
of the jobs being processed by machine m at time t.

DEFINITION 7. The length of a time interval I = [a, b) is de-
noted `(I) = b− a, For a single contiguous interval, the length is
the same as its span, and hence may be referred to interchangeably
as the span of I , |Sp(I)|. For a set of intervals I, the length of I
is `(I) =

∑
I∈I `(I). The span of I is Sp(I) =

⋃
I∈I I .

For the special case of interval jobs, we need to find a partition of
the jobs into groups or bundles, such that in every bundle, there are
at most g jobs active at any time t. We then schedule each bundle
on a single machine. Let Bκ be the set of interval jobs assigned
to bundle κ by some partitioning scheme. Then, the busy time of
the machine on which the bundle κ will be scheduled is given by
|Sp(Bκ)|. Suppose we have partitioned all jobs into k feasible bun-
dles (the feasibility respects the parallelism bound g as well as the
release times and deadlines). Then the total cost of the solution is
given by the cumulative busy time

∑k
κ=1 |Sp(Bκ)|. The objective

is to minimize this cost. We consider both the variants where g
is unbounded and where g < ∞. For the preemptive version of
the problem, the problem definition remains the same, the only dif-
ference being that the jobs can be processed preemptively across
various machines.

To minimize busy time in the general case, the difficulty lies not
just in finding a partition of jobs, but also in deciding when each
job j should be scheduled. We study both the preemptive and non-
preemptive versions of this problem.

We denote the cost of the optimal solution of an instance J by
OPT (J ). We denote by OPT∞(J ) the cost of the optimal solu-
tion for the instance J when unbounded parallelism is allowed.

Without loss of generality, the busy time of a machine is con-
tiguous. If it is not, we can break it up into disjoint periods of con-
tiguous busy time, assigning each of them to different machines,
without increasing the total busy time of the solution.

The following lower bounds on any optimal solution for a given
instance J were introduced earlier ([3], [16]).

OBSERVATION 1. OPT (J ) ≥ `(J )
g

, where g ≥ 1 and `(J )
denotes the sum of the processing lengths of the jobs in J , inter-
changeably referred to as the mass of J .

This holds because in any machine, we can have at most g jobs
active simultaneously.

OBSERVATION 2. OPT (J ) ≥ OPT∞(J ).



The above observation follows from the fact that if a lower cost
solution exists for bounded g, then it is a feasible solution for un-
bounded g as well. If the jobs inJ are interval jobs, then,OPT∞(J )
is equal to |Sp(J )|.

The following theorem follows from the works of Alicherry and
Bhatia [3] and Kumar and Rudra [16].

THEOREM 4. There exists a factor 2 approximation algorithm
for the busy time problem on interval jobs. The approximation fac-
tor is tight.

5. A 3-APPROXIMATION ALGORITHM FOR
NON-PREEMPTIVE BUSY TIME

The busy time problem was studied by Khandekar et al. [14],
who referred to it as the real-time scheduling problem. In fact,
they gave a 5-approximation for a slight generalization, in which
jobs can have arbitrary widths. (The generalized constraint is that
at no point may the sum of widths of “live” jobs in a given bun-
dle exceed g.) In the busy time problem as defined in this work,
widths are all unit; under such assumptions, their analysis yields
a 4-approximation. As a first step towards proving this, Khan-
dekar et al. [14] show that if g is unbounded, then the problem
is polynomial-time solvable via a dynamic program. Recall that an
interval job j is defined to have the property pj = dj−rj . The out-
put of their dynamic program essentially converts a given busy time
instance to one of interval jobs by fixing the start and end times of
every job.

THEOREM 5. [14] If g is unbounded, the real-time scheduling
problem is polynomial-time solvable.

By Theorem 5, the span of the output of the dynamic program is
OPT∞(J ).

Once Khandekar et al. [14] obtain the modified interval instance,
they apply the 5-approximation for non-unit width interval jobs to
get the final bound. However, for jobs with unit width, their algo-
rithm and analysis can be modified without loss to get a final bound
of 4. Moreover, extending the algorithms of Alicherry and Bhatia
[3] and Kumar and Rudra [16] to the busy time problem by convert-
ing a given instance to an interval instance (similar to the approach
of Khandekar et al. [14]) also gives a 4-approximation2.

In this section, we give a 3-approximation for the busy time prob-
lem, i.e., for unit width jobs, improving the existing 4-approximation.
Analogous to Khandekar et al. [14], we first convert the instance
J ′ to an instance J of interval jobs by temporarily removing the
assumption that g is bounded, applying a dynamic program on
J ′ and fixing the job windows according to the output of the dy-
namic program. Let OPT∞(J ′) denote the busy time of the out-
put of the dynamic program. By Observation 2, we know that
OPT∞(J ′) ≤ OPT (J ′).

