
Practical Obfuscation of BLE Physical-Layer Fingerprints on Mobile Devices

Hadi Givehchian, Nishant Bhaskar, Alexander Redding, Han Zhao, Aaron Schulman, and Dinesh Bharadia

University of California, San Diego
{hgivehch, nibhaska, alredding, h1zhao, schulman, dineshb}@ucsd.edu

Abstract—Mobile devices continuously beacon Bluetooth Low
Energy (BLE) advertisement packets. This has created the
threat of attackers identifying and tracking a device by sniffing
its BLE signals. To mitigate this threat, MAC address ran-
domization has been deployed at the link-layer in most BLE
transmitters. However, attackers can bypass MAC address
randomization using lower-level physical-layer fingerprints re-
sulting from manufacturing imperfections of radios. In this
work, we demonstrate a practical and effective method of
obfuscating physical-layer hardware imperfection fingerprints.
Through theoretical analysis, simulations, and field evaluations,
we design and evaluate our approach to hardware imperfec-
tion obfuscation. By analyzing data from thousands of BLE
devices, we demonstrate obfuscation significantly reduces the
accuracy of identifying a target device. This makes an attack
impractical, even if a target is continuously observed for 24
hours. Furthermore, we demonstrate the practicality of this
defense by implementing it by making firmware changes to
commodity BLE chipsets.

1. Introduction

Mobile devices, such as phones and smartwatches, fre-
quently and continuously transmit Bluetooth Low Energy
(BLE) beacons. These BLE beacons are used for a variety of
applications, including tracking lost devices [21], COVID-
19 electronic contact tracing [9], and cross-device continuity
used for automated device hand-off and other proximity
features [2]. For instance, a typical iPhone continuously
transmits more than 800 BLE beacons per minute [19].
These beacons can make it possible to wirelessly track
mobile devices: an attacker can setup sniffers to capture
beacons in multiple locations and search for beacons from a
target device’s MAC address. To mitigate this privacy threat,
most BLE transmitters randomize their MAC address every
15–20 minutes [7].

Unfortunately, adversaries can bypass MAC address ran-
domization and uniquely identify devices using a different
fingerprint in their transmissions: the unique physical-layer
fingerprints introduced by hardware imperfections in mobile
devices. These are slight imperfections introduced during
the manufacturing of the underlying analog hardware—
e.g., Carrier Frequency Offset (CFO), I/Q Offset, and non-
linearities of power amplifier. Prior work has demonstrated
it is feasible to use these imperfections to uniquely identify

a mobile device transmitting wireless signals on BLE (and
WiFi) in less than a minute, at any desired location, even if
there are hundreds of other devices around [19], [8], [53],
[26]. However, there is no existing work that demonstrates
a practical and effective way to conceal these hardware
imperfection fingerprints.

In this work, we demonstrate a practical method to
effectively obfuscate CFO imperfections, which are the pri-
mary physical-layer fingerprint used to identify BLE de-
vices [19], [53]. Achieving practical physical-layer obfus-
cation required overcoming several key challenges: First,
devices can not observe their own physical-layer fingerprint
nor can they observe the fingerprint of the devices around
them. Therefore, devices need to obfuscate their fingerprints
blindly. Second, altering the fingerprint of a device can
make its transmissions harder to receive and demodulate.
Therefore, obfuscation is limited in its range to comply
with BLE protocol standards. Third, obfuscation cannot be
done arbitrarily due to the limited precision available for
altering fingerprints in commodity chipsets. Therefore, there
are only a finite number of obfuscated fingerprints. Finally,
attackers can reverse-engineer the obfuscation behavior of
their targets by observing them over extended periods by
linking consecutive randomized MAC addresses. The at-
tacker may use different inference methods to identify the
obfuscated device. This includes classical machine learning
and statistical classifiers as well as black-box classification
with neural networks. Some obfuscation strategies that are
effective against certain attacks may not be against others.

Our contributions are as follows: (1) We identify the
challenges and limitations in obfuscating hardware imper-
fections in wireless transmissions §2. (2) We provide an
empirical model of these imperfections based on a large-
scale field data §4.1. (3) We provide a framework to analyze
the effectiveness of physical-layer obfuscation, and the the-
oretical foundations for an optimal physical-layer adversary
that has the strongest-possible identification methodology
§4.2. (4) We introduce an effective obfuscation strategy such
that even the optimal adversary cannot accurately identify a
device even after 24 hours of continuous observation §5.1–
5.5. (5) We demonstrate the practicality of fingerprint obfus-
cation by implementing it using commodity BLE chipsets
§6. (6) We demonstrate our obfuscation approach is effective
using large-scale field data § 7. Finally, (7) we discuss how
these analysis and obfuscation strategies can be applied to
other wireless protocols §8.4, and other imperfections §8.3.



2. Threat Model

In this study, we consider an attacker that tries to use the
physical-layer to wirelessly detect when their target—a user
with a mobile device—is present at a specific location. The
attacker first fingerprints the target’s uniquely identifiable
physical-layer characteristics—e.g., Carrier Frequency Off-
set (CFO)—by passively sniffing packets from the target’s
raw transmissions with a receiver such as a Software De-
fined Radio (i.e., Fingerprinting phase). Later, the attacker
determines if their target is present at a location by sniffing
transmissions from all nearby devices. If any fingerprints are
close to the target’s fingerprint, then the attacker assumes
the target was present at that location (i.e., Identification
phase). Such physical-layer fingerprinting attacks have been
demonstrated in previous work on various mobile wireless
protocols (e.g., WiFi and Bluetooth) [8], [28], [32], [51],
[20], [14], [15], [19].

Why does obfuscation prevent this attack? This attack
is only feasible because devices have stable fingerprints:
each radio has stable physical imperfections in its trans-
mitter circuitry that are born during manufacturing of its
hardware components. However, if a target is obfuscating
transmissions by altering their imperfections over time, this
attack will trivially no longer be successful.

De-obfuscation requires prolonged observations: An at-
tacker can only de-obfuscate a target that is changing its
fingerprint over time if the attacker can observe multiple
changes of the same target. The reason is, each time the
target changes its fingerprint, it reveals more information
about the true fingerprint that is being hidden. For instance,
if the obfuscation approach is to alter the fingerprint by
adding a magnitude picked uniformly at random, the attacker
can recover the target’s true fingerprint by averaging them.
Optimal attacker: Since the attacker can use a variety
of de-obfuscating approaches (e.g., neural networks), we
study an optimal attacker who is aware of our obfuscation
methods and can optimally de-obfuscate the fingerprints
when identifying the target to achieve the maximum possible
identification accuracy. The optimal attacker also can ob-
serve their target across enough time periods where any new
observations will not substantially improve their ability to
identify the target. Further, we assume the optimal attacker
has already recovered the true fingerprint of the device
during the fingerprinting phase.

3. Challenges

Radio fingerprinting attacks rely on the following prop-
erties of radio fingerprints: their stability over time and
their distinguishability between different devices. Next, we
describe why it is impractical to remove these fingerprints
and instead why we need to obfuscate them by periodically
changing them.

3.1. It is impractical to remove radio imperfections

The most straightforward way to eliminate the threat of
radio fingerprinting attacks would be to calibrate out the
imperfections of every radio after they are manufactured.
However, this would add significant complexity to the test-
ing process for mobile devices: we would need to precisely
and accurately measure and compensate imperfections for
radios used in every single mobile device. Vendors are not
incentivized to do this because it would offer no additional
benefits for device performance. Another approach is to
improve the quality of the hardware components to reduce
the margin of the imperfections. For instance, manufacturers
could use high-quality crystal oscillators as sources for the
frequency synthesisers in their radios. However, this would
increase the cost of each device, and may even consume
more power (e.g., using a temperature-compensated oscil-
lator) and would not offer any improvements in device
performance. Ideally, we want an approach that can be
deployed by vendors on existing hardware that can be incre-
mentally deployed as a firmware change in their chipsets.
The practical obfuscation we introduce in this work does
not require any changes of the hardware testing or design
of radios in mobile devices.

3.2. Strawman: Randomize imperfections

An example of a strawman obfuscation technique is
periodically and randomly altering the Carrier Frequency
Offset (CFO) of a device’s transmissions to obscure hard-
ware imperfections. This is similar to the approach taken in
MAC address randomization in the sense that the identifying
feature of the device periodically changes to new random
values. However, the nature of these imperfections creates
unique and different challenges and limitations.

For each packet p, the obfuscation model changes
the original hardware imperfection, H , (e.g, H =
{CFO, I offset, Q offset}), randomly into a new obfuscated
hardware imperfection, H ′

p. Once obfuscation is done,
the attacker can only observe and use H ′

p to infer any
information about H or the identity of the transmitter device.
Ideally, the obfuscated imperfection (H ′

p) should not reveal
any information about the original imperfection (H) or the
identity of the device. However, such perfect obfuscation is
not possible in practice because the obfuscated imperfection
H ′

p is randomized around the original hardware imperfection
H . Given that perfect obfuscation is not practical, we must
design the obfuscation in a way that significantly reduces
the attacker’s ability to uniquely identify a transmitter

The reason why random obfuscation fails is due to the
practical limitations on altering the CFO of BLE devices.
Random obfuscation is defined as adding a random value
hr to CFO. For example, assume hr is sampled uniformly
at random from the obfuscation set {−b : s : b}, where b =
50KHz or range is the largest value hr can take and s =
5KHz or resolution is the the smallest granularity by which
we can change hr. Figure 1 shows how random obfuscation
fails with two devices with a true CFO of 17.5 and -10



-6 -4 -2 0 2 4 6
CFO 104

Only the red device
can take these CFO
values after obfuscation

Only the blue device
can take these CFO
values after obfuscation

Figure 1: Simple randomized obfuscation will fail in hiding
the identity of devices.

KHz. The solid red and blue colors show the original CFO
of two devices. The light colored versions show how random
obfuscation affects the values of the CFO. Note that instead
of a single point, measured CFOs are demonstrated as a
Gaussian distribution to represent the measurement noise.

The attacker can easily distinguish these two devices
even after obfuscation due to the following reasons (dashed
lines show examples of failure cases):

Limited obfuscation range: The range of obfuscation
is limited, so there are some CFO values on the right that
only the blue device can take and some on the left that only
the red device can take. If the obfuscated CFO happens to be
one of these, the attacker can easily identify the device. Note
that the obfuscation range must be always limited because
wireless communication protocol standards impose a limit
on the acceptable range of hardware imperfections (e.g.,
BLE can only have ±150 kHz [42]).

Limited obfuscation resolution: Even in the range that
the obfuscated CFO of both devices can fall into, we see
that their CFOs are still distinguishable. This is because the
obfuscation resolution is larger than the measurement noise,
so the measured obfuscated CFO values never overlap.

