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Abstract

As battery-operated devices like smartphones and lap-
tops have become the norm for users, a critical fea-
ture of applications is to ensure low power consumption.
Yet, surprisingly, energy bugs remain difficult to find
and fix because developers lack the tools to allow them
to quickly and authoritatively reason about how much
power the various components of their applications con-
sume. To address this need, we present BattOr, a power
monitoring system consisting of (1) a hardware compo-
nent that collects accurate measurements without requir-
ing soldering (developers can plug-and-debug), and (2) a
software component that precisely synchronizes these
measurements with low-level system events already cap-
tured by OSes. A distinguishing feature of BattOr is
that it is compatible with existing, continuous integra-
tion testing systems, and has been evaluated in produc-
tion environments. We present case studies, including
one in which BattOr was used to find and fix a long-lived
energy bug that had resulted in a 38% increase in power
consumption of Chrome on OS X as compared to Safari.

1 Introduction

Energy is the defining constraint in mobile computing;
users choose apps and devices based on their battery
life [15, 17]. Consequently, developers have the respon-
sibility to find and fix any energy waste bugs in their
apps. Google’s developers, for instance, have responded
to pressure from users to improve Chrome’s energy con-
sumption [25] by finding and patching energy bugs [23].
ARM even created a new big.LITTLE CPU architec-
ture [1] aimed at improving energy efficiency by having
low-power cores for light processor workloads and high-
power cores for heavy workloads.

Yet, surprisingly, energy bugs remain notoriously dif-
ficult to find and fix [19], often resulting in bugs escaping
into the wild and being detected by the user population,
rather than in-house.

In this paper, we present BattOr, a power monitor-
ing system that collects and synchronizes accurate power
measurements with logs of low-level system events, such
as what devices and threads are active. BattOr was used
by Google’s Chrome team to discover and fix a bug
that was resulting in 38% higher power consumption for
video playback on OS X for Chrome compared to Safari
(86).

BattOr fills a surprisingly open gap in the research
and application of power monitoring systems. Despite
recent advancements—including inferred power mod-
els [20, 21, 28], small and portable external power mon-
itors [2, 26], and even inferring power usage from in-
ternally measured voltage [27]—Chrome bug reports [7]
reveal that developers still rely on crude battery rundown
tests, which take hours to run, and can require months to
find a pernicious bug.

Developers rely on rundown tests because they are
the only existing power monitoring tool that meets de-
velopers’ requirements. In particular, developers require
three key attributes from a power monitoring tool: First,
it must provide accurate power measurements, so that
developers can confirm the existence of a reported bug,
and verify that it is fixed before they push to users. Sec-
ond, the power monitor must be portable, so that devel-
opers can reproduce the exact environment (e.g., signal
strength) in which the bug appears. Finally, the power
monitor must be able to collect accurate, portable mea-
surements without requiring soldering wires onto the
smartphone or laptop the developers are testing. While
soldering may appear to be simply a nuisance, it is in
fact a surprisingly limiting factor when equipping soft-
ware developers with power monitors (§2).

The extensive research in this space has not transi-
tioned widely to practice because none meet the require-
ments of accurate measurements, portability, and not re-
quiring soldering: Models are not accurate, every model
has cases where the error is significant and developers do
not know if the bug they are testing is one of those cases.



External power monitors require soldering so they are
only usable by a select few software developers who have
access to soldering technicians and equipment. Also,
some external power monitors are not portable [16]. Fi-
nally, internal power monitors do not provide accurate
power measurements as the processor being monitored
is consuming energy to collect its own measurements.

We describe in this paper the design, implementation,
and application of BattOr, and show that it provides all of
the properties necessary for developer use. BattOr com-
prises a portable hardware component a small, external
power monitor that is powered off of the device’s own
battery (§4). Moreover, BattOr provides accurate mea-
surements without requiring any soldering; we achieve
this by exploiting the insight that many devices have one
of just a few commonly deployed battery connectors to
interpose between a device and its power source (battery
in the case of a smartphone, and external power supply
in the case of a laptop). Though some previous power
monitors that are both accurate and portable, they derive
these properties through soldering or cutting into batter-
ies. We also show that it is possible to provide portable
instrumentation of power consumption while powering
the monitor off of the same battery that is under test, con-
trary to the assertion of Brouwers et al. [2].

In addition to the hardware component that meets de-
velopers’ requirements, BattOr also comprises a soft-
ware component that enables an automated and fast test-
ing framework for developers (§5). The key technical
challenges in incorporating an external power monitor
like BattOr into an automated testing infrastructure are to
take samples with high enough time precision to be able
to instrument short-lived events (such as the handling of
one type of video frame versus another), and to synchro-
nize these fine-grained power measurements with events
or state changes on the device itself. We present synchro-
nization techniques that use smartphones’ camera flashes
to induce predictable power consumption in our mea-
surement traces as well as events in most OSes’ logs,
allowing us to synchronize the two to the order of mi-
croseconds. With its novel hardware and software com-
ponents, BattOr cuts the time for each energy measure-
ment from 5-10 hours for battery drain tests to 1-5 min-
utes with BattOr.

We demonstrate how BattOr’s accurate, reproducible
power monitoring and precise synchronization are ap-
plicable to production environments through actual case
studies (§3, §6). BattOr has been evaluated in a pro-
duction setting to improve the power consumption of
an application that is used by over one in four Internet
users [18], the Chrome web browser. We present sev-
eral case studies, including how the Chrome team ap-
plied BattOr to fix an energy bug that caused 38% higher
power consumption in video playback on OS X Chrome

as compared to Safari.