Then, on the interval job instance J , we will run our algorithm
GREEDYTRACKING. For an interval job j, its window [rj , dj) is
denoted as the span Sp(j) of j. For the remainder of the section,
we assume that the input consists of interval jobs.

To describe GREEDYTRACKING requires the notion of a track.

DEFINITION 8. A track of interval jobs is a set of interval jobs
with disjoint spans.

Given a feasible solution, one can think of each bundle B as the
union of g individual tracks of jobs. The main idea behind the
algorithm is to identify such tracks iteratively, bundling the first
2The bound of 4 for all these algorithms is tight [8].

g tracks into a single bundle, the second g tracks into the second
bundle, etc. FIRSTFIT [11] suffers from the fact that it greedily
considers jobs one-by-one; GREEDYTRACKING is less myopic in
that it identifies sets of jobs, entire tracks at a time.

In the ith iteration, i ≥ 1, the algorithm identifies a track Ti ⊆
J \

⋃i−1
k=1 Tk of maximum length `(Ti) and assigns it to bundleBp,

where p = d i
g
e. One can find such a track efficiently via weighted

interval scheduling algorithms [10]. We consider the lengths of the
interval jobs as their weights and find the maximum weight set of
interval jobs with disjoint spans. If the final solution has κ bundles,
the algorithm’s total cost is

∑κ
i=1 |Sp(Bi)|. The pseudocode for

GREEDYTRACKING is provided in Algorithm 1.

Algorithm 1 GREEDYTRACKING. Inputs: J , g.

1: S ← J , i← 1.
2: while S 6= ∅ do
3: Compute the longest track Ti from S and assign it to bundle

Bd i
g
e.

4: S ← S \ Ti, i← i+ 1.
5: end while
6: Return bundles {Bp}

d i−1
g
e

p=1

We next prove a key property of GREEDYTRACKING: the span
of any track is at least half that of the remaining unscheduled jobs.
In particular, the span of any bundle is at most twice that of the first
track to be assigned to it.

LEMMA 7. Let Ti be the ith track found by GREEDYTRACK-
ING, for i ≥ 1. Let J ′i ⊆ J denote the set of unscheduled jobs
J \

⋃i−1
k=1 Tk. Then |Sp(J ′i )| ≤ 2|Sp(Ti)|.

PROOF. In order to prove this, we first prove the following.
There exists two tracks T ∗1 and T ∗2 , such that T ∗1 ⊆ J ′i and T ∗2 ⊆
J ′i , T ∗1 ∩ T ∗2 = ∅ and Sp(T ∗1 ) ∪ Sp(T ∗2 ) = Sp(J ′i ). Let us as-
sume, by way of contradiction, that the above is not true. In other
words, for every pair of disjoint tracks from the set of yet unsched-
uled jobs J ′i , the union of their spans does not cover Sp(J ′i ). Let
T ∗1 and T ∗2 be two disjoint tracks from J ′i , such that the union of
their spans is maximum among all such tracks. By assumption,
|Sp(T ∗1 ∪ T ∗2 )| < |Sp(J ′i )|. This implies that there exists an in-
terval I ∈ Sp(J ′i ), such that I /∈ Sp(T ∗1 ∪ T ∗2 ). Let I be [tI , t

′
I).

Clearly, no job j ∈ J ′i has a window ⊆ [tI , t
′
I), by the maximal-

ity of Sp(T ∗1 ∪ T ∗2 ). In fact, all jobs intersecting I , must intersect
with some job in both T ∗1 and T ∗2 , because of the same reason. In

Time Axis

rj1 dj1 rj4 dj4

j4 j5

rj2 rj dj2 rj3 dj3 dj rj5 dj5

j1 j2 j3

j

Track T={j1, j2, j3, j4, j5}

MRS(j) = {j2, j3, j4}

Figure 6: An example showing the minimum replaceable set of a
job j, i.e., MRS(j) with respect to a track T .

the following we prove that no such interval I can exist given our
assumptions on T ∗1 and T ∗2 .



Let us first define the notion of minimum replaceable set.

DEFINITION 9. Consider track T and interval job j with win-
dow [rj , dj). Let jf ∈ T have the earliest deadline djf > rj such
that rjf ≤ rj . Let j` ∈ T have the latest release time rj` < dj ,
such that dj` ≥ dj . Then the set of jobs in T with windows in
[rjf , dj`) is the minimum replaceable set MRS(j, T ) for j in T ,
i.e., it is the set of jobs whose union has the minimum span, such
that {T ∪ j} \ MRS(j, T ) is a valid track. If there exists no
such job jf (respectively, j`), then MRS(j, T ) consists of jobs in
[rj , dj`) (respectively, [rjf , dj)). If neither jf nor j` exists, then
MRS(j, T ) = ∅. (See Figure 6 for an example.)