Prolonged observation time: The attacker may observe
the device for a long time to obtain multiple instances of
the obfuscated fingerprint changing. The attacker can then
de-obfuscate the observed CFO values from each device, for
example, by simply averaging.

Uniqueness of the fingerprint: All the aforementioned
challenges are intensified when the true CFO of the devices
we are trying to identify are far apart. This is possible
because hardware imperfections of different devices usually
follow a normal-like distribution (Figure 2). The devices
that have rare imperfections (tails of distribution) are easily
distinguishable from almost any other device. An effective
obfuscation approach must be able to reduce the distin-
guishability of those extreme devices as well.

Number of nearby devices: If we have a very small
number of devices in the environment, it becomes harder
to hide a device’s true identity by obfuscating. For instance,
when the attacker is looking for the device in a private place
such as a house, there aren’t many devices around to hide
amongst them.

4. Analysis Framework

In this section, we present an analytical framework for
evaluating how well different obfuscation strategies prevent
physical-layer hardware imperfection fingerprinting attacks
on BLE devices. This framework is based on an empirically-
driven model for CFO fingerprints built from 1,000 BLE
devices that we use to analyze how well obfuscation will
work in the real world. It also provides a metric to measure
how well an optimal attacker can identify a BLE device.

Why only study CFO imperfections? This analysis is
only focused on CFO imperfections for the following rea-
sons: (1) it is the most distinguishable imperfection [8] suf-
ficient to solely make several BLE devices identifiable [19],
(2) observing CFO is available to the attacker with a low
barrier of entry (CFO can be obtained from a low-cost
commodity receiver chipset [53]). That said, our analysis can
be similarly done for many other imperfections. We discuss
how the same analysis and design can potentially be ex-
panded to some other hardware imperfections in Section 8.3.
Also, since CFO is present in all wireless transmissions, our
obfuscation analysis can be used for protocols other than
BLE. Lastly, we can study CFO obfuscation in isolation
because most radio fingerprints are caused by independent
hardware imperfections and do not impact each other (e.g.,
CFO comes from the oscillator and I/Q offset comes from
the RF frontend).

4.1. Modeling real-world CFO imperfections

We collected a large dataset of BLE advertisement bea-
cons from 1,000 real-world devices at several locations
(coffee shops, libraries, food courts). We estimate the CFO
in each beacon using the BLE fingerprinting methodology
from [19]. The MAC address in the beacons was used to
group the packets from the same device1.

Based on this data set, we made the following observa-
tions that we use to model the CFO imperfections of real-
world devices:

Measured CFO is stable across packets. Although the
imperfections measured for different packets with the same
MAC address are not exactly the same, the median of
standard deviation of CFO for packets from the same device
is only 320 Hz (based on 100 packets per device). We refer
to these variations as measurement noise.

The distribution of CFO imperfections is Gaussian. We
average the CFO of 100 packets with the same MAC address
to estimate the CFO of each device. The distribution of CFO
across devices looks bell-shaped (Kurtosis is 3.7) as shown
in Figure 2, with standard deviation of 9.12 kHz. We also
verified that I/Q offsets follow a normal-like distribution.
A normal distribution is expected because the source of
imperfections is manufacturing variations which often have
a normal distribution.

1. Devices in this dataset are likely to have a consistent MAC address
over this interval because we observe them for less than a minute.



-40 -20 0 20 40
CFO (kHz)

H
is

to
gr

am

Figure 2: CFO distribution of 1000 real-world BLE devices
looks Gaussian.

Modeling the hardware imperfections for analysis. Based
on these observations, we assume the original hardware
imperfection, H(n), of a device n, comes from a normal
distribution N(µ,Σ) where µ = 0 and Σ = 9.12 kHz are
the global average and standard deviation of the original
imperfection for all devices in the world. For each packet
p, the attacker measures the imperfection H

(n)
p . H(n)

p has
a normal distribution N(H(n), σ(n) = 320Hz) centered
around the original imperfection of the device. σ(n) rep-
resents the measurement noise which depends on factors
such as SNR of the received signal, and the resolution and
accuracy of the algorithm used by the attacker to measure
the imperfections. Note that only H(n) is an identifying
signature of the device, and σ(n) is not considered as a
characteristic of the device itself.

4.2. Analysis metrics and assumptions

We define a metric that represents how well the attacker
can possibly de-obfuscate the device’s fingerprint. We bor-
row concepts from the framework proposed by Standaert et
al. [46] for analyzing side-channel key recovery attacks and
defenses. To analyze the effectiveness of the obfuscation
strategy, we can ask two questions: (1) How good is the
obfuscation strategy in hiding the original hardware imper-
fection identity of the transmitter? and, (2) How successful
can the attacker be in beating the obfuscation strategy and
identifying the transmitter? The first question is about how
much information is still leaked after obfuscation, and can
be measured with conditional entropy. The second question
is about how successfully this information can be turned
into an attack, and can be measured with the concept of
attacker’s success rate. We choose the success rate as our
metric since the eventual goal is to see how well we can
prevent the attackers from identifying the devices.

4.2.1. Attacker Success Rate. The goal of hardware im-
perfection obfuscation is to reduce the attacker’s success
in identifying the devices based on their hardware imper-
fections. The common metric to evaluate such attacks is
how accurately the attacker can identify the newly received
packet (or a group of packets) and decide if the target is the
transmitter. In fact, if Y is the random variable representing
the ground truth identity of the physical device (Y = 1 if the
target device is the transmitter and Y = 0 otherwise.), and

the output of the attacker’s decision in identification phase
is a random variable Z, the attacker goal is to maximize
Pr(Y = Z). Hence, we borrow the notion of Attacker’s
success rate from [46] and define it as follows:

Success = Pr(Y = Z) = 1− Pr(Y ̸= Z) (1)

This simply represents the probability of identifying the
device correctly by the attacker.

4.2.2. Optimal Attacker. The attacker may make their
decision (Z) about the identity of the device based on the
received packets from the target during fingerprinting phase
and a decision rule. The decision rule is any algorithm that
the attacker uses to decide if the fingerprints corresponding
to one or multiple packets belong to the target and thus,
identify the target—e.g., different machine learning classi-
fiers. The choice of decision rule affects the attacker’s suc-
cess rate. Wang et al. [52] consider the maximum accuracy
that any attacker can potentially achieve to evaluate website
fingerprinting obfuscation. The advantage of such metric
is that we can ensure once the obfuscation is deployed,
on average no attacker can achieve a better accuracy than
what has been evaluated, no matter what algorithm they
use for identification. In other words, it is a bound on
how successful the attacker can be in de-obfuscating the
obfuscation strategy. Hence, we follow a similar approach
and use the maximum possible attacker’s success rate as
the metric to analyze hardware imperfection obfuscation. In
Appendix A.1, we prove Maximum A Posteriori (MAP),
C(H ′

p) = max
n

Pr(Y = n|H ′
p), can achieve the maximum

success rate (the optimal attacker). Thus, we analyze the ob-
fuscation against an attacker who uses MAP as the decision
rule to identify the devices.

We make the following assumptions about the attacker:

• The attacker has fingerprinted the original hardware
imperfection of the target, H(n), without error.

• The attacker knows the global distribution of the
imperfections of devices in the world.

• The attacker knows the exact obfuscation method
and parameters that are being used.

Having this information, the attacker can compute the op-
timal decision rule C(H ′

p) = max
n

Pr(Y = n|H ′
p) by com-

puting the posterior probabilities and achieve the optimal
attacker’s success rate. This makes it unnecessary to com-
pare the obfuscation against any other attacker in hardware
imperfection fingerprinting literature that uses the imperfec-
tions studied in this paper to identify devices. In fact, on
average, the optimal attacker would do better than any other
attacker who uses a different decision rule—e.g., classical
machine learning classifiers [8], [54], distance/statistical
classifiers [19], [15], [31], [53], [1], neural networks [26],
[43], [36], [30]. Therefore, if obfuscation does well against
this optimal attacker, it would do even better against other
attackers. All the results and analysis presented throughout
the paper is against the optimal attacker, unless otherwise
specified. We compare the success rate of such an attacker to



when there is no obfuscation, and also the optimal desired
success rate (the oracle defense which results in random
identification success rate of 0.5).

4.2.3. Analysis setup. The attacker’s success also depends
on the number of devices around and the uniqueness of
target’s imperfections. Hardware imperfection fingerprinting
attacks are the most successful and threatening when there
are only a few devices around, or the target device has a
unique and rare imperfection (tails of the normal distribu-
tion). Our metric should also represent these two scenarios,
to show the obfuscation is effective when fingerprinting
attack is a serious problem. To this end, we analyze the
optimal attacker’s success rate under two circumstances.

First, we consider the attacker is identifying the target
when there is only one other obfuscated device around. The
reason is that if the obfuscation performs well in confusing
the attacker in distinguishing even two devices, it will do
even better when there are more devices around. We assume
the imperfections of these two devices are randomly drawn
from the global imperfection distribution. We call such
devices average devices. Later in Section 7, we evaluate
the obfuscation in practical situations in the field, where
there are a different number of devices around of which
some percentages are obfuscated and some not. Second, to
demonstrate the effectiveness of obfuscation when the target
has a rare imperfection, we assume the imperfection of the
target device is drawn from the 5% tails of the distribution.
We call such a device an unlucky device because it is
more distinguishable compared to an average device. This
demonstrates if the obfuscation helps with preventing the
attacker from identifying even the most vulnerable devices.

5. Design and Analysis

Using the analytical framework from the previous sec-
tion, we now incrementally design an obfuscation scheme
that overcomes each of the practical challenges of obfus-
cating BLE devices (Section 3). We describe the design
an obfuscation strategy for which the attacker will not be
able to accurately identify the device, even after 24 hours
of continuously observing the device. We choose 24 hours
because it is unlikely for an attacker to continuously observe
a target for a long time, and targets are unlikely to be
stationary for more than a day. Additionally, we found that
an attacker’s improvement in accuracy over time becomes
marginal after only a few hours. We describe the limitations
that exist when choosing a random obfuscation value, and
we analyze their effect on the success of obfuscation.

5.1. Obfuscation Interval

During a MAC address lifetime, the attacker can identify
the device by only looking at the MAC address. Thus,
randomizing the imperfections from packet-to-packet in a
single MAC lifetime does not have any benefit. Moreover,
if the imperfection randomization happens from packet-to-
packet within a MAC lifetime, the attacker will have the

22 24 26 28 210 212 214

Size of obfuscation set

0

20

40

60

80

100

O
pt

im
al

 R
an

ge
 (

kH
z) 1 packet-Average device

1 packet-Unlucky device
1 minute-Average
1 minute-Unlucky
15 minutes-Average
15 minutes-Unlucky

Figure 3: The optimal range for different sizes of ob-
fuscation set (the optimal resolution can be calculated as
resolution = range

size ). We assume the attacker is listening to
Contact Tracing beacons which typically transmit 4 packets
per second.

opportunity to average the randomized imperfections and
find the original imperfection of the device. Therefore, only
when the MAC address lifetime expires and re-randomizes,
the original imperfection H also needs to be re-randomized
to a new obfuscated imperfection H ′, and remains the same
for all packets in the next MAC address lifetime. Note that
this does not require any changes to the MAC layer.