2 Background and Related Work

In this section, we describe the traditional workflow in-
volved in energy debugging, and review related work in
light of each of the workflow’s steps. We classify re-
lated work into three categories: external power moni-
tors [16, 8, 10, 2, 26, 14], internal power monitors [13]
and software power models [20, 21, 28]. The standard
energy debugging workflow parallels that of more tra-
ditional bugs, in that it consists of the four broad steps
of discovery, triage, root cause identification, and fixing.
But, as we will see, today, energy debugging typically
involves developers waiting hours for battery rundown
tests, and as a result, it can take months to track down
pernicious energy bugs.

1. Discovery The debugging process begins with dis-
covery: identifying a version of the code that resulted
in an energy regression (an overall increase in consumed
power). Energy regressions are typically found only af-
ter a release, once a large population of users have had
the chance to repeatedly rundown their battery and no-
tice overall increases in power consumption. Conversely,
more traditional regression tests—e.g., for performance
or correctness—are performed in-house, as part of con-
tinuous integration testing.

Efficiently discovering energy bugs benefits from be-
ing able to obtain power measurements from the same
usage scenarios as what caused them in the first place,
and thus would benefit from a power monitoring tool
that is easy to deploy widely to users and develop-
ers. However, external power monitors—Monsoon [16],
iCount+Quanto [8, 10], NEAT [2], and even just direct
measurements through an oscilloscope—all require sol-
dering onto or cutting into a mobile device’s battery con-
nection. Soldering and cutting requires skilled labor,
is time-consuming, difficult, and for some devices even
dangerous task as the battery itself must be modified;
moreover, because these altered devices are not widely
available, these monitors are limited to deployments of
only a few developers. Software-based power models
as well as internal power monitors permit deployment to
virtually all users, and are therefore particularly useful in
the discovery phase. But as we discuss below, they do
not provide the accurate measurements necessary in the
subsequent debugging steps.

BattOr is an external power monitor that cleanly fits
into existing devices, is small and portable and requires
no soldering. Because BattOr is an external device, it
is not feasible to deploy to all users, however, BattOr
is feasible to deploy to all members of a development



team. Therefore, with BattOr, it is possible to incor-
porate power measurements into a development team’s
automated performance regression testing system (e.g.,
Google Chrome’s Telemetry').

2. Triage The next step in the debugging process is
triage: verifying that the discovered bug is indeed a bug,
and not, e.g., noise in the measurement or specific soft-
ware build. Triage is particularly important with user-
reported discoveries, as they can be anecdotal and ex-
tremely noisy, and if not triaged, can waste significant
developer time. The goal of triage is thus to replicate the
reported bug report with authoritative measurements of
the energy consumption under those conditions, and to
verify if it has increased as reported for that app. Ideally,
measurements during triage can be performed automati-
cally and quickly to improve developer productivity.
External power monitors, including BattOr, and inter-
nal power monitors do provide the authoritative measure-
ments needed for triage but software based power mod-
els do not. A software model’s accuracy is dependent
on many factors, such as the number of devices mod-
eled, the complexity of the devices, and the time preci-
sion modeled. The most advanced power model available
for smartphones, EProf [20] reports that only the 80th
percentile of 50 msec intervals have less than 10% er-
ror; when applied to the YouTube application, however,
EProf had 45% error for 90% of the 50 msec intervals.”

3. Root cause identification Once a developer has ver-
ified the existence of an energy bug, the next step is root
cause identification: attributing the energy bug to a spe-
cific task within a specific application. With traditional
battery rundown tests, this often requires selectively turn-
ing off modules, doing a rundown, and iterating until the
culprit module can be identified. Not only is this ex-
tremely time-consuming, but it can easily lead develop-
ers down the wrong path, e.g., if turning off one mod-
ule results in increased power consumption in another.
We show with several case studies that BattOr is able to
identify energy bugs in minutes.

Root cause analysis requires the ability to synchro-
nize power measurements to activities on the device be-
ing measured, such as CPU activity, which threads were
active at any point in time, and so on so that one can pin-
point the cause for the energy bug. This idea was first
introduced in PowerScope [9]. However, PowerScope
achieved precise clock synchronization by modifying the
kernel to create synchronization pulses on an external
GPIO pin (via the PC’s parallel port). BattOr does not

Uhttps://www.chromium.org/developers/telemetry
2EProf used Monsoon power monitor measurements as ground
truth.

require kernel modifications, and its clock synchroniza-
tion method works with today’s smartphones and lap-
tops, which often do not have external GPIO pins.

The necessary level of synchronization should be ap-
proximately one order of magnitude faster than the rate
at which state changes on a device—for frame render-
ing and tracking threads, synchronization on the order
of 100 usec suffices. Software-based modeling permits
perfect synchronization, in the sense that its “measure-
ments” are a direct function of the activity on the phone.
But software models, as we have discussed above, are not
accurate. Internal power monitors report accurate mea-
surement but do not provide the time resolution of mea-
surement that’s needed for synchronization. Specifically,
they usually provide power measurements at 10ms inter-
vals, whereas root cause identification needs an order of
magnitude higher resolution.

External power monitors such as Monsoon are accu-
rate and have sufficient time resolution, but do not pro-
vide any way to synchronize the power measurement
with the device activity log. Specifically, since the ex-
ternal monitor is running on a different clock than the
device being measured, timestamps are unreliable. Bat-
tOr is an external power monitor but it also provides a
mechanism to precisely synchronize the power measure-
ment trace with the device’s logs. Also, the Monsoon is
not portable, it must be plugged into mains power.