CASE 1. There exists a job j in J ′i \ {T ∗1 ∪ T ∗2 }, such that
rj < tI and tI < dj < t′I .

ConsiderMRS(j, T ∗1 ) andMRS(j, T ∗2 ). well as that inMRS(j, T ∗2 )
They cannot be empty, since otherwise, by adding j to the cor-
responding track, we could have increased Sp(T ∗1 ∪ T ∗2 ). Let
je be the job with the earliest release time re in MRS(j, T ∗1 ) ∪
MRS(j, T ∗2 ), and without loss of generality, suppose it belongs
to T ∗1 . Replacing MRS(j, T ∗2 ) with j will increase Sp(T ∗1 ∪
T ∗2 ): Sp(MRS(j, T ∗1 ) ∪MRS(j, T ∗2 )) < [re, tI), but Sp(j) ≥
[de, tI ], so Sp(MRS(j, T ∗1 ) ∪ j) > [re, tI ]. See Figure 7 for an
example. Hence, this case is not possible.

Time Axis dj3

dj

j

rj2

rj

rj4dj′3

tI ′

j′4j′1 j′2 j′3

rj′2

tI
I

MRS(j, T ∗1 ) = {j2, j3}

j5j1 j2 j3 j4

Track T ∗2 ={j′1, j′2, j′3, j′4}

MRS(j, T ∗2 ) = {j′2, j′3}

Track T ∗1 ={j1, j2, j3, j4, j5}

Figure 7: An example for Case 1 of Lemma 7. Replacing
MRS(j, T ∗2 ) by j increases Sp(T ∗1 ∪ T ∗2 ).

CASE 2. There exists a job j in J ′i \ {T ∗1 ∪ T ∗2 }, such that
tI < rj < t′I and dj > t′I .

Consider MRS(j, T ∗1 ) and MRS(j, T ∗2 ). Without loss of gener-
ality, they cannot be empty sets as argued in Case 1. Let the job j`
have the latest deadline d` in MRS(j, T ∗1 )∪MRS(j, T ∗2 ). With-
out loss of generality, suppose j` belongs to T ∗1 . Then we can re-
place MRS(j, T ∗2 ) with j, thereby increasing Sp(T ∗1 ∪T ∗2 ). This
is because, Sp(MRS(j, T ∗1 )∪MRS(j, T ∗2 )) ≤ [t′I , d`), whereas
Sp(MRS(j, T ∗1 ) ∪ j) > [t′I , d`), since Sp(j) > [t′I , dj).

Hence, this case is also not possible.

CASE 3. There exists a job j, such that [rj , dj) ⊃ [tI , t
′
I).

Let the earliest release time (latest deadline, respectively) of any
job inMRS(j, T ∗1 )∪MRS(j, T ∗2 ) be re (d`, respectively) and the
corresponding job be je (j`, respectively). Without loss, these sets
are not empty. If je and j` belonged to the same track, say T ∗1 , we

could have replaced MRS(j, T ∗2 ) with j in T ∗2 and increased the
union of the span of T ∗1 ∪T ∗2 : Sp(j) ≥ [de, r`) and would include
I = [tI , t

′
I), whereas Sp(MRS(j, T ∗2 ) \MRS(j, T ∗1 )) would be

at most [de, r`)\[tI , t′I). Therefore, je and j` must belong to differ-
ent tracks. Without loss of generality, let je ∈ T ∗1 and j` ∈ T ∗2 . Let
us replace MRS(j, T ∗2 ) with j. Next, we put j` in T ∗1 replacing
MRS(j`, T ∗1 ). Note that de ≤ tI , r` ≥ t′I , and t′I− tI > 0 by our
assumptions. Therefore, je /∈ MRS(j`, T ∗1 ). In fact, none of the
jobs in T ∗1 with release time < t′I are included in MRS(j`, T ∗1 ),
and hence none of them are discarded. Therefore, the loss of cov-
erage by T ∗1 after putting j` in place of MRS(j`, T ∗1 ) is at most
the interval [t′I , r`). However, we have added j to T ∗2 , and not only
does j span [tI , t

′
I), but also the interval [t′I , r`], since dj ≥ r` for

j` to be originally a part of MRS(j, T ∗2 ). Hence, we would in-
crease Sp(T ∗1 ∪T ∗2 ), which is a contradiction. Therefore, this case
is also not possible.

Since no job window in J ′i can intersect I , there exists no such
I in Sp(J ′i ). Therefore, Sp(T ∗1 ∪ T ∗2 ) = Sp(J ′i ). Furthermore,
|Sp(T ∗1 ∪T ∗2 )| ≤ |Sp(T ∗1 )|+|Sp(T ∗2 )|, in other words, the longer
of T ∗1 and T ∗2 is ≥ |Sp(J ′i )|

2
. Since, Ti is the longest track in J ′i ,

therefore, |Sp(J ′i )| ≤ 2|Sp(Ti)|.