5.2. Obfuscation Range

We start with basic discrete uniform obfuscation [37].
The random imperfection hr is selected uniformly at random
from the set {a + is}, i = 0, 1, 2, ..., b−a

s . The question
is how we should choose the variables a, b (range) and
s (resolution). Obviously, having a larger range provides
better obfuscation. However, we must limit the obfuscation
range according to the acceptable amount of hardware im-
perfection specified in the protocol standards. Specifically,
BLE protocol specifies that CFO of the radio should be less
than ±150 kHz [42]. In our field data collection, we did
not observe any CFO greater than 36.54 kHz. As a result,
the maximum CFO obfuscation range that we consider in
our analysis is b = −a = 100 kHz. We choose a sym-
metric obfuscation range (b = −a) because the distribution
of imperfections is usually symmetric, and the hardware
imperfection limits required by the protocol standards are
also usually symmetric. Note that the Uniform distribution
has the maximum entropy over such set.

5.3. Obfuscation Resolution

Having a finer resolution also provides better obfuscation
as it causes the measured obfuscated CFO of different
devices to be closer to each other, and thus overlap due to
measurement noise. As we prefer both large range and high
resolution, the question is as follows: With a fixed number
of possible choices for the randomly added imperfection
values—the size of obfuscation set—should we use a large
range or a fine resolution? Figure 3 shows the optimal



22 24 26 28 210 212 214

Size of obfuscation set

0.5

0.6

0.7

0.8

0.9

1

A
tta

ck
er

's
 S

uc
ce

ss
 R

at
e

1 packet-Average
1 packet-Unlucky
1 minute-Average
1 minute-Unlucky
15 minutes-Average
15 minutes-Unlucky

Figure 4: Attacker’s success rate for different sizes of obfus-
cation set when the optimal range and resolution are used.

obfuscation range—the range that achieves the lowest at-
tacker’s success rate—for different sizes of obfuscation set.
The attacker may receive multiple packets with the same
MAC address during a MAC lifetime (15 minutes), and
leverage all those packets to reduce the measurement noise.
We show the graph when the attacker receives 1 packet, 240
packets (1 minute), 3600 packets (15 minutes). The optimal
range increases rapidly as soon as the resolution becomes
fine enough to get dominated by the measurement noise,
after which a finer resolution does not significantly change
the success rate.

We also observe that when the attacker receives more
packets, we need a finer resolution because the measurement
noise decreases. Therefore, the rapid increase in optimal
range happens at larger sizes of obfuscation set. The same
pattern holds true for both average and unlucky devices. The
only key difference is even when the obfuscation set is small,
we at least need to have a moderate obfuscation range to
push the unlucky device close to other devices, and thus the
optimal range is larger at the beginning. Figure 4 shows the
attacker’s success rate when the optimal obfuscation range
is used. When the attacker receives l times more packets
from a device, they can reduce the measurement noise by
a factor of

√
l. Consequently, the resolution (and thus, the

size of obfuscation set) should also be roughly
√
l more to

degrade the attacker’s success to the same value.
Further, note that if the attacker listens to the device

for the entire MAC lifetime (15 minutes), obfuscation can
still hold them to the lowest possible success rate (0.5) if
we have a resolution as fine as 200KHz

214 = 12.2 Hz. In
Section 6, we show we can achieve 15.25 Hz resolution
on a commodity BLE chipset. Therefore, we continue the
analysis assuming the randomly added CFO is drawn from a
continuous distribution, but with a limited obfuscation range.
This analysis above is useful for implementations that have a
more limited number of possible choices for the obfuscation
set (e.g., hardware-based obfuscation [37]).

5.4. Fingerprinting duration

So far, we assumed the attacker is limited in how well
they can defeat obfuscation because they only fingerprint

0 5 10 15 20 25 30 35
Time (Minutes)

D
iff

er
en

t M
A

C
 a

dd
re

ss
es

Figure 5: Each red dot is a packet transmitted by the target
(Pixel 6 Pro) and gray dots represent other devices. Packets
with the same MAC address have same vertical locations.
The MAC address randomization events of a device are
clearly observable (the target randomizes 3 times). The
attacker can use this information to conclude several con-
secutive randomized MAC addresses actually belong to the
same device.

packets with the same MAC address. However, attackers
can also link consecutive randomized MAC addresses of
a device together to refine their fingerprint over a longer
period than one MAC address lifetime.

First, we show that the attacker can refine their fin-
gerprints of a device, by following its MAC address ran-
domization through continuous observation. Figure 5 shows
that when a particular MAC address disappears, and im-
mediately a new one appears, the attacker realizes these
two consecutive MAC addresses belong to the same device
with a high probability. By repeating this logic, the attacker
figures out all red packets belong to the same device,
despite randomizing the MAC address three times. Now
remember that the obfuscated imperfection corresponding to
each MAC address lifetime is one new sample drawn from
the obfuscation distribution. Consequently, if the attacker
continuously observes the device, they know several MAC
addresses belong to the same device; and they can refine
the measured obfuscated imperfections for all those MAC
addresses to de-obfuscate the device’s fingerprint.

We evaluated the effectiveness of different obfuscation
methods under this prolonged fingerprinting attack.

Continuous uniform distribution. Figure 6 shows how the
attacker’s success rate (See Appendix A.4) rapidly increases
with uniform obfuscation as they observe the device for a
longer time. The attacker obtains a new sample of the obfus-
cated CFO of the device in each MAC lifetime (15 minutes)
and gradually breaks the randomness of obfuscation as they
get more samples.

Gaussian distribution. Figure 6 shows that the attacker’s
success increases slower when Gaussian distribution is used
compared to uniform obfuscation. In fact, even when the
attacker’s success for uniform obfuscation is lower than
Gaussian at the beginning, it ends up higher than Gaussian
after several MAC lifetimes (e.g., uniform with 100 kHz
range vs Gaussian with 35 kHz standard deviation).



0 5 10 15 20
Time (hours)

0.5

0.6

0.7

0.8

0.9

1

A
tta

ck
er

's
 S

uc
ce

ss
 R

at
e

Optimal
Without Obfuscation
Uniform, range = 10 KHz
Uniform, range = 50 KHz
Uniform, range = 100 KHz
Gaussian, std = 15 kHz
Gaussian, std = 25 kHz
Gaussian, std = 35 kHz

Figure 6: Attacker’s success rate for Gaussian and uniform
obfuscation for an average device, when the attacker contin-
uously observes the device across multiple MAC lifetimes
for hours. Attacker’s success rate increases faster over time
when Uniform obfuscation is used compared to Gaussian.

Truncated Gaussian distribution. Now the natural ques-
tion is, which distribution should we use for obfuscation?
First, note that we must limit the range of Gaussian dis-
tribution, so it does not exceed the CFO limits required
by the protocol standards. Thus, we truncate the Gaussian
probability density function by similar ranges as the uniform
distribution. Assume hr is drawn from a truncated Gaussian
distribution Ñ(0, σo, b). Note that the truncated Gaussian
distribution converges to the uniform distribution with range
b as the standard deviation σo increases to infinity; and for
smaller values it is similar to a regular Gaussian.

Figure 7 shows how the optimal standard deviation—the
standard deviation of the truncated Gaussian that results in
the lowest attacker’s success rate—changes if the attacker
observes the device for different time durations. As we can
see, there isn’t a single standard deviation that gives us the
best obfuscation when the attacker observes the device for
different time durations: If the attacker observes the device
for one or a very few MAC lifetimes, a large standard
deviation (closer to uniform) is better but as the attacker
observes the device for a longer time, smaller standard
deviations (closer to Gaussian) provides a better obfuscation.

Intuition. The intuition behind this phenomenon is depicted
in Figure 8. The figure shows the distribution of the ob-
fuscated CFO for two devices when uniform and truncated
Gaussian distributions are used. The red area shows the
probability that the attacker would misidentify the device
in one MAC lifetime. This is larger for the uniform dis-
tribution as it assigns the probabilities equally across the
common range of obfuscated CFO values of both devices,
making the attacker completely unable to distinguish the
devices. Thus, in short time durations we prefer uniform
as the attacker would misidentify more. On the other hand,
the green area shows the probability that the attacker can
identify the device in one MAC lifetime with certainty
(probability of 1). This is because only one of the devices
can take the obfuscated CFO values in that region because
of limited obfuscation range. This region is also larger for

0 5 10 15 20 25
Time (hours)

0

100

200

300

400

O
pt

im
al

 S
ta

nd
ar

d 
D

ev
ia

tio
n 

(k
H

z)

Gaussian is better

Uniform
is better

Average Device
Unlucky Device

Figure 7: Optimal standard deviation of truncated Gaussian
distribution when the attacker observes the device for dif-
ferent time durations, for both average and unlucky devices.

CFO

Truncated Gaussian Uniform Obfuscation

Mis-identified
Only one of the device can have CFO in this region
Optimal Decision Boundary
Original CFO of device #1
CFO distribution for device #1 after obfuscation
Original CFO of device #2
CFO distribution for device #2 after obfuscation

Figure 8: Comparing Uniform and Gaussian obfuscation.

uniform distribution. Consequently, as the attacker observes
the device for longer durations of time (more and more
obfuscated CFO samples), the probability that at least one of
them falls into that region increases quickly, and the attacker
can identify the devices faster. Therefore, in that situation, a
thin-tailed distribution like Gaussian is more favorable than
uniform, in order to make the green region smaller.

5.5. Hierarchy of Obfuscation Distributions

We saw in Figure 6 that no matter what distribution
we use, the attacker’s success rate increases significantly
if they continuously observe the device. In this section,
we intend to propose a strategy to maintain the attacker’s
success much lower even if they continuously observe the
device for as long as 24 hours, which essentially makes the
identification attack impractical. Second, we observed that
depending on how long the attacker observes the device,
we may prefer a different obfuscation distribution. So we
also intend to take advantage of the best of both uniform
and Gaussian distributions to design a better obfuscation
strategy. We propose the following obfuscation strategy to
achieve both goals mentioned above:



• A random variable µr is re-sampled from a uniform
distribution once every th MAC address lifetimes.

• A random variable hr is re-sampled from a Gaussian
distribution once every MAC address lifetime. The
standard deviation of the Gaussian distribution is
fixed, and the mean is the random variable µr.