4. Fixing After attributing the bug to a root cause, the
final step in the debugging process is to determine if it
needs a fix and, if so, to implement that fix. Tradition-
ally, implementing a fix would involve making iterative
changes and performing multiple battery rundown tests
to validate the fix. Efficiently fixing an energy bug bene-
fits from having a power measurement tool that is accu-
rate and can quickly collect sufficient data evaluate if the
fix helped. The requirements for this step are the same as
root cause identification, and hence the same arguments
about related work apply.

Automation To integrate all of the above steps into a
single, cohesive workflow, a power measurement tool
must also permit a high degree of automation. Contin-
uous integration systems have become an essential tool
for software developers for speeding up the development
process and improving software quality. These systems
automatically find regressions by continuously building
and testing new commits to the tree. Examples of con-
tinuous integration systems include Buildbot [3] which
is used by Google Chrome and Firefox as well as Face-
book’s Sandcastle.

Combining the excellent coverage of continuous in-
tegration systems with the authoritative power measure-
ments from hardware power monitors would signifi-



cantly shorten the time between when an energy bug is
introduced and when it is discovered and fixed. With
continuous integration, commits to the tree could even
be rejected immediately if they do not pass energy re-
gression tests.

Performing power regression testing with a continu-
ous integration system requires collecting power mea-
surements without physical intervention. The problem
is continuous integration systems must be able to control
the device, and for smartphones, the control and charg-
ing channels are coupled in USB. Even if the device was
controlled over another medium such as wireless, the de-
vice must be charged occasionally or powered externally
so the battery does not drain.

This feature has not been addressed in any of the prior
work. BattOr is the first system to demonstrate that it
is feasible to automate hardware power measurement of
smartphones, and we go even further to demonstrate that
it is also possible to have automated hardware power
measurements with laptops as well.

3 An Overview of the BattOr Workflow

BattOr provides developers with immediate, accurate
power measurements, and synchronizes them with low-
level logs. In this section, we provide an overview of
how these features enable a far faster, more insightful
workflow. We root our discussion with a real case study,
in which we identified a previously uncaught energy re-
gression in the Chrome web browser.

Setup BattOr comprises a small, noninvasive hardware
device that interposes between a device (e.g., a smart-
phone or a laptop) and its battery, collecting accurate
power measurements at very high rates (on the order of
tens of microseconds). To use BattOr, a developer first
physically connects the BattOr monitor hardware to the
device they wish to test (e.g., a smartphone or a laptop).
For smartphones, this involves opening the back case
of the device to expose the battery, and snapping Bat-
tOr’s battery interceptor onto one of several standard bat-
tery connectors in the phone, then connecting the BattOr
power monitor hardware to the interceptor. We note that
this requires no soldering or dangerous modifications to
the battery; at worst, some phone cases can be a little
tricky for a novice to open [12].

In our case study, we connected BattOr to a Nexus 5
smartphone, and chose to debug the Chromium browser.
The Chromium project releases incremental builds of the
browser after every few commits to the tree’. There were
39,850 versions of the browser available for download

3https://commondatastorage.googleapis.com/chromium-browser-
snapshots/index.html ?prefix=Android/

at the time of writing dating back to April 2013. We
emphasize that collecting BattOr measurements requires
no modifications to the software on the smartphone itself:
the developer can then run their unmodified code through
regression tests.

1. Discovery BattOr is compatible with continuous in-
tegration testing because it runs without requiring modi-
fications to the software being tested; one simply runs the
standard tests and BattOr complements them with fine-
grained, accurate power measurement data. In our case
study, we ran the WebKit 3D CSS animation benchmark
called Poster Circle* on two Chromium builds: one at
the time of this writing (#349421) and one from seven
months earlier (#315477).

Each of these tests took exactly two minutes to run,
and we collected BattOr’s measurements during one
minute of the animation running. The latest build con-
sumed 100.16 J, and the earlier build consumed 92.64 J,
revealing there has been an 8% regression. When we ran
these tests, Google’s Chrome team was not aware of this
regression that BattOr had discovered.

2. Triage We ran the 60 sec measurement on several
other builds of the Chrome browser from before and af-
ter the regression. Altogether, these tests took under ten
minutes; in practice, we envision developers taking these
measurements with each commit, amortizing triage time.
We found that the regression shows up in several of the
builds before #349421, and in none of the builds before
#315477, indicating that it is not an ephemeral issue with
a single build, but rather that we have discovered a per-
sistent energy bug.

3. Root cause identification BattOr replaces the tradi-
tional time-consuming, iterative process by synchroniz-
ing its fine-grained measurements with logs maintained
by the kernel on, e.g., CPU activity and what threads are
running. Google’s Systrace [11] tool and the Linux ker-
nel’s ftrace collects these data, which are often used for
Android system debugging.

Figure 1 shows three seconds of output of Systrace run
on the pre-regression (right) and latest (left) versions of
Chrome. We chose these three-second windows arbitrar-
ily; this particular test is highly repetitive, and so both
are representative of any other similarly sized window.
Included in this trace are power logs from BattOr, sam-
pled at 10 KHz, and synchronized with 100 psec preci-
sion with Linux kernel ftrace log of the scheduler activity
on each of the four of the Nexus 5’s CPUs, as well as the
CPUs’ frequency over time.

“https://www.webkit.org/blog-files/3d-transforms/poster-
circle.html
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Figure 1: Root causing the regression by comparing precise power traces from the BattOr with logs from the kernel.