We next prove that our algorithm generates a solution within 3
times the cost of an optimal solution via the following lemmas.

LEMMA 8. For any i > 1, the span of bundleBi can be bounded
by the mass of the bundle Bi−1 as follows: |Sp(Bi)| ≤ 2

`(Bi−1)

g
.

PROOF. Let T 1
i denote the first track of the bundle Bi. From

Lemma 7, it follows that |Sp(Bi)| ≤ 2|Sp(T 1
i )|. The jobs in T 1

i

are disjoint by definition of a track, hence |Sp(T 1
i )| = `(T 1

i ),
and |Sp(Bi)| ≤ 2`(T 1

i ). Since T 1
i started the ith bundle, bundle

Bi−1 must already have had g tracks in it. Furthermore, the lengths
of these tracks are longer than that of T 1

i since GREEDYTRACK-
ING chooses tracks in non-increasing order of length. Therefore,
`(Bi−1) =

∑g
p=1 `(T

p
i−1) ≥ g`(T

1
i ). And so we conclude that

|Sp(Bi)| ≤ 2
`(Bi−1)

g

LEMMA 9. The total busy time of all the bundles except the first
one is at most twice that of an optimal solution for the entire in-
stance. Specifically,

∑
i>1 |Sp(Bi)| ≤ 2OPT (J ′).

PROOF. This proof follows from Lemma 8. For any i > 1,
|Sp(Bi)| ≤ 2

`(Bi−1)

g
. Summing over all i > 1, we get the fol-

lowing:
∑
i>1 |Sp(Bi)| ≤ 2

∑
i>1 `(Bi−1)

g
= 2

∑
i>1

∑
j∈Bi−1

`(j)

g
.

Therefore,
∑
i>1 |Sp(Bi)| ≤ 2 `(J )

g
. Note that `(J ) =

∑
j∈J ′ pj ,

where J ′ is the original flexible interval job instance. This is
true because the dynamic program converting a flexible instance to
an interval instance, does not reduce the processing length of any
job. Hence, from Observation 1, OPT (J ′) ≥ `(J ′)

g
. Therefore,∑

i>1 |Sp(Bi)| ≤ 2OPT (J ′).

THEOREM 6. The cost of the algorithm is at most 3 times the
cost of an optimal solution. Specifically,

∑
i |Sp(Bi)| ≤ 3OPT (J ).

PROOF. From Lemma 9,
∑
i>1 |Sp(Bi)| ≤ 2OPT (J ′). Fur-

thermore, |Sp(B1)| ≤ OPT∞(J ′). From Observation 2,

OPT∞(J ′) ≤ OPT (J ′)

Therefore,
∑
i |Sp(Bi)| ≤ 3OPT (J ′).



interval
jobs

interval
jobs ...

...

g

g

ε

1
1

2g flexible jobs, each of length 1− ε
2

... Repeated g times

Figure 8: Construction for factor 3 for GREEDYTRACKING.

The bound for this algorithm is tight.
Figure 8 shows that the approximation factor of 3 achieved by

GREEDYTRACKING is tight. In the instance shown, a small con-
struction of 2g interval jobs is repeated g times. For each copy
of the construction, there are g identical unit length interval jobs
which overlap for ε amount with another g identical unit length in-
terval jobs. The g copies are disjoint from one another, i.e., there is
no overlap among the jobs of any two constructions. There are also
2g flexible jobs, whose windows span the windows of all g con-
structions. These jobs have length 1− ε

2
. An optimal packing would

pack each set of g identical jobs of each copy in one bundle, and the
flexible jobs in two bundles, yielding a total busy time of 2g+2−ε.
However, since the dynamic program minimizing the span is obliv-
ious to capacity, it may pack the flexible jobs 2 each with each of
the g constructions, in a manner such that they intersect with all of
the jobs of the construction. Hence, the flexible jobs cannot be con-
sidered in the same track as any unit interval job in the construction
it is packed with. Due to the greedy nature of GREEDYTRACKING,
the tracks selected would not consider the flexible jobs in the be-
ginning, and the interval jobs may also get split up as in Figure 9,
giving a total busy time of 4(1− ε)g+(2− o(ε))g = (6− o(ε))g,
hence it approaches a factor of 3 asymptotically.

interval
jobs

interval
jobs

...
...

2 flexible jobs

g

g

... Repeated g times

1
1

ε

2− o(ε)

Figure 9: Possible packing produced by GREEDYTRACKING on
the instance of Figure 8.
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