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Abstract

A spanning tree in a graph is the smallest connected spanning subgraph. Given a graph, how does
one find the smallest (i.e., least number of edges) 2-connected spanning subgraph (connectivity refers
to both edge and vertex connectivity, if not specified) ? Unfortunately, the problem is known to be
N P-hard.

We consider the problem of finding a better approximation to the smallest 2-connected subgraph,
by an efficient algorithm. For 2-edge connectivity our algorithm guarantees a solution that is no
more than % times the optimal. For 2-vertex connectivity our algorithm guarantees a solution that
1s no more than % times the optimal. The previous best approximation factor is 2 for each of these
problems. The new algorithms (and their analyses) depend upon a structure called a carving of a
graph, which is of independent interest. We show that approximating the optimal solution to within
an additive constant is N P-hard as well.

We also consider the case where the graph has edge weights. For this case we show that an
approximation factor of 2 is possible in polynomial time for finding a k-edge connected spanning
subgraph. This improves an approximation factor of 3 for £ = 2 due to [FJ81], and extends it for any
k (with an increased running time though).

1. Introduction

Let a graph G' = (V, E) represent a feasible communications network. An edge (a,b) denotes the feasibil-
ity of adding a link from site a to site b. A spanning tree in G is the smallest connected subgraph, i.e., the
cheapest network that will allow the sites to communicate. Notice that the network is highly susceptible
to failures, since it cannot even survive a single link or site failure. For more reliable communication,
one desires spanning subgraphs of higher connectivity.

In this paper we consider the problem of finding the smallest 2-connected spanning subgraph (edge
or vertex connected). These problems are easily seen to be N P-hard by a reduction from the Hamilton
cycle problem (the graph has a Hamilton cycle if and only if it has a 2-connected (edge or vertex)
spanning subgraph with n edges). We will study approximation algorithms for this problem.
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Contributions:
We give linear time algorithms to find a subgraph H = (V,Fg) in G = (V, E), such that H is 2-
connected. The number of edges in H is guaranteed to be no more than ¢ O PT where O PT is the size

of an optimal solution. For the case of 2-edge connectivity we obtain ¢ = %, and for the case of 2-vertex
connectivity we obtain ¢ = % From the results presented, a natural question that arises is: what are the

limits for the edge and vertex cases 7 We also show that unless P = N P there is no polynomial time
algorithm that will produce a solution that is guaranteed to be of cost no more than O PT + C', where
(' is some constant.

For the case of weighted graphs we observe that an approximation factor of 2 is possible in
O(nklogn(m 4+ nlogn)) time for finding the smallest weight k-edge connected subgraph based on al-
gorithms by [G91a, FT89, Ed79]. This improves upon the approximation factor of 3 due to [FJ81] for
k=2.

In designing the approximation algorithms we identified the carving and tree-carving of a graph as
structures that are useful for establishing lower bounds on the optimal solution. These notions might be
of independent interest for understanding graph connectivity issues.

Significance of the Approximation Results:
Improving biconnectivity approximation factors can result in significant savings in the design of a physical
network since it enables discarding a fraction of the edges that were needed before.

The algorithm has been implemented and tests on random graphs indicates that it achieves approx-
imation factors in the range 1.1...1.2. The approximation factors got better as the graphs got denser;
it went down to around 1.02 in the densest graphs that we checked.

Previous Approximation Results:

We note that an approximation factor of 2 is easy to obtain. Do a Depth First Search, and from each
vertex (except the root) pick the highest back edge. This gives a 2-connected spanning subgraph with at
most 2n — 2 edges, while n is a trivial lower bound on any optimal solution. Other schemes for obtaining
approximation factors of 2 follow as simple consequences of [Wh32, CT91, NI90].

Related Work:

The question of finding minimum cost k-connected spanning subgraphs can be posed in the context of
weighted graphs as well. For the case £ = 1, the problem reduces to that of finding a minimum spanning
tree. For k = 2, the problem is N P-hard and a scheme that gave an approximation factor of 3 was given
by [FJ81] in O(n?) time. This was made simpler and improved to obtain the same approximation factor
in O(m + nlogn) time by [KT93]. (Actually, the problem solved is of increasing the connectivity of an
existing network from 1 to 2, but it can be used for an approximation factor of 3 as well.)

There is extensive literature on the k-edge connected spanning subgraph problem [FJ82, GB93,
GMS92, MK89, SWK69], for the case where the edge weights satisfy the triangle inequality (and the
underlying feasibility graph is a clique),

For the case of edge or vertex connectivity when the underlying feasibility graph is a clique (any edge
can be added at unit cost), one can solve the problem of the smallest k-connected spanning subgraph
optimally [Ha62].

For the case of increasing the edge connectivity of an existing network from any A to k, when the
underlying feasibility graph is a clique (any edge can be added at unit cost), the problem can be solved
optimally [WN87, NGM90, G91b]. Naor, Gusfield and Martel [NGM90] use a clever extension of the
basic DFS approach of [ET76] to generalize the technique to work for any k. (Eswaran and Tarjan
solved the case of increasing connectivity from 1 to 2 in their seminal paper, where the problem was



first introduced.) For the case of vertex connectivity, for & = 2,3 the best algorithms are due to

[ET76, RG77, HR91b] and [HR91a] respectively.

A more general edge connectivity problem was considered by Frank [Fr92] when the feasibility graph
is a clique, and shown to be solvable in polynomial time. (Specifically, one is required to find a minimum
spanning subgraph where specific connectivity requirements are given for each pair of vertices.) This
result has recently been improved by Gabow [G91b].