• The resulting hierarchical distribution is truncated at
±100 kHz so that the obfuscated CFO stays within
the limits that the BLE standards impose.

• hr is added to the original imperfection of the device
as the random obfuscation value.

This algorithm is presented in Algorithm 1 (Appendix A.8)
in more details. We explain the reasoning behind this strat-
egy in the rest of this section.

5.5.1. Stalling the attacker. The attacker obtains a new
sample from the obfuscated CFO distribution in each MAC
lifetime, and gets one step closer to breaking the obfuscation
and identifying the device. Now consider instead of re-
randomizing the obfuscation every MAC lifetime, we re-
randomize only every th MAC lifetimes. The attacker must
wait th times more to obtain the same number of samples,
and thus the same success rate. In fact, we stalled the
attacker for th times more MAC lifetimes. Having a large
th will make the attacker wait a longer time to achieve
the same success rate. This phenomenon is represented in
Figure 9. However, if th = ∞, this approach is equivalent
to permanently shifting the CFO of the device by a fixed
random value. Consequently, the new shifted CFO can be
used as the fingerprint of the device. Therefore, although
we want th to be large to stall the attacker more, we cannot
make it arbitrarily large because the attacker can identify the
device during those th MAC lifetimes. Note that although
we only consider a fixed th in this work, th can also be
randomized to make it even harder for the attacker.

5.5.2. Combining different distributions to get the best
out of both. If during these th MAC lifetimes, the randomly
added obfuscation value remains fixed, attacker can identify
the device during that time. Hence, we need to also ran-
domize the obfuscation during these th MAC lifetimes. In
fact, we must have a hierarchy of two distributions, D1 and
D2. Once every th MAC lifetimes, a random variable µr is
sampled from the distribution D1. For each MAC lifetime in
those th MAC lifetimes, a random variable hr is drawn from
the distribution µr+D2 and used as the random imperfection
obfuscation added to all packets in that MAC lifetime. The
question is, how should we choose D1 and D2.

We saw in previous section (Figure 7) that if the attacker
observes the device for a short time (e.g., less than 1 hour)
and gets only a very few samples from the obfuscation dis-
tribution, uniform distribution is a better choice. Conversely,
if the attacker observes the device for a longer time and gets
many samples from the obfuscation distribution, Gaussian
is a better choice. Now since th should be relatively large to
stall the attacker more, D2 should be Gaussian. On the other
hand, since th is large, the attacker will get only a very few

0 5 10 15 20 25
Time (hours)

0.5

0.6

0.7

0.8

0.9

A
tta

ck
er

's
 S

uc
ce

ss
 R

at
e

Optimal
Without Obfuscation
Hierarchy with th=8
Hierarchy with th=16
Hierarchy with th=32

Figure 9: As we increase th, the attacker needs to observe
the device for a longer time to achieve the same success.

samples from the first distribution, D1, as they have to wait
th MAC lifetimes for each sample. As a result, D1 should
be Uniform. Hence, we use a hierarchy of Gaussian and
Uniform distribution as our final obfuscation distribution.

5.5.3. Choosing the distribution parameters. We choose
th = 32 = 8hours. As we can see in Figure 9, this value is
sufficient to keep the attacker’s success rate close to optimal
even after 24 hours of continuously observing the device,
while not being too large that identifying the device during
the th MAC lifetimes becomes an issue. Moreover, we
choose the range of uniform distribution 70 kHz as we did
not see any significant improvement by further increasing
this parameter, and also leaving some room for the samples
from the second distribution to vary on top of the first
distribution. We choose the standard deviation of Gaussian
42 kHz by doing an analysis similar to what has been done
in Figure 7. The final hierarchical distribution is truncated
at 100 kHz to meet the range requirement.

5.5.4. Comparing different distributions. Figure 10 com-
pares the proposed hierarchical distribution of Uniform and
Gaussian to other distributions. The red curves represent
the minimum attacker’s success that we can possibly have
at each time duration, if we use a truncated Gaussian
distribution (for each time duration, we used the optimal
standard deviation from Figure 7 to compute the correspond-
ing success rate). We observe that even when the optimal
standard deviation is used for a single truncated distribution,
the attacker’s success rate increases rapidly, specially for
unlucky devices. The gray curves represent the hierarchy of
two Gaussians and the blue curves demonstrate the hierarchy
of uniform and Gaussian. The hierarchy of Uniform and
Gaussian results in lower attacker’s success. The reason is
that by using hierarchy of distributions, the attacker only
gets a very few samples from the first distribution, and we
saw earlier that the Uniform distribution provides a better
obfuscation than Gaussian in that situation. In summary,
Figure 10 shows that the hierarchy of uniform and Gaussian
is a better choice than any single uniform or Gaussian
distribution as well as the hierarchy of Gaussians.



0 5 10 15 20 25
Time (hours)

0.5

0.6

0.7

0.8

0.9

A
tta

ck
er

's
 S

uc
ce

ss
 R

at
e

Truncated Gaussian - Average
Truncated Gaussian - Unlucky
Hierarchy of Gaussians - Average
Hierarchy of Gaussians - Unlucky
Hierarchy of Uniform and Gaussian - Average
Hierarchy of Uniform and Gaussian - Unlucky

Figure 10: Comparing the attacker’s success when different
distributions are used for obfuscation.

6. Implementation

We demonstrate the feasibility of implementing our hier-
archical CFO obfuscation strategy on two practical hardware
platforms: a commodity BLE chipset (TI CC2640), and
embedded DSP processors often used in radio chipsets.

Implementation on commodity hardware. Wireless radios
can modify the CFO of their transmissions by changing the
tuning of their frequency synthesizer, which is the hard-
ware that generates the radio’s center frequency. We dis-
covered that a widely-used off-the-shelf BLE chipset—the
TI CC2640 [48]—provides an API to control its frequency
synthesizer. The CC2640 is prevalent in devices like fitness
sensors, tags, and lighting systems. This CC2640 provides
API commands to configure the radio’s parameters. The
frequency synthesizer control command (CMD_FS) allows
us to set the center frequency of the radio transmitter.
CMD_FS has two parameters: the BLE advertisement channel
(frequency) and a fractional frequency offset that is added
to channel frequency (fractFreq). We can simply use change
the fractFreq value to add an offset and transmit actual
BLE advertisements. fractFreq has 16 bits of resolution and
a maximum frequency offset of 1 MHz: a resolution of
15.258 Hz. Other BLE chipsets likely also have vendor-
specific commands similar to the CC2640. However, not all
chipsets will reveal how to alter CFO in their public docu-
mentation. We also verified with another leading vendor of
BLE chipsets that they have proprietary commands capable
of introducing CFO variations.

DSP operations on the baseband signals. The core mathe-
matical operations needed to add random CFO is to perform
the following complex multiply with each baseband I/Q
sample of a packet transmission:

y′(t) = yo(t)× ej(2πft)

where f , yo denote CFO, baseband signal respectively.

Unfortunately, we were unable to demonstrate this mod-
ification on commodity wireless chipsets because their DSP
are property and can not be modified by end users. Instead,
we estimate the extra DSP resources that will be required to
add this CFO modification. DSPs often already implement
CFO correction for removing CFO from received signals.
We investigated the Atomix DSP implementation of the
WiFi baseband [5] on a TI Keystone 2 DSP. The frequency
offset comes by multiplying each baseband sample with
a pre-computed sin-wave lookup table. TI’s Keystone ar-
chitecture offers a 4-cycle instruction for complex number
multiplication. We can compute sine values in constant time,
once each time the host needs to change CFO frequency.
We compared the time to the rest of the baseband packet
generation and this extra complex multiply adds only a small
constant factor.

7. Field Evaluation

In this section, we evaluate how well hardware imper-
fection obfuscation can confuse an attacker whose goal is
to identify a target in practical scenarios. More precisely, in
the fingerprinting phase, the attacker has fingerprinted the
desired hardware imperfection of the target device (CFO)
and has come up with a rule to decide if the target device
is present upon receiving new packets in future during the
identification phase. Unless otherwise noted the attacker is
the optimal attacker that uses MAP to identify the target,
similar to all the analysis so far.

7.1. Dataset

To evaluate the effectiveness of hardware imperfection
obfuscation in confusing the attacker in practice, we use
a large-scale dataset collected in the field. We collected
BLE beacons from 1443 different devices at a public facility
through which hundreds of people pass through during the
day. These devices include personal mobile devices such
as smartphones, smartwatches, wireless earphones, etc. The
standard deviation of CFO across all these devices is 9.35
kHz. Note that this dataset is different from the one used to
perform the analysis and design the obfuscation. Throughout
this section, we use this BLE dataset for evaluation.

Ethical Considerations. We have discussed the details of
this research with our IRB office and were told that it
does not qualify as human subjects. We perform completely
passive data collection of BLE advertisement packets using
a SDR. We collect packets on only the BLE advertise-
ment channels, and during the analysis stage we ensure
we only use undirected advertisements (beacons). Most
of these packets come from ubiquitous BLE applications
such as contact tracing and device discovery. These packets
contain no personal identifiable information, and the device
fingerprints we compute cannot be linked to any individuals.



0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1
T

ru
e 

P
os

iti
ve

 R
at

e

Optimal
No obfuscation-10 Devices-1 minute
No obfuscation-50 Devices-1 minute
w/ Obfuscation-10 devices-30 minutes
w/ Obfuscation-10 devices-12 hours
w/ Obfuscation-50 devices-30 minutes
w/ Obfuscation-50 devices-12 hours

Figure 11: ROC curves of the optimal attacker for different
numbers of surrounding devices and time durations.

7.2. Data Analysis

We estimate the CFO for each beacon packet. The
original CFO of the device is the average CFO across all
packets from same MAC address (same device). To evaluate
impact of obfuscation, we consider a certain target device
and a small varying number of other devices in the environ-
ment. We apply our obfuscation methodology to continually
modify the CFO of these devices. Our obfuscation strategy
uses a hierarchy of a continuous uniform distribution with
70 KHz range, and a Gaussian distribution of 42 kHz
standard deviation (the choice of values is described in
Section 4.) We also truncate the distribution at a point (range
of obfuscation) which the CFO of no device in the dataset
would exceed the BLE specifications on CFO limits (±150
kHz). We then perform an identification attack on the target
device, and analyze how the identification accuracy changes
due to our obfuscation strategy.

In Section 4, we saw that obfuscating an unlucky device
is significantly harder than an average device. Therefore,
we only consider unlucky devices as target devices for our
evaluation. In addition, for each result we perform 10000
tries where we select the target and surrounding devices at
random. The reported result is an average of all these tries.