At first glance, it is readily evident that there is an
energy regression: the latest commit’s power measure-
ments often peak above those of the pre-regression com-
mit. Additionally, we draw two important conclusions
from this trace simply by visual inspection. First, the
clock frequency of the CPUs trend higher than those in
the pre-regression commit, and with each spike in clock
frequency, there is a corresponding spike in the power
level. Second, the latest commit often offloads process-
ing onto the third core, while the pre-regression commit
does not use it at all. These two observations—increased
frequency and extra CPU offloading—indicate that there
has been an increase in the amount of CPU processing
required to render the frames in the 3D CSS animation
test. The fact that the increase in CPU frequency is spo-
radic indicates that the increased load arises from some
particular subset of frames.

To find the specific commit that introduced this bug,
we “bisected” the 39,850 commits between the two we
had originally tested. Bisection involves effectively per-
forming a binary search over the commits, running the
same Poster Circle test on each and collecting BattOr
measurements to pinpoint when the bug was introduced.
This bisection ran for 15 rounds, taking a total of 15 min-
utes. Figure 2 shows the energy consumption of the com-
mits before and after the culprit commit found by bisec-
tion. From these results, the potential culprit becomes
clear: all commits prior to #320096 consumed lower en-
ergy, and there has been a consistent energy regression
as of no later than #320097.

Finally, we consulted the commit logs to determine
which code modification ultimately resulted in the re-
gression. The description of #320096’s commit notes
that the developers added sorting of 3D layers into a Bi-
nary Space Partitions (BSP) tree to make it easier to ren-
der 3D layers the correct sorted order. We therefore con-
cluded that the additional computing of the BSP tree is
the cause for the increase in CPU load that results in the
increased power consumption. We reported this to the
Chromium team, and they confirmed that this was indeed
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Figure 2: A Chromium 3D rendering energy regression
appears between commits #320095 and #320097.

the cause of the energy regression.

We note that we were able to identify the root cause of
this energy bug in minutes, without having a deep famil-
iarity with the relevant rendering code.

4. Fixing BattOr’s fine-grained, synchronized mea-
surements permit small, iterative changes that are more
conducive to quickly understanding and fixing a bug. To
minimize the time it would take a developer to fix an en-
ergy bug, each developer would have a BattOr hardware
power monitor incorporated into their testing rig. It is
therefore important that a power monitor be deployable
to a large group of developers.

To conclude our case study, we reported the bug to
the Chromium team. Their developers reported that the
Poster Circle benchmark that we tested with is a patho-
logical case for BSP trees, and so there is no need for a
fix. This however provides a good example of how much
less time is wasted to reach the conclusion that a fix does
not need to be made: following traditional steps, the dis-
covery, triage, and root cause attribution phases would
have spent days to ultimately conclude that no further ac-
tion was needed, diverting resources and developer time
from bugs that did require fixes.



Summary BattOr replaces battery rundown tests with
high-fidelity power measurements, resulting in a sig-
nificant speedup of each stage in the debugging pro-
cess. Moreover, BattOr can capture measurements in
tandem with other regression tests, allowing it to be nat-
urally integrated with today’s typical software develop-
ment processes—if BattOr could be deployed to each
developer, then energy regressions could become a stan-
dard check for all code commits, at last putting energy on
equal footing as more traditional performance metrics. In
this section’s case study, a developer using BattOr could
have identified the regression, attributed the root cause,
and provided justification in her code commit, all within
minutes (as we did), as opposed to spending days or more
with battery rundown tests. In the remainder of this pa-
per, we detail how BattOr achieves these properties.

4 BattOr: Hardware Design

BattOr can measure the power consumption of a device
without soldering wires to it. BattOr also is portable—
its circuit board (shown in Figure 3) measures 1.24 in by
1.99 in—and it is powered directly off the battery on the
device under test without affecting the power measure-
ments. In the following section we describe how BattOr
achieves each of these properties.

4.1 How does the BattOr connect & mea-
sure without soldering

BattOr physically measures power by intercepting the
wires between the power supply (e.g., battery) and the
load (e.g., smartphone) without cutting wires or solder-
ing. We present two different solutions to this problem,
one for smartphones and one for laptops.

Intercepting smartphone batteries A naive approach
to power measurement would be to intercept the USB
charging connector and remove the phone’s battery dur-
ing the experiments. However, because USB does not
supply enough current to power the entire phone. So the
battery must be connected, which in turn will mean that
the device will be powered by the battery, hence the only
option is to intercept the battery connectors between the
battery and the device.

Our key observation here is that in spite of the vast ar-
ray of phone models, there are in fact only a few (3—4)
different battery connectors that are used in these mod-
els. The reason is consolidation in the battery connector
industry. Smartphones are becoming smaller and thin-
ner which has put an interesting strain on the physical
design of smartphone batteries: their connectors to the
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Figure 3: BattOr’s power monitoring hardware consists
of three main parts, the power monitor circuit (left-actual
size), the battery interceptors for smartphones (right),
and the laptop power adapter interceptors (not shown).

phone must also become thinner and smaller. It diffi-
cult to design a battery connector that can handle sev-
eral amps of current draw from today’s complex smart-
phones, but still be very small and thin (with limited sur-
face area to have a low resistance connection with the
phone). Consequently, only a few commercial electronic
connector manufacturers have mastered the technology
of designing and manufacturing such high current low
profile battery connectors. As a result, there are only a
few standard models of battery connectors that are used
in most of today’s smartphones.

We provide support for this observation by tearing
down 12 popular phones and finding out what battery
connectors they have within them. Figure 4 shows the
results of this teardown study. We found that there are
two connectors that are used by at least four phones each,
even across different manufacturers. Two of the connec-
tors were only used by one manufacturer, but for several
versions of their devices. We also found that these con-
nectors are built by familiar names in the connector in-
dustry such as Hirose and SMK, they are not one offs
from smaller suppliers. The Hirose and Panasonic parts
are even popular enough that they are available for imme-
diate order in low quantities on Digikey, an online elec-
trical part retailer.