The problem of finding a minimal (not minimum) 2-connected (edge and vertex) spanning subgraph
was studied by [KR91] and [HKRT92]. (A graph with property P is minimal with respect to property
P if it loses property P on deletion of any edge.) The relationship to this paper is that any minimal
biconnected graph has at most 2(n — 1) edges, which gives an approximation factor of 2.

Studying biconnectivity properties of graphs has led to a few fundamental graph algorithmic tech-
niques.
(1) The power of Depth First Search was illustrated through biconnectivity [Ta72].
(2) The Tree Euler Tour technique for a parallel biconnectivity algorithm [TV85].
(3) The design of the Ear Decomposition Search (EDS) algorithm in [MSV86] was originally motivated
by extending [Vi85] from a strong orientation algorithm into an alternative biconnectivity algorithm. Its
use as a general technique for parallel graph algorithms came at a later stage. The fact that EDS yields
an alternative biconnectivity algorithm is noted in [MR86] as well.
(4) Application of Graph Decompositions [GI91, Fr91] to dynamic 2-edge and 3-edge connectivity.

Improving approzimation factors: Considerable attention has been given to improving constant approx-
imation factors. For example, Johnson [Jo82] reports a series of 8 papers that give such improvements
for bin packing, starting from an approximation factor of 2 down to 1.18333, and recently to (1 + ¢).
For steiner trees, a similar series exists [KMB81, TM80, Ze93, BR92].

Outline of Paper:

Section 2 gives basic definitions related to edge and vertex connectivity. Section 3 describes the algorithm
for the edge connectivity case (this section is very simple and gives the flavor of the results and analysis
for the vertex case, which is more involved). Section 4 describes the algorithm for the vertex connectivity
case. Section 5 describes the results for weighted graphs. In Section 6 we show that the problem of finding
a constant additive approximation to the optimal solution is NV P-hard.

2. Some Definitions

We will be dealing only with connected graphs G = (V, F), with no parallel edges. A graph is said
to be k-vertex (k-edge) connected if it has at least (k + 1) vertices (edges), and the deletion of any
(k — 1) vertices (edges) leaves the graph connected. A single vertex in a connected graph whose deletion
disconnects the graph is called a cut vertez (also known as articulation vertex). A graph with no cut
vertices is called biconnected. A bridge in a graph is a single edge whose deletion disconnects the graph.
A graph with no bridges is called 2-edge connected. In a rooted tree, the parent of a vertex u is denoted

by p(u).



3. Edge Connectivity Case

Given a 2-edge connected graph G(V, E), let OPT denote the minimum number of edges in a 2-edge
connected spanning subgraph of G. We present an algorithm that finds a subgraph H = (V, E) that is
2-edge connected with | Ep | at most 20 PT.

High-level Description of the Algorithm

We search G using depth-first-search (DF'S). A DFS rooted spanning tree T' is computed; 7" has at most
n—1 edges, and all the non-tree edges are back edges (i.e., one of the endpoints of the edge is an ancestor
of the other in 7). All edges of T" are picked for Fg. During the depth-first search the algorithm also
picks a set of non-tree edges that will increase the edge connectivity by “covering” all the edges in T
(since each edge in T" threatens to remain a bridge). A back edge may be chosen just before withdrawing
from a vertex for the last time. Before withdrawing from a vertex v, we check whether the edge (v, p(v)),
joining v to its parent, is currently a bridge or not. If (v, p(v)) is still a bridge, we cover it by adding to
Ep aback edge from a descendant of v to low[v], where low[v] is the vertex with the smallest dfs-number
that can be reached by following zero or more downgoing tree edges from v, and a single back edge.

3.1. The Algorithm - a Detailed Description

In this section we give a detailed recursive description of the algorithm. The running time is O(n + m),
the algorithm is simple to implement and uses no complicated data structures.

Data Structures:
dfs[v]: A serial number given to a vertex the first time it is visited during DF'S. For simplicity, we will
assume that vertices are numbered by their dfs-number (i.e., v = dfs[v]).

state of a vertex: Each vertex is initially “unvisited”. After the DF'S traversal visits it for the first time,
it becomes “discovered”. When we finally exit from the vertex it becomes “finished”. (This is to be able
to tell when we are looking at back edges from the upper end.)

low[v]: defined earlier.

lowy[v]: This is defined to be the smallest numbered vertex that can be reached by following zero or
more downgoing tree edges from v, and a single back edge that belongs to Fp.

savior[v]: This is defined to be the descendant end vertex of the back edge that goes to low[v].

Initialization Step: The initial call made is DF'S(v, nil) where v is an arbitrary vertex. We assume
that G is a 2-edge connected graph (easy to verify this before running the algorithm). Initially, all
vertices are “unvisited”.

Algorithm Find 2-FEC Spanning Subgraph
Input: Graph G = (V, F).
Output: A subgraph H = (V, Ey) that is 2-EC.

procedure DFS(v, u); (* u is the parent of » in DFS tree. *)
mark v discovered;
low[v] = v;
lowg[v] = v;
savior[v] = v;



for each w € Adj[v] do
if w is unvisited then begin
Eyg=FgU{(v,w)} (* (v, w) is a tree edge *)
DFS(w, v);
low[v] = min(low[v], low[w]); If low[v] changes, set savior[v] = savior[w];
lowgr[v] = min(lowg[v], low g [w]);
end
else if w is discovered then begin
if w # u then (* (v, w) is a back edge *)
low[v] = min (low[v], w);
(* else (v, w) is already a tree edge *)
(* else w is finished and is a descendant of v *)
end
mark v finished;
If lowg[v] = v and u # nil then begin
(* edge (u,v) is threatening to be a bridge *)
(* add the edge ( savior[v], low[v] ) to cover the bridge *)
Ex = Eg U{( savior[v], low[v] )};
lowg[v] = low[v];
end

end DFS

Correctness and Complexity:
It is quite easy to see that H is 2-edge connected, and that the algorithm runs in time O(n + m).