7.2.1. Target identification accuracy. The attacker per-
forms a binary decision-making — identify whether a spe-
cific device is the target or not. If the attacker identifies
the target when it is not present, a false positive occurs. If
the target is present and the attacker does not identify it, a
false negative occurs. We consider multiple configurations
of total number of BLE devices, and time durations for
which the attacker observes the devices. In configurations
with obfuscation, we obfuscate 20% of all devices including
target devices. Figure 11 shows the ROC curves which
represents the True Positive Rate (TPR) at different False
Positive Rates (FPR), in each of our configurations. We
observe that without obfuscation, the attacker can identify
the target with high accuracy in a short time (1 minute).
However, with our obfuscation the ROC curves are closer to

0 5 10 15 20 25
Time (hours)

0.5

0.6

0.7

0.8

0.9

A
tta

ck
er

's
 S

uc
ce

ss
 R

at
e

No obfuscation-10 devices-1 minute
No obfuscation-50 devices-1 minute
With obfuscation-10 Devices
With obfuscation-50 Devices

Figure 12: Success rate of the attacker as the time duration
of observation increases.

the ideal green line, indicating that even the strong optimal
attacker is significantly more likely of confusing the target.

7.2.2. Time duration. We analyzed two different time du-
ration configurations in Figure 11. In one configuration the
attacker observes the target for a short 30-minute duration
— at a public place such as a coffee shop. In another
situation the attacker observes for a longer 12 hour duration
— such as at their home or work location. We observed that
the longer the attacker observes the target, the higher their
success in identifying the target. However, obfuscation does
significantly limit this increase in success rate.

Figure 12 shows the plot of attacker success rate vs
observation time duration when there are 10 and 50 devices
around of which 20% are obfuscated. For reference, we also
show the success rate when there is no obfuscation and the
attacker observes the target for a time duration of just 1
minute. Since the attacker makes a binary decision whether
the observed fingerprint belongs to the target device or not,
theoretically the best any obfuscation strategy can do is 0.5
(green line). In that oracle case of obfuscation, the attacker
basically takes a random guess if the device is their target,
and physical layer fingerprints cannot be used by the attacker
to differentiate the target. We observe that when using our
obfuscation, even after 24 hours of continuous observation,
the attacker success rate is around 0.6-0.7 which is far
from the unobfuscated situation, and close to the oracle
obfuscation. This means that the fingerprints are no longer
useful for the attacker to infer the identity of the device
and the optimal attacker can barely do better than a random
guess even after such a long time.

Further, since the attacker can improve its success over
time, we ask how much time the optimal attacker needs to
achieve the success rate they would achieve in one minute
if the obfuscation was not used (red line). It turns out
the obfuscated target must be stationary for more than 10
days so that the attacker can continuously capture BLE
packets from them. As a result, the proposed obfuscation
makes the attack impractical and significantly discourages
the adversary from using hardware imperfections to deploy
identification attacks.



0 20 40 60 80 100
Percentage of devices obfuscated

0.5

0.6

0.7

0.8

0.9

A
tta

ck
er

's
 S

uc
ce

ss
 R

at
e

No obfuscation-10 devices-1 minute
No obfuscation-50 devices-1 minute
w/ obfuscation-10 Devices-30 minutes
w/ obfuscation-10 Devices-12 hours
w/ obfuscation-50 Devices-30 minutes
w/ obfuscation-50 Devices-12 hours

Figure 13: Success Rate of the attacker with varying per-
centage of obfuscated surrounding devices

7.2.3. Number of obfuscated surrounding devices. If
many devices use obfuscation, then it becomes easier for
any device to hide from an attacker. We analyze the impact
of surrounding obfuscated devices in Figure 13. We plot the
attacker success rate in different configurations of number
of devices and time duration of observations. For each
configuration, we vary the percentage of total devices that
are obfuscated. We observe that the success rate approaches
the ideal obfuscation as we increase the number of obfus-
cated devices. This means that as chipset manufacturers start
deploying obfuscation, the benefits would keep increasing as
more and more obfuscated radios start getting deployed.

7.2.4. Number of total devices. Similar to an increase in
surrounding obfuscated devices, an increase in total devices
around will also make it harder for an attacker to identify the
target, since there is a larger pool of devices to distinguish
the target from. We analyzed the impact of number of
devices in Figure 11- 13. In particular, we considered two
scenarios — the target device is at a home or office location
(10 devices), and the target device is at a public place
(50 devices). We observed in all the above analyses, the
obfuscation significantly reduced the attacker’s success in
both scenarios and further, it was closer to ideal obfuscation
when there were more devices around.

7.2.5. Case Study 1: Obfuscation against a practical
weaker attacker. In the analysis thus far, we have con-
sidered a strong attacker that has all the details of our
obfuscation strategy. However, a practical attacker may be
significantly less informed. We evaluate how our obfuscation
strategy performs against one such recent attacker as pre-
sented in prior work [19]. This attacker averages the CFO
across multiple packets and computes Mahalanobis distance,
which are compared against a threshold to decide if the
received packets belong to the target. Figure 14 shows the
ROC curves for the attacker in this situation. We use the
same number of devices and time duration configurations
as Figure 11. We observe that the obfuscation performs
significantly better than our strong attacker situation, almost
near optimal performance.

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e 
P

os
iti

ve
 R

at
e

Optimal
No obfuscation-10 Devices-1 min
No obfuscation-50 Devices-1 min
w/ obfuscation-10 devices-30 min
w/ obfuscation-10 devices-12 hrs
w/ obfuscation-50 devices-30 min
w/ obfuscation-50 devices-12 hrs

Figure 14: ROC the practical weaker attacker achieves for
different number of surrounding devices and time durations.

7.2.6. Case Study 2: Obfuscating a CC2640 chipset.
We implemented our obfuscation on a CC2640 chipset as
explained in Section 6. Here, we perform a proof-of-concept
experiment on this chipset. We set the device to transmit
about 3600 BLE packets per MAC address lifetime. We
receive the signals with an SDR and measure the CFO for
each packet using [19]. Figure 15 shows the measured CFO
when the obfuscation is on according to the strategy and
parameters in Section 5.5. We observe that as expected, the
chip randomizes its CFO after each MAC address lifetime
and the CFO never goes beyond the desired limits. We can
also observe the hierarchical structure of randomization as
proposed in Section 5.5: The mean of the Gaussian distri-
bution from which the random CFOs are picked, changes
every 8 hours (shown in gray). As a result, the obfuscated
CFOs are distributed around a different value every 8 hours.
This prevents the adversary from identifying the device even
if they observe it for prolonged durations. We ran both
the optimal attacker and the weaker attacker to identify
our obfuscated chipset after collecting 24 hours worth of
packets. None of them were able to detect the device. We
also ran the weaker attack when the obfuscation was off.
The attacker was able to identify the device after receiving
only 10 packets, while there were on average 19 other BLE
devices around per MAC lifetime (15 minutes).

8. Discussion

8.1. Effect of obfuscation on demodulation error

Our obfuscation approach is evaluated with a limited
range of CFO alterations (±100 kHz) to ensure compliance
to the BLE standard [42]. However, we need to ensure BLE
devices do not incur increased bit error rate due to our
random CFO alterations. To test this, we measured packet
reception and signal strength (RSSI) across a wide range of
CFOs between two commodity BLE devices. We transmitted
BLE advertisements on channel 39 at 100ms interval using
a CC2640, and received them using a Pixel 8 Pro kept at
fixed distance for 30 seconds at each CFO setting (-450



-100 -50 0 50 100
CFO (KHz)

0

5

10

15

20

25

T
im

e 
(h

ou
rs

)

Original CFO
Obfuscated CFO
Obfuscation distribution

Figure 15: Obfuscated CFO measured for packets transmit-
ted by a commodity TI CC2640 chipset over 24 hours.

KHz – 450 KHz). Figure 16 shows the number of received
packets and average RSSI at different CFO values. We see
that even large CFOs do not have a noticeable effect on
the number of received packets and the RSSI. Even up to
±300 kHz—3 times the range we used in this study—there
is no noticeable impact on the packet reception in real-world
mobile devices. Receivers may tolerate large CFO offsets
because they implement coarse CFO compensation before
BLE’s GFSK demodulation [47]. Beyond 300 kHz we do
observe an expected loss in packets received, which may
be due to channel filtering in the chipset. We also tested
the receiver CFO tolerance of iPhone 8 and iPhone 10 and
observed that at ±150 KHz they could successfully received
all packets. These tests show that the packets obfuscated by
our strategy can be easily received by real world mobile
devices and should not introduce any demodulation perfor-
mance issues.

8.2. Effect of obfuscation on power consumption

Low power consumption is a fundamental requirement
of the BLE protocol. Thus, any obfuscation should not
introduce significant additional energy consumption. For-
tunately, altering the CFO of transmissions is inherently
energy efficient. The hardware architecture of BLE chipsets
allows for CFO adjustments without incurring any extra
energy consumption. The reason is, BLE transmitters must
be able to tune their center frequency when transmitting ad-
vertisements and scans on different channels. They achieve
this by tuning of the chipset’s frequency synthesizer. We
simply tune the synthesizer to an offset from the channels’
center frequency instead of the true center frequency. This
does not add significant extra energy consumption because
the synthesizer will inherently keep the same channel and
CFO until it is retuned. Also, random CFO generation only
happens only once every MAC lifetime (~15 minutes in tan-

-400 -300 -200 -100 0 100 200 300 400
CFO(KHz)

0

20

40

60

80

100

P
ac

ke
ts

re
ce

iv
ed

-80.00

-60.00

-40.00

-20.00

R
S

S
I

Figure 16: BLE performance across transmitter CFO set-
tings. Dotted lines show the obfuscation CFO range.

dem with the normal randomization for the MAC address).
This is infrequent because BLE devices send hundreds of
packets per minute [19], so it only happens once every
few thousand packet transmissions. Furthermore, since many
BLE transceivers use an on-chip CPU to control the radio,
the CFO obfuscation can be implemented in the chipset’s
firmware itself, without incurring any additional energy cost
to wake up the device’s application processor.

8.3. Obfuscating other radio imperfections

In this work, we focused on obfuscating CFO imper-
fections because they are one of the most distinguishable
hardware imperfections in wireless devices [8], [19], [53],
[22]. However, there are other physical-layer fingerprinting
attacks on BLE (and other protocols) for which we also
do not have effective obfuscation strategies. For instance,
another unique radio imperfection is the non-linearity of
the transmitter’s Power Amplifier (PA) [41]. The analysis
framework in this work can be used to develop obfuscation
strategies for these imperfections as well. The only require-
ment is that they must be able to be obfuscated by altering
them randomly. Several such radio imperfections are listed
in Table 1. The primary difference between obfuscating CFO
and these other imperfections will be the parameters in the
analysis such as the range and resolution of the imperfection,
the standard deviation of the imperfection across many de-
vices, and the measurement noise. The obfuscation strategy
will likely remain the same.