Given this trend, we can thus build a few specialized
battery interceptors for the primary types of battery con-
nectors. These interceptors can be snapped directly onto
the device’s mainboard and battery connection points.
The remaining question is, how do we get the power
wires outside of the phone’s enclosure so it can be at-
tached to the BattOr external power monitor? We dis-
covered that Flexible PCBs could be the answer. Flexible
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Figure 5: BattOr’s custom Flex-PCB battery interceptor
snaps onto the Nexus 5’s Hirose BM22-4 battery connec-
tor. The back case can then be closed around the connec-
tor (not shown).

PCB is a very thin circuit board that can be snaked within
the phone’s enclosure and snapped onto the battery con-
nectors while only adding very tiny bulk, and is flexible
enough that it can be bent around the phone to hold the
BattOr and phone in one hand. Flex PCB technology is
becoming very inexpensive. We built 70 Nexus 5 inter-
ceptors in two weeks for $42 each; the price would drop
at larger quantities and with longer lead times.

Intercepting laptop power adapters We also de-
signed the BattOr for use with laptops, as they are battery
dependent devices that have significant reported power
issues [22, 25], but have mostly been overlooked as a
platform that needs power monitoring. Our laptop in-
terceptors do not require soldering, but unfortunately the
laptop interceptors are not portable, the laptop’s power
adapter must be plugged into mains power. This is an ac-
ceptable trade off to make because the energy consump-
tion of laptops is not significantly affected by the envi-
ronment (they often lack cellular modems and arrays of
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Figure 6: Apple MagSafe 2 AC adapters use resistance
measured at the detection phase to set the Handshaking
voltage (connection to 15 MacBook Pro shown)

Sensors).

Unlike smartphones, laptop battery connectors are un-
fortunately not yet standardized, and they can be very
difficult to access. Further, due to the high high voltage
(e.g., 14 V) and high current (e.g., 3 A) of laptop batter-
ies, it can be dangerous to intercept them when they have
any charge. We wondered then if maybe we could instru-
ment power through the external power adapter instead.

Fortunately, laptop battery charging design is different
from that of smartphones. Laptop power adapters are de-
signed to be able to both fully power the laptop as well as
charge the battery at the same time. This is why laptops
can be turned immediately even if the battery is empty,
whereas smartphones need time to charge the battery be-
fore they can be powered on.

When a laptop battery is fully charged, the charging
circuit disconnects the battery entirely from the laptop.
This is unlike the smartphone where the battery remains
connected because the USB can not supply enough in-
stantaneous current to run the phone. This presents an
opportunity to instrument just the power adapter of the
laptop in order to measure the laptop’s power consump-
tion.

Our laptop power adapter interceptor design is sim-
ply a circuit that connects between the laptop’s power
adapter and the plug. Intercepting this connection does
not require soldering by the end user. Users simply buy
a universal laptop power adapter that has detachable DC
cables, then the user simply plugs the interceptor in be-
tween the cable and the power adapter.

However, intercepting Apple’s MagSafe power
adapters with a BattOr requires a special circuit to
keep the BattOr disconnected until the power adapter
handshakes with the laptop. Apple’s MagSafe power
adapters detect the voltage that they should operate
based on the resistance of the laptop when the adapter is
connected. The BattOr adds resistance to the connection,
so it will prevent the adapter from detecting the laptop.
The MagSafe’s voltage detection process is shown in



Figure 6. The BattOr MagSafe interceptor circuit keeps
the BattOr disconnected until the handshake completes
by adding p-Channel FET transistor with a threshold
at 10 V between the BattOr and the power adapter. An
additional problem with MagSafe power cables is that
the DC wire is not user detachable. However, the need
for these modified power cables creates a market for
selling intercepted MagSafe power supplies.

4.2 How does the BattOr measure power?

A diagram of the BattOr power measurement circuit is
shown in Figure 7, and a picture of the circuit is shown
in Figure 3. The current BattOr design is based on an At-
mel XMega 192A3U System-on-Chip. Voltage and cur-
rent measurements are captured with the XMega’s built-
in 11-bit ADCs, their sample rate is 10 kHz (100 psec
sampling interval). We use a shunt resistor with 1% tol-
erance to measure the current. In low-current gain mode
BattOr can achieve a precision of 1 mA with an accuracy
of =4 mA and in high-current gain mode a precision of
325 pA with accuracy of £+ 1.3 mA. We used a Keithley
2420 precision current source for this test.

BattOr overcomes two power measurement challenges
presented by smartphones: (1) smartphones operate at
very low current (<10 mA) when they are suspended and
very high current (>1 A) when they are active, also (2)
powering the BattOr from the smartphone’s battery for
portable operation may affect the power measurements.

Auto gain Power measurement of smartphones is com-
plicated by the large range of power signals. When the
device is in idle mode it draws less than 10 mA of cur-
rent, and when it is in active mode it consumes more than
1 A. Due to the limited dynamic range of any ADC that
is measuring current, the suspend current could have lim-
ited precision when sampled with the same amplification
as the high current. This presents a problem for observ-
ing bugs that affect the energy consumption of the de-
vice when it is suspended. The BattOr solves this reso-
lution problem by having a software controlled amplifier
on the current measurement gain circuit. When the cur-
rent drops below a certain threshold for a set period of
time, the firmware switches the amplifier to high gain,
and when the current rises above a certain threshold, it
switches the amplifier to low gain.