In Fig 1(a), the vertices are shown numbered with the DFS numbering. The back edges are added
in the following order: (6,4),(7,3),(9,2),(3,1).

3.2. The Approximation Analysis

Our analysis finds a partition of the vertices, called a tree-carving, which is used to prove a lower bound
on OPT, the number of edges in the optimal solution. The upper bound of % on the approximation
factor is established using this lower bound. After presenting the concept of a tree-carving, we apply it
to the approximation analysis.

3.2.1. Tree-Carving

Definition 3.1: A tree-carving of a graph is a partition of the vertex set V into subsets V1, Vo, ..., V}
with the following properties. Each subset constitutes a node of a tree I'. For every vertex v € V;, all
the neighbours of v in GG belong either to V; itself, or to Vi, where V}, is adjacent to V; in the tree I'. The
size of the tree-carving is k.

We will refer to the vertices of I' as nodes, and the edges of I' as arcs.

An example of a graph G, a tree-carving for it, and its carving tree is shown in Fig. 1.

Theorem 3.2: (Tree-Carving Theorem)
If the graph G = (V, F) has a tree-carving of size k, then a lower bound on the number of edges of any



(a) G (b) Tree-Carving of size 5 for G

) W ®

(c) The tree T

Figure 1: A graph G, a tree-carving for it, and the carving tree I'.



2-edge connected spanning subgraph in G is 2(k — 1).

It is interesting to note that the same simple proof implies that the smallest A-connected subgraph
of G must have at least A(k — 1) edges (for A > 0).

Proof: There are k — 1 arcs in the tree I'. Each such arc e = (V;, V;) partitions the vertices in G into two
sets S, and V' — 5. (Deletion of arc e breaks I' into two trees I'y and I'y, where V; belongs to I'y. S. is
defined to be the union of the sets V; that belong to I'y.) In any 2-edge connected spanning subgraph we
have: (1) at least two edges going from S, to V — 5, and (2) both these edges must have one endpoint
in V; and another in V;; from the disjointness of V;’s it follows that for each arc e, there are two distinct
edges in the subgraph. Since I' has k — 1 arcs, we get a lower bound of 2(k — 1). a

3.2.2. Using Tree-Carvings for the Approximation Analysis

Given T, the DI'S spanning tree, we will be interested in the following partition of the vertices of G,
called the DFS-tree partition. Some recursive calls DFS(v,u) end by adding the back edge (savior[v],
low[v]) to Ep, and some do not add any edge. For each call DFS(v, u) where a back edge is added to
FEp, “remove” the tree edge (u,v) from T'; the resulting connected components of T' (with some tree
edges removed) provides the DF'S-partition. Furthermore, 7" induces a rooted tree structure I' on the sets
in the DFS-tree partition.

In Fig 1(a), the vertices are shown numbered with the DF'S numbering. The back edges are added
in the following order: (6,4),(7,3),(9,2),(3,1). Now consider the tree T, and remove the following tree
edges: (5,6),(5,7),(8,9),(1,2). This gives us the DFS-tree partition.

Theorem 3.3: The DFS-tree partition yields a tree-carving of G.

Proof: Let (v1,v2) be any non tree edge in G. Suppose that v; is in set V; of the DFS-tree partition and
v9 is in set V5. Let us assume that vy is an ancestor of vy. Clearly low[vy] < vy. Thus by the algorithm
there can be at most one bridge between them. Hence, either V3 = V5, or set V; is the parent set of set
V, (in the rooted tree structure T'). ]

Corollary 3.4: Since the number of arcs in the tree-carving is exactly the same as the number of back
edges that are added to E'y we conclude that OPT > 2(k — 1), where k — 1 is the number of added back
edges.

Theorem 3.5: The algorithm outputs a solution of size no more than % OPT.

Proof: The number of edges added by the algorithm to H is: (i) (n — 1), for the tree edges, plus (ii) £ —1
back edges, where k is also the size of the tree-carving. Hence, the number of edges in Fpisn—1+k—1.
A lower bound on the OPT solution is max(n,2(k — 1)), since n is the minimum number of edges in a
2-edge connected graph with n vertices (each vertex should have degree at least 2), and 2(k — 1) follows
from Corollary 3.4. Hence, the ratio of the algorithm’s solution to the OPT solution is

n—14+k-1
~ max(n,2(k - 1))

If n > 2(k — 1), then clearly the ratio is < 3/2. If n < 2(k — 1), it is again easy to see that the ratio is
< 3/2. 0

We have an example to show that the ratio of % is asymptotically tight.



3.2.3. Worst Case Example

We provide an example (see Fig. 2) with n = 16, where the algorithm outputs Fg with 15+ 8 = 23
edges. The optimal solution has 16 edges. The figure describes two copies of the graph G; in each copy
not all the edges are shown. The left copy shows only the 15 tree edges and the 8 back edges that are
added by the algorithm (highest ones). In the right copy, the 16 edges that form a Hamiltonian cycle
are shown along with the tree edges.

Clearly we can generalize the example into a graph with n vertices that has n/2 leaves attached to
n—14n/2
n

n/2 vertices in a path (like a “broom”). In this case the ratio will be , which converges to 2.

DFS tree edges
Back edges added by algorithm

Hamiltonian cycle in G

Figure 2: Example to illustrate worst case performance.