We encourage vendors and researchers to adopt this
analysis framework and obfuscation strategy when designing
future chipsets that include physical-layer fingerprint obfus-
cation. hide user’s identity.

8.4. Does obfuscation only work for BLE?

Our obfuscation strategy targets the underlying source
of the fingerprint in RF chain. These hardware impairments
impact all types of wireless chipsets such as WiFi, Zigbee
and others. In fact, the BLE chipsets in many commodity
smartphones shares the RF frontend with WiFi. Conse-
quently, we expect our CFO obfuscation strategy can also be



TABLE 1: Radio hardware imperfections that can be obfuscated with methods similar to ours.

Hardware
imperfection

How is it
measured?

Source of imperfection How it can be obfuscated Obfuscation Range

I/Q offset Physical layer
[8], [19], [38]

DC offset in baseband or car-
rier leakage onto RF output

Adding random values to DC leakage, or I and
Q components in the baseband signal

EVM < −26dB(5%) [24]

I/Q
Imbalance

Physical layer
[32], [19], [1]

Mismatch between I and Q
paths

Adding random values to the logarithm of I and
Q amplitude (multiplying gain mismatch between
I and Q paths), and random delays between I and
Q in the baseband signal

EVM < −26dB(5%) [24]

PA Non-
linearities

Physical layer [31] Non-linearities of the power
amplifier

Adding random values to the smoothness param-
eter (for definition of this parameter refer to [41]).

3± 1 [31]

Clock Skew Link layer (using
TSF [3], [25] or
TCP timestamp [27]
for WiFi, and arrival
time of preamble
for Bluetooth [23])

Physical clock drift Add random values to TSF and TCP timestamp
fields for WiFi and randomize slot boundaries for
Bluetooth. It can be obfuscated at physical layer
only if the obfuscation is applied at the hardware
level directly to the clock itself.

Bluetooth: ±20ppm
BLE: ±50ppm [42]
WiFi TSF timer: ±100ppm
[24]

applied on WiFi. To analyze this, we analyzed an additional
dataset of WiFi probe packets from 4,673 devices in the
wild. This includes devices like laptops, smartphones, and
tablets both in indoor and outdoor conditions. We perform
a detailed WiFi obfuscation analysis in Appendix A.7. In
summary, we found that indeed WiFi transmitters can also
be obfuscated effectively. However, implementing CFO ob-
fuscation in WiFi chipsets may require modification of the
WiFi DSP code. Fortunately, WiFi receivers include DSP
for CFO correction. We would need to apply the same DSP
processing to the transmitter side to inject CFO [5].

9. Related Work

Wireless devices can have a variety of physical-layer and
link-layer identifiers that can be used for identification and
tracking. For instance, although there have been attempts
to randomize the MAC address, attacks have been found
that can extract unique fingerprints from the bits in the link
layer. Hence, we provide a brief summary of other physical-
layer and link-layer fingerprints and defenses and how our
physical-layer obfuscation fits in the greater landscape of
wireless device fingerprinting.

9.1. Device identification and tracking

9.1.1. Physical Layer.
Hardware Imperfections: Different hardware imperfec-
tions have been used as a fingerprint to identify wireless
devices, including but not limitted to CFO [8], [19], [38],
[51], [53], [22], I/Q offset [8], [19], [38], I/Q imbalance [32],
[19], [1], and PA non-linearities [31], [39]. Our work demon-
strates it is feasible to obfuscate CFO, the most concerning
and common of these physical-layer hardware imperfection
fingerprints. The obfuscation analysis and methodology can
likely be directly applied to these other imperfections.
Channel and Location: Wireless signals can be used to
localize devices [56] using measurements such as chan-
nel state information (CSI) [29], [50] and received signal
strength [16], [10], [44]. The location information can be
used as a unique fingerprint to track a device, but it requires

the device and environment to be static, unlike physical-
layer imperfections that are independent of the location of
the device and environment.

9.1.2. Link Layer.
Packet content: Wi-Fi and Bluetooth devices continuously
transmit packets containing link layer information that can
be used to derive device identifiers. For example, Wi-Fi
devices can be identified using sequence numbers and fields
such as WPS UUID and WPS IE [17], [49], [34], and BLE
devices can be identified as payload changes asynchronous
to the MAC address [6], or sequence number increments
independent of MAC address randomization [33]. However,
software updates can easily fix or change these identifiers,
and many have already been addressed by such updates.
Packet timing: The link layer is also responsible for
scheduling packet transmissions. Packet timing techniques
measure the specific timing properties and use that infor-
mation as a fingerprint to identify the transmitters. These
techniques typically either measure clock skew (drift from
ideal timing caused by imperfections in physical clock)
using TCP timestamp [27] or TSF timestamp fileds [3],
[25], or meaure inter-packet arrival time [16], [35]. Ran-
domizing these fields as well as the timing of the periodic
rate of packet transmissions in a hierarchical fashion like
we describe in this work can potentially obfuscate these
fingerprints at the link layer.

9.2. Physical-layer obfuscation

Recently researchers have proposed methods to obfus-
cate Channel State information (CSI) to prevent adversaries
from localizing WiFi devices [13], [11], [18], [12], [4] or
sensing human motions and activities [45], [40], [55]. The
overall approach is to apply a random filter to the signal
to manipulate peaks and phase changes, or add or move
reflecting paths. While these works are similar to ours in that
we both manipulate the transmitted signal with randomness,
we investigate a completely different problem: obfuscating
the hardware imperfection identity of devices. Our threat
model, obfuscation strategy, challenges and analysis are
completely different.



Prior research on radio frequency fingerprint obfuscation
is limited to two studies [1], [37]. Abanto-Leon et al. [1] pro-
posed randomizing the CSI phase to prevent using CSI for
device fingerprinting (particularly [32] that uses CSI phase
to estimate I/Q imbalance). However, they only analyze the
ability of a specific attacker to recover the true phase value
in each CSI sample, without analyzing how to practically
and effectively obfuscate the underlying physical source of
uniqueness as we do in this work for CFO. Further, unlike
this work, they did not analyze and evaluate the effectiveness
of obfuscation in preventing device identification by an
optimal adversary (the attacker may still be able to identify
a device even if they cannot recover the original fingerprint;
for example, if the obfuscation adds a fixed random value
to the fingerprint).

Nikoofard et al. [37] propose an analog approach to BLE
imperfection obfuscation. They implemented an integrated
circuit that introduces CFO randomization and evaluated
their implementation in a lab environment against 20 BLE
chipsets. Compared to this work, our obfuscation approach
is much more practical because it can be implemented by
simply modifying firmware on existing commodity BLE
chipsets, without the need to design new chipsets. Addi-
tionally, we demonstrate in detail how our approach can
effectively hide a target device in a wide range of real-world
scenarios. In fact, our work is complementary to theirs as we
analyze how one should design the obfuscation strategy, and
our obfuscation analysis can be used to evaluate how much
the limitations of analog CFO modification (e.g., poor CFO
stability) affect the ability to effectively obfuscate a device.

10. Conclusion

In this study, we introduced a framework for analyz-
ing defenses against physical-layer identification attacks on
wireless devices. With this framework, we developed a
practical defense against the fingerprinting of the Carrier
Frequency Offset, the most distinct physical layer fingerprint
unique to all wireless devices. Our results showed that this
defense strategy can disrupt the most advanced attackers that
know our obfuscation methods. Specifically, this defense
lead to a significant reduction in the accuracy of an attacker
determining whether a device has the same fingerprint as
their target. Without obfuscation, the accuracy was nearly
100% with just one minute of fingerprinting the target.
However, with obfuscation applied, the accuracy dropped
to only 10–20% better than a random guess (not much
better than a coin flip), even after 24 hours of continuously
observing the target. This defense can be rolled out incre-
mentally, requiring only software modifications on a widely-
used Bluetooth Low Energy (BLE) chipset. Moreover, we
expect that similar implementations can be tailored for other
BLE chipsets or even other protocols, particularly if they
provide software-based control over their frequency synthe-
sizer, or if they construct their baseband transmissions with
a programmable Digital Signal Processor.

11. Acknowledgements

We would like to thank our shepherd and the anonymous
reviewers from IEEE S&P for their insightful comments. We
also thank Nadia Heninger for her helpful comments. This
work was supported in part by the Office of the Director
of National Intelligence (ODNI), Intelligence Advanced Re-
search Projects Activity (IARPA) via [2021-2106240007],
National Science Foundation grants NSF-2232481, SaTC-
2239163, and NSF-2213689, and a gift from Amateur Radio
Digital Communications. The views and conclusions con-
tained herein are those of the authors and should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of ODNI, IARPA, NSF or the
U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.

References

[1] L. F. Abanto-Leon, A. Bäuml, G. H. Sim, M. Hollick, and A. Asadi.
Stay connected, leave no trace: Enhancing security and privacy in
wifi via obfuscating radiometric fingerprints. Proceedings of the
ACM on Measurement and Analysis of Computing Systems, 2020.

[2] Apple Inc. Use Continuity to connect your Mac, iPhone, iPad, iPod
Touch, and Apple Watch.
https://support.apple.com/en-us/HT204681.

[3] C. Arackaparambil, S. Bratus, A. Shubina, and D. Kotz. On the
reliability of wireless fingerprinting using clock skews. In Proc.
ACM conference on Wireless network security, 2010.

[4] R. Ayyalasomayajula, A. Arun, W. Sun, and D. Bharadia. Users are
closer than they appear: Protecting user location from WiFi APs. In
Proc. International Workshop on Mobile Computing Systems and
Applications (HotMobile), 2023.

[5] M. Bansal, A. Schulman, and S. Katti. Atomix: A framework for
deploying signal processing applications on wireless infrastructure.
In Proc. USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2015.

[6] J. K. Becker, D. Li, and D. Starobinski. Tracking anonymized
bluetooth devices. In Proc. Privacy Enhancing Technologies, 2019.

[7] Bluetooth SIG. Bluetooth Technology Protecting Your Privacy.
https://www.bluetooth.com/blog/bluetooth-technology-protecting-
your-privacy/, Apr. 2015.

[8] V. Brik, S. Banerjee, M. Gruteser, and S. Oh. Wireless device
identification with radiometric signatures. In Proc. ACM
International Conference on Mobile Computing and Networking
(MobiCom), 2008.

[9] California Health Care Foundation. Preliminary Research suggests
COVID-19 Warning App has slowed Transmission of the Virus.
https://www.chcf.org/blog/preliminary-research-suggests-covid-19-
warning-app-slowed-transmission-virus/.