Powering the BattOr from the device’s battery Un-
like existing power monitors, the BattOr does not require
any power from either a mains or external battery. The
BattOr is powered from the battery on the smartphone or
the power adapter of the laptop.

One might think that drawing from the battery would
affect the power measurement itself. Brouwers et al. es-

Power monitor Interceptor
e Phone or
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microSD - +
currentamp !}
SPI  ADCO -
ADC1+ v
MCU ¥ Battery or :
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UART = - :
USB->UART — +

Figure 7: BattOr power measurement overview.

timated that this aspect of the BattOr’s design causes sig-
nificant error [2] to justify using an external battery. Al-
though any load on a battery will affect its voltage due to
the internal resistance of the battery, because of a conflu-
ence of interesting design points, this distortion does not
reduce the accuracy of a power measurement.

The reason is smartphones and laptops have voltage
regulation in them to convert the higher DC input voltage
(generally 4 V for smartphones, 19 V for laptops)—that
also decays as the battery drains—to the lower voltage
of the components in the device (generally 1.8V). These
voltage regulators are often switching regulators, and by
and large switching regulators are known to be constant
power. This means that within reasonable bounds of the
input to the voltage regulator, if the voltage drops down,
then the current consumption of the regulator will pro-
portionally increase to maintain constant power. Conse-
quently there is no significant effect on the total power
consumption by the BattOr decreasing the voltage peri-
odically. We evaluate this phenomenon empirically in
Section 6.2.

The BattOr does not have a significant effect on smart-
phone battery life. It consumes at most 250 mW when
writing to the SD card. For an 8 Wh battery of a Nexus 5,
for example, this would result in 32 hours of runtime
when the smartphone is suspended. When the phone is
active, the 250 mW consumed by the BattOr is a small
fraction of the active power consumption, which can be
2.8 W when the GPU is actively rendering frames.

5 BattOr: Software Design

In this section, we describe how the BattOr software en-
ables accurately syncing power measurements with logs
without soldering wires, and automation for continuous
integration testing. The BattOr software (1) modulates a
sync signal from the phone to the BattOr using the mea-
surements as a communication channel, (2) recovers and



subtracting that synchronization signal from the power
measurement, and (3) controls the battery charging cir-
cuit so the phone may be connected to USB data channel
for automated continuous testing, but while USB charg-
ing is disabled—since it would disrupt the measurement.

5.1 Synchronization without soldering

While BattOr can sample power at 10 kHz, the operating
system and applications on the device under test must
also log power-relevant events. Synchronization is the
process of aligning power logs with event logs despite
the lack of a shared clock and the potential for relative
clock drift. With combined synchronized logs, develop-
ers can precisely determine how much energy each por-
tion of the application is consuming.

Power monitoring approaches based on invasive sol-
dering connect a trigger wire to the phone to provide
clock synchronization. For example, NEAT [2] by
Brouwers et al. requires de-soldering the phone’s vibrat-
ing alert motor, removing it, and soldering in its place a
line to trigger their power meter.

BattOr uses the current draw itself as a means of in-
troducing a recognizable synchronization signal into the
power measurement logs. This is similar to Nemo [29], a
power monitoring device for sensor motes. Nemo mod-
ulates the current load to send commands to the power
monitor, we modulate the current to synchronize the
power monitor’s clock with the device’s clock.

Smartphones include a LED flash for the camera that
is used only when taking a picture or operating as a flash-
light: it is unlikely to be used as part of an application
whose power consumption is being measured, making it
available for use in synchronization. The flash also can
turn on and off at least one order of magnitude faster than
the shortest thread execution times (~1 msec). We mod-
ulate the flash a pseudo random pattern to aid in align-
ing the modulated signal to the log of device timestamps
when the LED was cycled on and off.

Figure 8 shows the bits of the pseudo random sequence
as well as the power measurement of the device while
the sync signal is modulated with the flash. he LED flash
consumes 2 W on the Nexus 5 smartphone. This is a
significant amount of power that is not drowned out by
the varying, substantial power consumption on the device
during this test. The background power draw in this test
was an active screen while scrolling on the home screen.

5.2 Programmatically disabling USB
charging for continuous testing

We designed BattOr to support continuous integration
testing for energy consumption, where each commit into
a source tree is potentially run through a series of energy
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Figure 8: Pseudo random sequence for clock synchro-
nization modulated into the power measurement by turn-
ing on and off the camera flash LED for 10 msec every
bit.

tests to immediately notice a regression. For continuous
testing smartphones would need to be capable of running
energy tests unattended. On many smartphones, auto-
mated software installation and testing can be performed
over USB; however, USB also charges the phone. Al-
lowing USB to charge the phone would make the power
measurements that BattOr collects from the battery con-
nection inaccurate. Cutting USB power entirely is not
desirable either, since we do need the battery to charge
between tests, and it also violates the USB specification
which requires the USB power connection to detect the
presence of an attached USB device.

To make automated energy testing possible requires
the ability to disable USB power supply to the phone.
Simply disabling charging of the battery is not enough,
because the USB connection could still partially supply
power to the smartphone.

We discovered that smartphones often have the abil-
ity to control the connection of the USB power sup-
ply in software. All smartphones feature charge con-
trollers either in the Power Management Integrated Cir-
cuits (PMICs), or in a separate battery controller chip
such as the Texas Instruments bq24192 in the Nexus 5.