4. Vertex Connectivity Case

We now describe the algorithm that finds a 2-vertex connected spanning subgraph H = (V, Fy), of a
given 2-vertex connected graph G, with | Fg | at most %OPT. To motivate the presentation we start
by applying the “greedy” approach of the 2-edge connectivity approximation algorithm of the previous
section to the example in Fig. 3. The DIS tree is the straight path and it is easy to see that each back
edge must be added to cover a vertex that threatens to be a cut vertex. The graph shown is actually
Hamiltonian, and clearly the example can be extended to yield approximation factors that are as close
to 2 as we want. For this reason we design the algorithm to identify redundant edges in the DFS tree



and discard them.

For the analysis of the algorithm, we will define the notion of a carving of a graph, which is not as
simple as the tree-carving that worked for the edge connectivity case.

High-level Description of the Algorithm

We first provide an overview of the algorithm. In the graph G, do a depth-first-search to compute a DIF'S
spanning tree T. The idea is to now pick a set of back edges that will increase the vertex connectivity
of the tree to two by “detouring” around each vertex of the tree T. During the Depth First Search
all the tree edges are added to Fp, as well as some subset of back edges. Some of the tree edges may
be identified as redundant and discarded during the DFS. The back edges are chosen when the DFS
traversal is visiting a vertex for the last time. When DF'S retreats out of a vertex v for the last time, we
check if the vertex u (parent of v) is potentially a cut vertex or not. If yes, we can cover it by adding to
Epr the highest going back edge from a descendant of v. (This will at least prevent the separation of v
from p(u) under the deletion of u.) This is all that is done if v is a leaf in the DF'S tree; otherwise, if
the back edge emanates from v we discard the tree edge joining v with u (see Fig. 4). This is called the
discarding rule.

Figure 3: Example to show the necessity of discarding.

4.1. The Algorithm - a Detailed Description

In this section we give a detailed recursive description of the algorithm. The running time is O(n + m),
the algorithm is simple to implement and uses no complicated data structures.

Data Structures:
dfs[v]: A serial number given to a vertex the first time it is visited during DIF'S. We will assume that
vertices are numbered by their dfs-number (i.e., v = dfs[v]).

state of a vertex: Each vertex is initially “unvisited”. After the DF'S traversal visits it for the first time,
it is marked “discovered”. When we finally exit from the vertex it is marked “finished”.

low[v]: the vertex with the smallest dfs-number that can be reached by following zero or more downgoing
tree edges from v, and a single back edge.



discarded edge

lowg[v] = u

low[v] = ¥

Figure 4: Rule for discarding tree edges.

low[v]: the vertex with the smallest dfs-number that can be reached by following zero or more down-
going tree edges from v, and a single back edge that belongs to Fz. Since tree edges are being discarded,
this definition may appear to be temporal. Path Pathp(v) in Lemma 4.2 justifies this definition.

savior[v]: This is defined to be the descendant end vertex of the back edge that goes to low[v].

Initialization Step: The initial call made is DFS(v, nil) where v is an arbitrary vertex. We assume
that G is a 2-vertex connected graph (easy to verify this before running the algorithm). Initially all
vertices are “unvisited”.

Algorithm Find 2-VC Spanning Subgraph
Input: Graph G = (V, F).
Output: A subgraph H = (V, Eg) that is 2-VC.

procedure DFS(v, u); (* u is the parent of v in DFS tree. *)
mark v discovered;
low[v] = v;
lowg[v] = v;
savior[v] = v;
for each w € Adj[v] do
if w is unvisited then begin
Fy=FEg U{(v,w)} (* (v, w) is a tree edge *)
DFS(w,v);
low[v] = min(low[v], low[w]); If low[v] changes, set savior[v] = savior[w];
lowgr[v] = min(lowg[v], lowg[w]);
end
else if w is discovered then begin

10



if w # u then (* (v, w) is a back edge *)
low[v] = min (low[v], w);
(* else (v, w) is already a tree edge *)
(* else w is finished and is a descendant of v *)
end
mark v finished;
If w # nil then begin
If lowgr[v] = v then begin (* if v is a leaf then add highest back edge *)
Eyg = Eg | {( savior[v], low[v] )};
lowg[v] = low[v];
end
If lowg[v] = u then begin (* v is a non-leaf in the DF'S tree *)
FEn = Eg U{( savior[v], low[v] )}; (* add highest back edge *)
lowg[v] = low[v];
If savior[v] = v (* the discarding rule *) then
Fpg=FEg—A{(u,v)}; (* delete the tree edge *)
end
end

end DFS

Complexity:
It is quite easy to see that the algorithm runs in time O(n + m).

4.2. Correctness of the Algorithm

The correctness of the algorithm is established via the following theorem.
Theorem 4.1: The subgraph H = (V, ) obtained by the algorithm is 2-vertex connected.

Proof: Tor the proof, it will be helpful to think of the algorithm as working in two phases.
Phase 1: Traverse the graph using DFS, add all the tree edges to Fp.

Phase 2: Traverse the graph using DF'S, add the required back edges to Fz, and discard the tree edges
by applying the discarding rule.

We first prove two lemmas that are used in the proof of the theorem.

Lemma 4.2: For each non-root vertex v, the following paths exist in H, from the end of Phase 1 until
the end of the algorithm.

1. Pathy(v): from v to its parent p(v), using vertices outside the DFS subtree rooted at v (except
for v itself).

2. Pathp(v,z): from v to each = that is a descendant of v, using only vertices in the subtree rooted
at v. By Pathp(v), we will refer to the set of the paths Pathp(v,z), for all descendants z.