[10] Y. Chen, W. Trappe, and R. P. Martin. Detecting and localizing
wireless spoofing attacks. In Annual IEEE Communications Society
Conference on sensor, mesh and ad hoc communications and
networks, 2007.

[11] M. Cominelli, F. Gringoli, and R. L. Cigno. Non intrusive wi-fi csi
obfuscation against active localization attacks. In Annual
Conference on Wireless On-demand Network Systems and Services
Conference (WONS), 2021.

[12] M. Cominelli, F. Gringoli, and R. L. Cigno. Antisense:
Standard-compliant csi obfuscation against unauthorized wi-fi
sensing. Computer Communications, pages 92–103, 2022.

https://support.apple.com/en-us/HT204681
https://www.bluetooth.com/blog/bluetooth-technology-protecting-your-privacy/
https://www.bluetooth.com/blog/bluetooth-technology-protecting-your-privacy/
https://www.chcf.org/blog/preliminary-research-suggests-covid-19-warning-app-slowed-transmission-virus/
https://www.chcf.org/blog/preliminary-research-suggests-covid-19-warning-app-slowed-transmission-virus/


[13] M. Cominelli, F. Kosterhon, F. Gringoli, R. L. Cigno, and A. Asadi.
IEEE 802.11 CSI randomization to preserve location privacy: An
empirical evaluation in different scenarios. Computer Networks,
2021.

[14] B. Danev and S. Capkun. Transient-based identification of wireless
sensor nodes. In Proc. ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), 2009.

[15] B. Danev, D. Zanetti, and S. Capkun. On physical-layer
identification of wireless devices. ACM Computing Surveys (CSUR),
pages 1–29, 2012.

[16] L. C. C. Desmond, C. C. Yuan, T. C. Pheng, and R. S. Lee.
Identifying unique devices through wireless fingerprinting. In Proc.
ACM conference on Wireless network security, 2008.

[17] J. Freudiger. How talkative is your mobile device? an experimental
study of wi-fi probe requests. In Proc. ACM Conference on Security
and Privacy in Wireless and Mobile Networks, 2015.

[18] L. Ghiro, M. Cominelli, F. Gringoli, and R. L. Cigno. On the
implementation of location obfuscation in openwifi and its
performance. In Mediterranean Communication and Computer
Networking Conference (MedComNet), 2022.

[19] H. Givehchian, N. Bhaskar, E. R. Herrera, H. R. L. Soto,
C. Dameff, D. Bharadia, and A. Schulman. Evaluating
physical-layer ble location tracking attacks on mobile devices. In
Proc. IEEE Symposium on Security and Privacy (SP), 2022.

[20] J. Hall, M. Barbeau, and E. Kranakis. Enhancing intrusion detection
in wireless networks using radio frequency fingerprinting. In
Communications, internet, and information technology, 2004.

[21] A. Heinrich, M. Stute, T. Kornhuber, and M. Hollick. Who Can
Find My Devices? Security and Privacy of Apple’s Crowd-Sourced
Bluetooth Location Tracking System. Proceedings on Privacy
Enhancing Technologies, 2021(3):227–245, 2021.

[22] W. Hou, X. Wang, J.-Y. Chouinard, and A. Refaey. Physical layer
authentication for mobile systems with time-varying carrier
frequency offsets. IEEE Transactions on Communications, pages
1658–1667, 2014.

[23] J. Huang, W. Albazrqaoe, and G. Xing. Blueid: A practical system
for bluetooth device identification. In Proc. IEEE Conference on
Computer Communications (INFOCOM), 2014.

[24] IEEE. IEEE standard for information
technology–telecommunications and information exchange between
systems - local and metropolitan area networks–specific
requirements - part 11: Wireless LAN Medium Access Control
(MAC) and physical layer (phy) specifications. Std 802.11-2016
(Revision of IEEE Std 802.11-2012), 2016.

[25] S. Jana and S. K. Kasera. On fast and accurate detection of
unauthorized wireless access points using clock skews. In Proc.
ACM International Conference on Mobile Computing and
Networking (MobiCom), 2008.

[26] T. Jian, B. C. Rendon, E. Ojuba, N. Soltani, Z. Wang, K. Sankhe,
A. Gritsenko, J. Dy, K. Chowdhury, and S. Ioannidis. Deep
Learning for RF fingerprinting: A massive experimental study.
IEEE Internet of Things Magazine, 2020.

[27] T. Kohno, A. Broido, and K. C. Claffy. Remote physical device
fingerprinting. IEEE Transactions on Dependable and Secure
Computing, pages 93–108, 2005.

[28] M. Köse, S. Taşcioğlu, and Z. Telatar. Wireless device identification
using descriptive statistics. Communications Fac. Sci. Univ. of
Ankara Series A2-A3, 2015.

[29] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti. Spotfi: Decimeter
level localization using wifi. In Proc. ACM Conference on Special
Interest Group on Data Communication (SIGCOMM), 2015.

[30] H. Li, C. Wang, N. Ghose, and B. Wang. Robust
deep-learning-based radio fingerprinting with fine-tuning. In Proc.
ACM Conference on Security and Privacy in Wireless and Mobile
Networks, 2021.

[31] Y. Lin, Y. Gao, B. Li, and W. Dong. Detecting rogue access points
using client-agnostic wireless fingerprints. ACM Transactions on
Sensor Networks, pages 1–25, 2022.

[32] P. Liu, P. Yang, W. Song, Y. Yan, and X. Li. Real-time
identification of rogue WiFi connections using
environment-independent physical features. In Proc. IEEE
Conference on Computer Communications (INFOCOM), 2019.

[33] J. Martin, D. Alpuche, K. Bodeman, L. Brown, E. Fenske,
L. Foppe, T. Mayberry, E. Rye, B. Sipes, and S. Teplov. Handoff
all your privacy–a review of apple’s bluetooth low energy continuity
protocol. In Proc. Privacy Enhancing Technologies, 2019.

[34] J. Martin, T. Mayberry, C. Donahue, L. Foppe, L. Brown,
C. Riggins, E. C. Rye, and D. Brown. A study of MAC address
randomization in mobile devices and when it fails. In Proc. Privacy
Enhancing Technologies, 2017.

[35] C. Matte, M. Cunche, F. Rousseau, and M. Vanhoef. Defeating mac
address randomization through timing attacks. In Proc. ACM
Conference on Security and Privacy in Wireless and Mobile
Networks, 2016.

[36] K. Merchant, S. Revay, G. Stantchev, and B. Nousain. Deep
learning for rf device fingerprinting in cognitive communication
networks. IEEE journal of selected topics in signal processing,
pages 160–167, 2018.

[37] A. Nikoofard, H. Givehchian, N. Bhaskar, A. Schulman,
D. Bharadia, and P. P. Mercier. Protecting bluetooth user privacy
through obfuscation of carrier frequency offset. IEEE Transactions
on Circuits and Systems II: Express Briefs, 2022.

[38] L. Peng, A. Hu, J. Zhang, Y. Jiang, J. Yu, and Y. Yan. Design of a
hybrid rf fingerprint extraction and device classification scheme.
IEEE internet of things journal, pages 349–360, 2018.

[39] A. C. Polak, S. Dolatshahi, and D. L. Goeckel. Identifying wireless
users via transmitter imperfections. IEEE Journal on Selected Areas
in Communications, 2011.

[40] Y. Qiao, O. Zhang, W. Zhou, K. Srinivasan, and A. Arora.
{PhyCloak}: Obfuscating sensing from communication signals. In
Proc. USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2016.

[41] C. Rapp. Effects of HPA-nonlinearity on a 4-DPSK/OFDM signal
for a digital sound broadcasting signal. ESA Special Publication,
pages 179–184, 1991.

[42] Y. Rekhter and T. Li. Core Specification 5.3. Technical report,
Bluetooth SIG, July 2021.

[43] G. Shen, J. Zhang, A. Marshall, L. Peng, and X. Wang. Radio
frequency fingerprint identification for lora using deep learning.
IEEE Journal on Selected Areas in Communications, pages
2604–2616, 2021.

[44] Y. Sheng, K. Tan, G. Chen, D. Kotz, and A. Campbell. Detecting
802.11 MAC layer spoofing using received signal strength. In Proc.
IEEE Conference on Computer Communications (INFOCOM), 2008.

[45] P. Staat, S. Mulzer, S. Roth, V. Moonsamy, A. Sezgin, and C. Paar.
Irshield: A countermeasure against adversarial physical-layer
wireless sensing. Proc. IEEE Symposium on Security and Privacy
(SP), 2022.

[46] F.-X. Standaert, T. G. Malkin, and M. Yung. A unified framework
for the analysis of side-channel key recovery attacks. In Annual
international conference on the theory and applications of
cryptographic techniques, 2009.

[47] W. Sun, J. Paek, and S. Choi. CV-Track: Leveraging carrier
frequency offset variation for BLE signal detection. In Proc. ACM
Workshop on Hot Topics in Wireless (HotWireless), 2017.

[48] Texas Instruments. CC2640 SimpleLink™ Bluetooth® Wireless
MCU, July 2016. SWRS176B.



[49] M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, and F. Piessens.
Why mac address randomization is not enough: An analysis of wi-fi
network discovery mechanisms. In Proc. ACM on Asia conference
on computer and communications security, 2016.

[50] D. Vasisht, S. Kumar, and D. Katabi. Decimeter-level localization
with a single wifi access point. In Proc. USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2016.

[51] T. D. Vo-Huu, T. D. Vo-Huu, and G. Noubir. Fingerprinting Wi-Fi
devices using software defined radios. In Proc. ACM Conference on
Security and Privacy in Wireless and Mobile Networks, 2016.

[52] T. Wang and I. Goldberg. {Walkie-Talkie}: An efficient defense
against passive website fingerprinting attacks. In Proc. USENIX
Security Symposium, 2017.

[53] J. Wu, Y. Nan, V. Kumar, M. Payer, and D. Xu. BlueShield:
Detecting spoofing attacks in Bluetooth Low Energy networks. In
International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), 2020.

[54] W. Yan, T. Voigt, and C. Rohner. RRF: A robust radiometric
fingerprint system that embraces wireless channel diversity. In Proc.
ACM Conference on Security and Privacy in Wireless and Mobile
Networks, 2022.

[55] Y. Yao, Y. Li, X. Liu, Z. Chi, W. Wang, T. Xie, and T. Zhu. Aegis:
An interference-negligible rf sensing shield. In Proc. IEEE
Conference on Computer Communications (INFOCOM), 2018.

[56] F. Zafari, A. Gkelias, and K. K. Leung. A survey of indoor
localization systems and technologies. IEEE Communications
Surveys & Tutorials, pages 2568–2599, 2019.