These charge controllers often feature software con-
trol over a p-Channel FET transistor that can cut com-
pletely the USB supply current. There are three reasons
to cut the USB supply current. First, overvoltage pro-
tection guards against low-quality USB power supplies
that might incorrectly pass too high a voltage. Although
overvoltage protection could be implemented entirely in
hardware, it is often a software-controlled feature. Sec-
ond, temperature control can require software control to
modulate the temperature of the battery by enabling or
disabling charging. There have been many instances of
overheating causing batteries to swell, and the algorithms
for controlling temperature are still being refined in soft-
ware. Finally, software control over input power can be
used in assembly line testing. Taken together, we expect
that software control over the input power will remain.
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Nexus 4 echo 1 > /sys/module/pm8921_charger/parameters/disabled
Nexus 5 echo 0xCA > /sys/kernel/debug/bq24192/INPUT_SRC_CONT
Galaxy S5 echo 1 > /sys/class/power_supply/battery/test_mode &&
echo 0 > /sys/class/power_supply/sec-charger/current_now
Galaxy S6 echo 1 > /sys/class/power_supply/battery/test_-mode &&
echo 0 > /sys/class/power_supply/max77843-charger/current_now
Nexus 9 echo C > /sys/bus/i2c/drivers/bq2419x/0-006b/input_cable_state
Table 1:  Popular Android phones can disable USB

charging in software.

We performed a study where we inspected the kernel
drivers for many popular Android smartphones to see if
the PMIC exposed the hardware control that we need to
disable charging. Specifically, we searched for for en-
able_charging and disable_charging functions as well as
the string “BATFET”, and considered specifically how
the CURRENT_NOW and CURRENT_MAX properties
are set. These properties are exposed in a driver-specific
way to userland through sysfs, and often they require root
permissions to be able to modify them. We verified that
the USB charging can in fact be disabled via sysfs by
using an intercepted USB cable connected to a BattOr
power monitor.

Table 1 shows how the USB power supply can be dis-
abled in software for a few Android devices from this
study. The table shows that there is no consistent way
of disabling USB power, it is on a driver-by-driver basis
quite different. However since for Android phones these
drivers are all open source, it is not difficult to find the
userland interface to disabling charging.

6 Evaluation

6.1 Accuracy of clock synchronization

The modulated clock synchronization signal may not be
precisely as planned: we rely on the kernel scheduler to
awaken the synchronization process after a nanosleep().
If other processes are running, or the timer granularity
is insufficient, individual sleep calls may be longer than
intended. Because the signal may thus be distorted by
contention for the processor, we must recover the actual
timing of when the LED flash was cycled on or off for
precise synchronization.

The simplest approach, invoking gettimeofday() at
user level near the call to toggle the flash state has signif-
icant potential for error based on processor scheduling.
Since Android phones are based on the Linux kernel,
however, we have access to a better timestamp that more
closely represents the time the LED changes state. There
is an API in the Linux kernel for controlling the volt-
age regulators that set CPU frequency through its volt-
age, turn off peripherals such as the LCD backlight when
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Figure 9: Cross-correlation (top) of injected pseudo ran-
dom signal (square wave, aligned) as observed in the
power trace (main series with noise). The correlation
spike is clear.

they are not in use, and, fortuitously, control power to the
LED flash.

Use of this API can be timestamped by the Linux
ftrace system, which can also be used to log other power
relevant events. To get in-kernel timestamps of LED
flash events requires tracing the voltage regulator API
calls, regulator_enable() and regulator_disable(). The
timestamps of these events can be copied from the phone
after the experiment with any other logs. To align the
timestamps from the phone with power measurements
from BattOr requires straightforward signal-processing
techniques, finding the peak of the cross-correlation be-
tween the pseudo random sequence as it was sent to the
LED driver and the observed power draw.

We next show that the synchronization is precise by
showing how narrow the peak correlation turns out to be.
If the peak were not so pronounced, there would be un-
certainty as to when the synchronization signal was sent.
An example of this correlation is shown in Fig 9. The
cross-correlation is normalized by dividing by the aver-
age power over the pseudo random window. Normal-
izing prevents relatively poor correlation at high power
from appearing as a better match than good correlation
at low power. Note that there is one alignment that is far
better correlated than any other.

6.2 Reproducible power measurements

Power regression testing requires measurements that are
reproducible—a developer must be able to trust that a
possible regression is not due to noise in the power mea-
surement. Power measurements taken at the battery may
not be reproducible, because battery voltage decreases as
the battery discharges. As the battery voltage decreases
toward the operating voltage of the circuits in the phone



’HE\ 30 Normal

— r Thermal regulation disabled =——
% 28

S L

=%}

b d0ddOn 11111
bt L

g 24 r

5 L

e 2F

15 L

5 oo b— v
§ 42 4140 3.9 3.8 3.736353433323.1
& Battery drain state (V)

Figure 10: Without thermal regulation, the Nexus 5

does not become significantly less efficient as the bat-
tery drains (5pct, median, 95pct). Note the y-axis starts
at 20 mJ.

(~1.8 V), the voltage regulators in the smartphone oper-
ate with increasing efficiency.

To test the effect of the decreasing battery voltage on
the reproducibility of power measurements, we ran the
Poster Circle animation on a Nexus 5 while recording
the energy consumed to render each frame. The “Nor-
mal” bars in Figure 10 show the distribution of per-frame
energy consumption in each 100 mV bin of the battery
discharge cycle. It appears that as the battery drains, the
energy consumed to render the frames decreases signifi-
cantly: the median drops by 10%. This seems to confirm
our hypothesis that battery voltage has a significant effect
on the power consumption of the device.