Proof: The Lemma clearly holds before the starting of Phase 2. Pathy(v) is the single tree edge joining
v to p(v). Pathp(v,z) is the unique tree path in 7" from v to its descendant z.

11



The proof is by induction on the order in which the tree edges are being discarded.

We will show that as tree edge (w,p(w)) is discarded, we can alter the paths Pathy(v) and
Pathp(v,z), for every v and every z in the subtree of v, so that they do not use the deleted edge. The
inductive hypothesis is that prior to discarding the tree edge (w, p(w)), paths Pathy(v) and Pathp(v,z)
exist for every v, and every z in the subtree of v. There are three cases to consider:

1. v = w. Pathp(v) is unaffected. Pathy(v) takes the back edge (v,low[v]), and the path from low[v]
to p(v) in T (that still exists since we have not yet discarded edges that high in the tree).

2. w is a proper ancestor of v. Pathp(v) is unaffected. Assume that Pathy(v) uses (w,p(w)). The
deleted edge can be replaced by the path Pathy(w) that was obtained in the previous case.

3. vis a proper ancestor of w. Pathyr(v)is not affected. Assume that some Pathp(v,z) uses (w, p(w)).
There must be a back edge from a vertex y to p(w) since the edge (w, p(w)) was discarded, where
y is a descendant of w. We can replace the edge (w,p(w)) by the path Pathp(w,y), which exists
by the inductive hypothesis, and the back edge (y, p(w)).

This completes the proof of the lemma. O

Lemma 4.3: Let v be a vertex, and suppose that neither v nor p(v) are the root. When the algorithm
terminates, there is a path from v to its grandparent w (i.e., w = p(p(v))) that does not use p(v).

Proof: Observe that lowg[v] < p(v) when the algorithm terminates. Let the back edge added by the
algorithm to lowg[v] be (u,lowg[v]) (v = saviorg[v]). We define saviorg[v] to be the descendant end
vertex of the back edge that goes to lowg[v]. We are ready to specify a path from » to w that does
not use p(v). Using Pathp(v,u) and (u, lowg[v]) we can advance from v to lowg[v]. We can get from
w to lowg[v] as follows: concatenate Pathy(w), with Pathy(p(w)), and so on until we reach lowg[v].
Clearly p(v) is not used on this path. O

We complete the proof of the theorem by showing that no single vertex can disconnect H. Observe
that the root of the DI'S tree cannot be a cut vertex. (Since G is biconnected, the root has only one child
v and using Pathp(v), v can reach all the vertices, without using the root.) Let v be a non-root vertex.
The following will prove that H remains connected on deletion of v, by showing that every remaining
vertex has a path to p(v). Consider deleting v from 7. We obtain a connected component corresponding
to each child of v, and one corresponding to the parent (that contains the root). (1) Let u be a child
of v. Using Pathp(u), clearly u is connected (in H) to all vertices in its subtree in 7. Using Lemma
4.3, we can connect each such u with p(v). (2) We now consider the component of T containing p(v).
Let the path from p(v) to the root in T' be @ = [v1 = p(v), vq,...v; = root]. Clearly p(v) is connected
(in H) to all of its ancestors on path @ by using Pathy(v1) to ve, and Pathy(vz) to vs ete. Consider a
vertex z (other than v), that is a child of some v;. Using Pathp(z) paths, z is connected (in H) to all
the vertices in its subtree in T, including saviorg[z]. Using the back edge (saviorg[z], lowg[z]), = can
connect to the path @, and thereby to p(v), as well. |

4.3. The Approximation Analysis
We would first like to motivate the need for a slightly different structure than the one in the previous

section, by showing the short-comings of the tree-carving in handling the vertex connectivity case.
Consider the graph shown in Fig. 5. It consists of £ units of 4 vertices each. The “root” of each unit is

12



connected to v in the DFS tree, and v is connected to r. Clearly the number of back edges added by the
algorithm equals 3¢. It should be clear that we cannot find a tree-carving of size greater than 2¢ 4 2.
The 2¢ leaves form singleton sets in the carving, and since they all have edges to v, the set containing

v in the tree-carving contains all the other vertices (except for r). Since n = 4¢ 4 2, and the number of
7441
40+2°

added edges is 3¢, we get a ratio of and this is not as good as we would like to claim.

a unit of 4 vertices

Figure 5: Example to show short-comings of tree-carving.

Our analysis finds a partition of the vertices, called a carving, which is used to prove a lower bound
on OPT, the number of edges in the optimal solution. The upper bound of % on the approximation
factor is established using this lower bound. After presenting the concept of a carving, we apply it to
the approximation analysis.

4.3.1. Carving

Definition 4.4: A carving of a graph is a partitioning of the vertex set V into a collection of subsets
Vi, Vo, ..., Vi with the following properties. Each subset constitutes a node of a rooted tree I'. FEach
non-leaf node V; of 1" has a special grey vertex denoted by g(V;) that belongs to p(V;). For every vertex
v € V;, all the neighbours of v that are in ancestor sets of V; belong to either

1. V.
2. V;, where V; is the parent of V; in the tree I

3. Vi, where V; is the grandparent in the tree I'. In this case however, the neighbour of v can only be

9(Vj).
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The neighbour of v is required to be either an ancestor of v or a descendant of v. The size of the carving

is k.

We will refer to the vertices of I' as nodes, and the edges of I' as arcs. An example of a graph G
together with a carving for it is shown in Fig. 6.

© Grey node of V3 and Vj

Vs

(b) Carving of size 6 for G

(c) The tree T

Figure 6: A graph G, a carving for it, and the carving tree T'.

Theorem 4.5: (Carving Theorem)
If the graph G = (V, F) has a carving of size k with { leaves in I', then a lower bound on the number
of edges of any 2-vertex connected spanning subgraph in G is (k4 { —1).

Proof: Consider the rooted tree I'. Each node of the tree other than the root has a unique parent node.
Consider any leaf node X; Claim (1): in any 2-vertex connected spanning subgraph there must be at
least two edges with exactly one endpoint in X. This implies that there are at least 2¢ edges in the OPT
solution. Now consider any non-leaf node X that is not the root. Claim (2): in any 2-vertex connected
spanning subgraph there must be at least one edge that has one endpoint in X and the other in an
ancestor set of X. (Some vertices that belong to the children sets of X may have edges going to ¢g(X),
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but since g(X) is not a cut vertex, Claim (2) follows.) There is no overlap in the counting scheme for
different sets. There are k —{— 1 nodes satisfying Claim (2) in the tree I'. This shows that 2+ (k—(—1)
is a lower bound on the size of any 2-vertex connected spanning subgraph. a

4.3.2. Using Carvings for a Lower Bound on OPT

Given T, the DIF'S spanning tree, we will be interested in the following partition of the vertices of G,
called the DFS-tree partition. Some recursive calls DFS(v,u) end by adding the back edge (savior[v],
low[v]) to i without discarding any tree edge. (These are the recursive calls that cause a net increase
in the number of back edges.) For each such call DFS(v,u), “remove” the tree edge (u,v) from T}
the resulting connected components of 7' (with some tree edges removed) provides the DI'S-partition.
Furthermore, T induces a rooted tree structure on the sets in the DF'S-tree partition.

Let £ denote the number of back edges emanating from the leaves, and = denote the net increase due
to the other back edges. The net increase in the number of edges is £ + z.

Theorem 4.6: The DFS-tree partition yields a carving of GG.

Before describing the proof, we give some definitions that make the proof clearer. The algorithm
adds an edge to Ey just before it leaves v for the last time and discovers that lowg[v] = v (which occurs
if and only if v is a leaf), or discovers that lowg[v] = u (which implies that u is threatening to be a cut
vertex). In the first case we add to Fp the highest back edge from the leaf v, and create a singleton
leaf set in the DI'S-tree partition. In the second case (only when no tree edge is discarded), we pick the
highest back edge from a descendant of v, and define a new set for the DFS-tree partition. The grey
vertex of this set is defined to be u. (Recall that the grey vertex is a vertex in the parent set.)

Definition 4.7: Given a set of vertices V;, its root is the vertex with the smallest dfs number in the
set. It is denoted as root(V;).

Proposition 4.8: The root of a set in the carving is the vertex v such that the tree edge (v, p(v)) was
removed from the DFS tree.

Proof (Of Theorem 4.6): Color red all the vertices that are roots of a set in the carving. Each vertex
joins the set corresponding to its closest red ancestor (in the DFS tree). It is clear that this gives us a
“tree” structure on the sets. Consider a non-tree edge e = (v, w). Since there are no cross edges assume
that w is an ancestor of v. Assume that v € V;. We need to prove that the endpoint w either (1) belongs
to the same set V;, (2) to the parent set V;, (3) or w is the grey vertex of V;, in the parent set of V.

Suppose that w is in set V}, such that Vj, is neither V;, nor V;. So V} is a proper ancestor of V; in
I'. The algorithm picked the highest going back edge when marking root(V;) finished. This must go to
a vertex z with 2 < w. Hence when marking v" = root(V}) finished, lowg[v] < . The vertex v’ can be
colored red only if lowg[v'] = p(v') = 2 = w, in which case w is the grey vertex of V.

Corollary 4.9: (Lower Bound)
The number of arcs in the carving is exactly the same as the net number of back edges that are added
to Fpg (k—1={(+ z), and the number of leaves in the carving tree is the same as the number of back
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edges added from leaf vertices. Thus we conclude that O PT > 2{ + x, where z is the net increase due
to non-leaf back edges and { is the number of leaves in the carving tree I'.

Proof: Corresponding to each back edge we have one set in the carving and thus £k — 1 = {4+ z. Each
leaf is put in a singleton leaf set in the tree I', and since a back edge is added from each leaf the claim
follows. Substituting for k£ in Theorem 4.5 yields OPT > 2{ + z. O

A lower bound for the OPT solution is max(n,2(+ z). (The bound of n edges follows from a degree
argument since each vertex should have degree at least 2. The other bound follows from Theorem 4.5
and Corollary 4.9.)

4.3.3. An Upper Bound on | Fy |

The number of edges added by the algorithm is as follows: first (n — 1) edges (for the tree edges), then
an extra (£ 4 z) edges (this denotes the net increase).

Theorem 4.10: The number of edges added by the algorithm (net increase) can be upper bounded by
T(n+€) where n is the number of vertices and { is the number of leaves in the DFS tree T.

Notice that this gives an upper bound of 1(n — ¢) for z (the net increase = £ + ).

Proof: We prove this theorem by a simple charging scheme. The back edges that are added can be
partitioned naturally into three categories.

1. (Type A) Back edges that emanate from a leaf v in 7.

2. (Type B) Back edges that emanate from a non-leaf v in 7", and delete the tree edge (v, p(v)) when
they are added.

3. (Type C) Back edges that emanate from a non-leaf » in T, and do not delete any tree edges when
they are added.