However there could be another, more insidious cause
for the drop in power consumption: thermal regulation.
Smartphones are built with powerful processors, but they
are enclosed in a plastic case with no active cooling.
Smartphones therefore rely on aggressive thermal regula-
tion to progressively throttle the frequency of the CPUs,
GPUs, and even radios as the phone gets hotter [24].

To test the effect of thermal regulation on the power
consumption of the device, we disabled it manually
by renaming the thermal regulation configuration file
/etc/thermal-engine.conf, and reran our experiment. We
plot both results in Figure 10. Surprisingly, the power
consumption stays mostly stable except for edge cases
when the battery charge is full and almost empty. This
indicates that in the prior experiment it was increasing
thermal throttling, and not decreasing battery drain that
produced the inconsistent per-frame energy.

We conclude from these results that thermal regulation
has a significant effect on the reproducibility of power
measurements. Thermal regulation should be monitored
carefully while collecting power measurements, and dis-
abled when adequate cooling is possible.
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6.3 Case study: Comparing Video Play-
back on Safari and Chrome for Mac

We conclude the evaluation with a detailed case study
describing how BattOr was used to reduce energy con-
sumption in Google Chrome on Mac OSX by 38% by
the Chrome development team. In this case study the
Chrome developers used the MagSafe intercepted the
power adapter. The study shows how the precision and
accuracy of BattOr enabled a significant energy saving in
an application used on two out of every five laptops.

1. Discovery and Triage Both Chrome users and the
popular press had widely reported on Chrome’s battery
inefficiency compared to Safari on Mac OSX [25]. To
put the gap in context, users reported that their lap-
tops lasted over three hours less if they played YouTube
videos on Chrome compared to Safari.

BattOr made it quick and easy to reproduce this bug.
We collected power traces of a 360p quality YouTube
video playing on Safari and comparing it to Chrome for
Mac for the version of Chrome that was used around the
time of the discovery of the problem (#300000). The
energy consumption of Chrome was found to be 37%
higher than Safari when rendering the same video.

2. Root cause Given that the energy consumption re-
gression happened when videos were played in Chrome
but not in Safari, the team’s hypothesis was that the frame
rendering in Chrome compared to Safari was consuming
too much energy. To check this, the first step was visu-
ally inspecting the power measurements in terms of per-
frame rendering (16 msec) energy as produced by BattOr
while a video is being played. Delving into this problem
at that granularity is feasible because of BattOr’s 10 kHz
sample rate. Figure 11 shows per-frame power traces of
Safari (left) compared with Chrome near the time of the
discovery of the problem (middle). Each of the colored
lines represents the power consumption of one frame.
Note that these are collected at 10 kHz on the BattOr,
so there are 160 power samples for the rendering of each
frame (16 msec at 60 Hz). One can clearly see that for
Safari, the power consumption for rendering frames is
very stable, before each frame appears on the screen it is
rendered with a bit of energy, then the GPU goes to sleep
until the rendering of the next frame. Chrome’s power
signal, however, has significant variability.

For this bug, just looking at the plot of power con-
sumption of Chrome for these rendering tasks was
enough to identify the root cause. In this case the bug is a
comparison bug, where the regression is apparent when
seen in comparison with software running on the same
platform doing the same activity but with less power (i.e.,
Safari playing the same video).
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Figure 11: Per-frame power consumption on a 15” MacBook Pro of Safari and Chrome while playing a YouTube

video. Chrome consumed 38% more energy than Safari in rendering frames for at least a year; Chrome at commit
#300000 (and earlier) shows this. Based on the comparison of the per-frame power plots the root cause was identified
and it was recently fixed with now only a 13% gap remaining.

3. Fixing and Verification After isolating the root
cause around frame rendering, the developers realized
that there were two main problems, both of which were
around rendering API choices in OSX. At the time the
API choices were made, the expectation was that they
wont have any impact on power or in fact might help
improve it. But that expectation could not be verified be-
cause of the lack of tools like BattOr, so design choices
were made in a blind fashion with regard to energy.

The first issue that the Chrome team found was that
the OSX API that was used to push frames to the screen,
CAOpenGLLayer, while it looked promising because it
avoided an extra copy, was found to in fact introduce a
significant energy regression when tested with BattOr.
This was unknown to the developers as this “feature” was
not documented [4]. In contrast, a different API in OSX,
the IOSurfaces API [6] was found to not have the same
issue when tested with BattOr.

The second issue, which was known beforehand, was
that Chrome’s rendering on Mac was not as efficient as
it could be, because the entire screen was refreshed on
each rendering operation. After seeing the benefits of the
first fix, the developers realized that implementing a par-
tial screen swap that only updates the parts of the screen
that had changed would likely bring down frame render-
ing energy too [5]. After this fix was implemented and
tested, BattOr helped verify that the energy consumption
of Chrome for frame rendering was now on par with Sa-
fari. Measurements on the latest build of Chrome at the
time of writing (#349904) showed there was only a 13%
gap remaining.

7 Conclusion

To find and fix energy bugs, teams of developers re-
quire tools that allow them to understand how their code
consumes power. In this paper, we have identified the
unique set of challenges facing such a tool—accurate
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measurements, portability, and no-soldering—and have
introduced BattOr, the first power monitoring system
that meets these challenges. BattOr does so with a set
of novel techniques that could be applied more broadly,
including: hardware for interposing between a battery
and a device without requiring soldering, automated
charge disabling, and synchronization without soldering.
Power monitoring tools are best evaluated with a sim-
ple question—can they actually help developers find and
fix bugs?>—and we have shown with several case studies
that BattOr was responsible for identifying a costly bug
in Chrome on OS X and a potential regression in Chrome
for Android.
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