It is clear that the net increase in the number of edges is due only to edges of types A and C. We
give a simple proof to upper bound the number of added edges. For each edge of type A emanating from
a leaf v, we put a charge of 1 to v. For each edge of type C emanating from a vertex v, we put a charge
of % to » and a charge of % to p(v). The following lemma shows that no non-leaf vertex can get charged
more than once.

Lemma 4.11: By this process each non-leaf vertex gets a charge of at most %

Proof: Suppose that there is a vertex v that gets charged more than once due to edges of type C being
added. There are two cases; either it could get charged due to back edges emanating from children u
and ug, or it could get charged due to a back edge emanating from » and a back edge emanating from
a child u; (all of type C).

First notice that if any u; is a leaf vertex, then it would not charge v. Hence we can assume that the
u;’s are non-leaf vertices and hence lowg|u;] < u; when we mark u; finished. In the first case, if either
lowg[uy] or lowg[uz] is equal to v, before the back edges emanating from u; and uy are added, then
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that back edge is of type B. Now suppose that both low[uq] and lowg[ug] are less than ». In this case
only one of the back edges emanating from wuy or uy can be chosen (the one that goes higher). This is
because when we mark u; and wuy finished we do not add any back edges. The only back edges that are
added will be from an ancestor of », in which case we will pick only the highest going back edge out of
either u; or usg.

In the second case, lowg[uy] < v when we mark wy finished. If it is equal to v, then the edge
emanating from wu is of type B. If it is < v then again only one of the two back edges emanating from
v and u; can be chosen (the one that goes higher). ]

Hence after this process, each leaf vertex has a charge of 1, and each non-leaf vertex has a charge of
at most 3. Thus the total number of added edges (net increase) is no more than £+ L(n—{) = Z(n+¥).
Thus Theorem 4.10 follows. a

4.3.4. Wrapping up the Approximation Analysis
Theorem 4.12: The algorithm outputs a solution of size no more than % OPT.

n—14+4+z

Proof: The ratio of the algorithm’s solution to the OPT solution is upper bounded by max(n2lta) "

By Theorem 4.10 we know that z < %(n — {). The approximation ratio of the algorithm is upper

bounded by the maximum possible value of the following function:

n+ L+ z)
max(n,2( + )

Casel: n > 20+ x

We wish to compute the maximum of 1 + ‘Z"'TI

subject to the constraints on £, z. The constraints

are n — 20 > z and §(n — €) > z. Under these constraints we have to maximize (L'?;—I). We thus

obtain z 4+ 2¢ < n and 2z 4+ £ < n, hence ({ + z) < %n This yields % as an upper bound.

Case2: n <20+ x

We wish to compute the maximum of ntlts

51 - Replacing n by 2¢ + z, (since its an upper bound)

we get,

20+ 2

where v = 2 + %. To compute the maximum value we wish to maximize u. The constraints are

{42 1
30+ 2x 5 1
U

n—20 <z and §(n —{) > 2. Under these constraints we have to maximize . This time we get
5

(z = £), hence we get u = 3 and hence the maximum value is 3.

4.3.5. Worst Case Example

Fig. 7 describes an instance of an example where the algorithm achieves an approximation factor that
is as bad as % in the limit. (The example is due to Huzur Saran, Vijay Vazirani and Neal Young.)
There is a path of alternating “black” and “white” vertices of length 2m 4+ 1, with m white vertices, with
n = 3m+1. (In this instance m = 4.) There are m leaves that are connected to the black vertices (one to

each, except at the root). This describes the DF'S tree T' completely. There are back edges that connect
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each leaf to the closest black ancestor that is not the parent. There are also back edges that connect
adjacent white vertices on the path, and back edges connect alternate black vertices on the path. The
number of back edges added from the leaves is m, and the number of back edges added from non-leaf
vertices is m — 1. The total number of edges in the subgraph obtained by the algorithm is 5m — 1, but
the graph is easily seen to be Hamiltonian. (Take all the leaves and their adjacent edges, and add to

it a path connecting successive white vertices together with the extreme edges of the alternating path.)
Sm—1
3m¥17

Thus the ratio is and approaches % asymptotically.

(a) The graph G (b) The edges picked by Algorithm 2-VC

Figure 7: Example to illustrate worst case performance.

5. Weighted Graphs

Consider the following problem: Given a graph G = (V, F') with weights on the edges, find the smallest
weight spanning subgraph H = (V, Ey) that is k edge connected (for any k).

The problem is known to be N P-hard [GJ78]. An algorithm that achieves an approximation factor
of 3 for k = 2 is implied by [FJ81] as follows. Find the minimum spanning tree. Consider the problem
of adding the least weight set of edges to add to the tree to obtain a 2-edge connected subgraph. Not
surprisingly, this is N P-hard as well [GJ78]. They gave an algorithm with an approximation factor of 2
for the problem of augmenting connectivity, yielding an approximation factor of 3 for the least weighted
2-edge connected subgraph. (The same factor for 2-vertex connectivity is obtained as well.)
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Consider a directed graph G with weights on the edges, and a fixed root r. How does one find the
cheapest directed subgraph HP that has k edge-disjoint paths from a fixed root r to each vertex v ?
Gabow [G91a] gives the fastest implementation of a weighted matroid intersection algorithm to solve
this problem in O(kn(m + nlogn)logn) time. (See also [Ed79, F'T89].)

To solve our problem (approximation algorithm) take the undirected graph G, and replace each
undirected edge (u,v) by two directed edges (u,v) and (v, u) with each edge having weight w(u, v) (the
weight of the undirected edge). Call this graph G”. Now run Gabow’s algorithm on the graph GP. If
at least one of the directed edges (u,v) or (v,u) is picked in H”, then we add (u,v) to Ex.

Lemma 5.1: The graph Fp is a k edge connected spanning subgraph of G.

Proof: Suppose in contradiction that there is a £ — 1 edge cut in H. Assume that it separates H into
pieces C7 and C5. Let r be in C7, now consider a vertex v in Cy. It is clear that r cannot have k edge
disjoint directed paths to v. Thus, there cannot be a cut set of size k£ — 1. a

Theorem 5.2: The total weight of Fr is at most twice the weight of the OPT solution.

Proof: Consider the OPT solution for the problem. Consider all the antiparallel edges corresponding to
edges in OPT. We get a directed subgraph in G of cost 2¢(OPT) (where ¢(OPT) is the total weight
of the edges in OPT). From r there are k edge-disjoint undirected paths to any vertex v; they also yield
k directed paths from r to v that are edge disjoint. Thus, this subgraph has the property of having &
directed edge disjoint paths from r to any vertex ». The optimum solution found by Gabow’s algorithm
can therefore only be cheaper. O

6. What can we hope for ?

In this paper we showed that we can get multiplicative approximation factors of % and % for the 2-
connected (edge and vertex respectively) spanning subgraph problem. In this section we ask: Is a
multiplicative constant the best that we could hope for 7 Can one hope to get an additive constant ?
We answer this question negatively by proving that no additive constant is possible.

Theorem 6.1: If P # N P, then for any constant C' there is no polynomial time approximation algo-
rithm that can obtain a solution to 2-edge connected spanning subgraph that is < OPT + C.

Proof: Let us assume that there exists a polynomial time algorithm A that achieves an additive approx-
imation of +C. Consider a graph G for which we wish to solve the 2-edge connected spanning subgraph
problem. Make C' 4 1 identical copies of the graph G, say G1,...,Gc4+1. Add 2 new vertices v1, vy. Pick
a vertex u; from each G; and add edges from it to each v; (j = 1,2). This gives us a 2-edge connected
graph G’ with (C'+1)n+2 vertices (assuming ¢ was 2-edge connected and has n vertices). We now input
the graph G’ to algorithm A. Clearly, the optimal solution for G’ has exactly (C'+1)OPT(G)+2(C+1)
edges. (The best strategy is to pick the optimal solutions from each G; and add in the edges of the
“gadget” that connects all these pieces.) The algorithm A is guaranteed to produce a solution with at
most (C'+1)OPT(G)+2(C +1)+ C edges (within OPT(G')+ C'). The edges introduced by the gadget

are all essential edges (since each of them is part of a 2 edge cut). Thus all the edges incident to the
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vertices v; are picked. Thus the algorithm picks (C' + 1)OPT(G) + C edges from the (C + 1) copies of
(G. Hence the average number of edges picked from each copy is

(C +1)OPT(G)+C
C+1

Thus there must be at least one copy from which we pick exactly O PT(G) edges (since we cannot pick
any fewer edges). This gives us the optimal solution for G, solving an N P-hard problem. a

Notice that a similar proof will not work for the vertex case even if we “attach” the copies of the
graph together by picking two vertices u; and w; from G; simply because we may “disturb” the costs of
the optimal solutions in each copy.

Theorem 6.2: If P # N P, then for any constant C' there is no polynomial time approximation algo-
rithm that can obtain a solution to 2-vertex connected spanning subgraph that is < OPT + C'.

Proof: Let us assume that there exists a polynomial time algorithm A that achieves an additive approx-
imation of +C'. Consider a graph G for which we wish to solve the Hamilton Path problem (Is there a
Hamiltonian Path from z to y 7). Delete the edge from z to y if such an edge exists (since it will not be
used in a Hamiltonian path if ¢ has at least 3 vertices). Add a new vertex z to G with edges (z,2) and
(z,y) to obtain graph G’. Clearly G’ has a Hamiltonian cycle passing through z,z,y in sequence if and
only if G has a Hamiltonian path from x to y. In fact all Hamiltonian cycles in G’ must pass through
x,z,y in sequence.

Make C' 4 1 identical copies of the graph G’, say G, .. .,G’O_H. Let vertices x; and y; be the copies
of vertices z,y in G%. Add 2 new vertices vy, v. Add edges (v1,2;) and (vg,y;) for i = 1,...,C + 1.
This gives us a 2-vertex connected graph G” with (C'+1)(n+ 1) + 2 vertices (assuming G’ was 2-vertex
connected and has n + 1 vertices). We now input the graph G” to algorithm A. Clearly if G has a
Hamiltonian path from z to y, the optimal solution for G’ has exactly n 4+ 1 edges (recall that a new
vertex z was added to G). Hence if G has a Hamiltonian path then the smallest biconnected spanning
subgraph of G has (C'+1)(n+ 1)+ 2(C + 1) edges. (The best strategy is to pick the optimal solutions
from each G% and add in the edges of the “gadget” that connects all these pieces.) The algorithm A
guarantees to produce a solution with at most (C'+1)(n+1)4+2(C'+1)+C edges (within OPT(G")+C).
The edges introduced by the gadget are all essential edges (since each is part of a 2 cut). Thus all the
edges incident to the vertices v; are picked. Thus the algorithm picks (C'+1)(n+ 1)+ C edges from the
(C + 1) copies of G'. Hence the average number of edges picked from each copy is

(C+1)(n+1)+C
C+1 '

Thus there must be at least one copy from which we pick exactly (n + 1) edges (since we cannot pick
any fewer edges). This gives us a Hamiltonian cycle in G and thus a Hamiltonian path in G from z to
y (if one exists), solving an N P-hard problem. O
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