Appendix A.
Additional details

A.1. Attacker optimality: Maximum A Posteriori
(MAP) maximizes the attacker’s success rate

In this section, we prove the optimality of the Maximum A
Posteriori (MAP) attacker used throughout the paper. In other
words, we prove that an attacker who uses MAP as the decision
rule, achieves the maximum success rate.
Bayes Risk or Bayes Error is the minimum possible average error
one can achieve when applying a prediction rule. The Bayes risk
of the attacker to classify the device, for the 0-1 loss, is defined
as

R∗ = inf
C

E
[
L(Y,C(Hp))

]
= min

C
E
[
I(Y ̸= C(Hp))

]
= min

Z
E
[
I(Y ̸= Z)

]
= min

C
Pr(Z ̸= Y )

→MaximumSuccess = 1−R∗

(2)

where L(.) is the 0-1 loss

L(a, b) =

{
0 if a ̸= b

1 if a = b
(3)

In fact, no attacker can achieve a success rate better than 1−R∗

for any classifier (1−R∗ is the maximum possible success rate
that one can achieve).
The rule that achieves the Bayes risk is referred to as the Bayes
Rule (The Bayes rule is the classification rule that minimizes the

average probability of error). It can be proven that Maximum A
Posteriori (MAP) is the Bayes rule for the 0-1 classification loss:

R∗ = min
Z

E
[
I(Y ̸= Z)

]
= min

Z
EHp

{
E
[
I(Y ̸= Z)

∣∣∣Hp

]}
→ z∗ = C ∗ (Hp) = argmin

z
E
[
I(Y ̸= z)

∣∣∣hp

]
= argmin

z

N∑
n=1

Pr(Y = n|Hp = hp)I(z ̸= n)

= argmin
z

N∑
n=1

(
1− Pr(Y = n|Hp = hp)

)
I(z = n)

= argmax
n

Pr(Y = n|Hp = hp)

→ R∗ = 1− E
[
max
n

Pr(Y = n|Hp)
]

(4)

Thus, MAP—max
n

Pr(Y = n|Hp)—achieves the maximum
success rate (1−R∗). This means that no attacker can achieve a
better success rate no matter what decision rule or classifier they
use. Hence, if the obfuscation is effective against such an
attacker, on average it will do as good or even better against
other attackers who use a different decision rule.
Example of computing MAP rule by the attacker: To use
MAP as the decision rule, the optimal attacker needs to be able
to compute posterior probabilities Pr(Y = n|Hp) to obtain
max
n

Pr(Y = n|Hp) and identify the target. The knowledge of
the attacker outlined in Section 4.2 enables the attacker to do
that. For example, when there is no obfuscation, we can write
(assuming the probability of receiving a packet from each device
is equal)

Pr(Y = n|Hp = hp) =
Pr(Hp = hp|Y = n)Pr(Y = n)∑N
j=1 Pr(Hp = hp|Y = j)Pr(Y = j)

=
Pr(Hp = hp|Y = n)∑N
j=1 Pr(Hp = hp|Y = j)

=
G(hp, H

(n), σ(n))∑N
j=1 G(hp, H(j), σ(j))

(5)

Similarly, we need to compute Pr(Y = n|H ′
p = h′

p) when the
obfuscation is applied. For instance, when the discrete uniform
obfuscation is applied, we can write

Pr(Y = n|H ′
p = h′

p) =
Pr(H ′

p = h′
p|Y = n)∑N

j=1 Pr(H ′
p = h′

p|Y = j)

=

∑
i Pr(H ′

p = h′
p|i, Y = n)Pr(i)∑N

j=1

∑
i Pr(H ′

p = h′
p|i, Y = j)Pr(i)

=

∑
i G(h′

p, H
(n) + a+ is, σ(n))∑N

j=1

∑
i G(h′

p, H(j) + a+ is, σ(j))

(6)

Note that it is possible to achieve the maximum success rate only
if the attacker precisely knows the obfuscation method and
distribution that is used, as well as the original hardware
imperfection distribution and measurement noises. In fact, the
reason for making assumptions about the capabilities and
knowledge of the attacker was to have the best possible attacker
that can achieve the highest possible success rate.



A.2. Discrete Uniform - Multiple Packets

Consider the discrete uniform obfuscation is used. If the attacker
gets l packets {p1, p2, p3, ..., pl} with the same MAC address,
assuming the measurement noise for each packet is identical and
independent, we can compute the attacker’s optimal success rate
by computing (See equations 2,4,5,6)

Pr(H ′
p = {h′

p1 , h
′
p2 , h

′
p3 , ..., h

′
pl}|Y = n)

=

l∏
j=1

Pr(H ′
p = h′

pj |Y = n)

=

l∏
j=1

∑
i

Pr(H ′
p = h′

pj |i, Y = n)Pr(i)

=

l∏
j=1

∑
i

G(h′
pj , H

(n) + a+ is, σ(n))Pr(i)

(7)

A.3. Continuous Uniform - Multiple Packets

Consider the continuous uniform obfuscation is used, and the
attacker gets l packets {p1, p2, p3, ..., pl} with the same MAC
address. The success rate of the optimal attacker is calculated
according to Section 4.2 and by replacing
Pr(H ′

p = {h′
p1 , h

′
p2 , h

′
p3 , ..., h

′
pl}|Y = n) in equation 6 as

follows:

Pr(H ′
p = {h′

p1 , h
′
p2 , h

′
p3 , ..., h

′
pl}|Y = n)

=

l∏
j=1

Pr(H ′
p = h′

pj |Y = n)

=

l∏
j=1

∫
Pr(H ′

p = h′
pj |h

r, Y = n)f(hr) dhr

=

l∏
j=1

∫ b

−b

G(h′
pj , H

(n) + hr, σ(n))
1

2b
dhr

(8)

A.4. Uniform - Multiple MAC Addresses

Assume the attacker has measured imperfections
{h′

1, h
′
2, h

′
3, ..h

′
t} for t different MAC addresses corresponding to

the same device over time. We use the equations in Section 4.2
to calculate the attacker’s optimal success rate (or equivalently
Bayes risk) over time as they get packets with different MAC
addresses (and new obfuscated imperfections) every 15 minutes.
For uniform distribution we can write

Pr(H ′ = {h′
1, h

′
2, h

′
3, ..h

′
t}|X = n)

=

t∏
i=1

Pr(H ′ = h′
i|X = n)

=

t∏
i=1

∫ b

−b

G(h′
i, H

(n) + hr, σ(n))
1

2b
dhr

(9)

A.5. Truncated Gaussian Obfuscation - Multiple
MAC Addresses

Assume the attacker has measured imperfections
{h′

1, h
′
2, h

′
3, ..h

′
t} for t different MAC addresses corresponding to

the same device over time. We calculate the optimal attacker’s
success rate for truncated Gaussian distribution according to
Section 4.2 and by replacing Pr(H ′ = {h′

1, h
′
2, h

′
3, ..h

′
t}|X = n)

in equation 6 as follows (G̃ is the truncated Gaussian function):

Pr(H ′ = {h′
1, h

′
2, h

′
3, ..h

′
t}|X = n)

=

t∏
i=1

Pr(H ′ = h′
i|X = n)

=

t∏
i=1

∫ b

−b

G(h′
i, H

(n) + hr, σ(n))G̃(hr, 0, σo) dh
r

(10)

A.6. Hierarchy of Gaussian Distributions

Assume a hierarchy of Gaussian distributions N(0, σ1) and
N(0, σ2) is used as the obfuscation method, and the attacker has
measured imperfections {h′

1, h
′
2, h

′
3, ..h

′
t} for t different MAC

addresses corresponding to the same device. The success rate of
the optimal attacker, is calculated according to Section 4.2 and
by replacing:

Pr(H ′ = {(h′
1, ..., h

′
th), (h

′
th+1, ..., h

′
2th), ..., h

′
t}|X = n)

= Pr(H ′ = {h′
⌊ t

th
⌋th+1, ..., h

′
t}|X = n)×

⌊ t

th
⌋∏

j=1

Pr(H ′ = {h′
(j−1)th+1, ..., h

′
jth}|X = n)

=

∫
Pr(H ′ = {h′

⌊ t

th
⌋th+1, ..., h

′
t}|X = n, µr)f(µr) dµr×

⌊ t

th
⌋∏

j=1

∫
Pr(H ′ = {h′

(j−1)th+1, ..., h
′
jth}|X = n, µr)f(µr) dµr

=

∫ ( t∏
i=⌊ t

th
⌋th+1

Pr(H ′ = h′
i|X = n, µr)

)
f(µr) dµr×

⌊ t

th
⌋∏

j=1

∫ ( jth∏
i=(j−1)th+1

Pr(H ′ = h′
i|X = n, µr)

)
f(µr) dµr

=

∫ ( t∏
i=⌊ t

th
⌋th+1

G(h′
i, H

(n) + µr, σ2)
)
G(µr, 0, σ1) dµ

r×

⌊ t

th
⌋∏

j=1

∫ ( jth∏
i=(j−1)th+1

G(h′
i, H

(n) + µr, σ2)
)
G(µr, 0, σ1) dµ

r

(11)

A.7. Evaluating obfuscation for Wi-Fi devices

While the analysis in the paper was limited to BLE devices, the
obfuscation strategies will also work for other protocols like
Wi-Fi as the hardware imperfections like CFO are very similar.
To demonstrate this possibility, we use a dataset of 4673 Wi-Fi
devices, including phones, laptops, tablets and others. The
wireless signal from these devices was collected across
real-world indoor and outdoor environments. We estimate CFO
for 100 frames from each device and use the average as the true
CFO of the device. Figure 17 shows that the distribution of CFO
for these WiFi devices also looks Gaussian like BLE devices.
We repeat the same evaluation as in Section 7 on these 4673
Wi-Fi devices. To evaluate the impact of obfuscation, we
consider a certain target device and a small varying number of
other devices in the environment. We apply our obfuscation
methodology with the same parameters as in Section 7, to



0 20 40 60 80 100
Percentage of devices obfuscated

0.5

0.6

0.7

0.8

0.9

1
A

tta
ck

er
's

 S
uc

ce
ss

 R
at

e

No obfuscation-10 devices-1 minute
No obfuscation-50 devices-1 minute
With obfuscation-10 Devices-30 minutes
With obfuscation-10 Devices-12 hours
With obfuscation-50 Devices-30 minutes
With obfuscation-50 Devices-12 hours

Figure 20: Success Rate of the attacker vs the percentage
of obfuscated devices in the field.

-40 -20 0 20 40
CFO (kHz)

H
is

to
gr

am

BLE
WiFi

Figure 17: CFO distribution of BLE and WiFi devices.

continually modify the CFO of these devices. Figures 18, 19, 20
are similar evaluations for Wi-Fi devices as Figures 11, 12, 13.
We observe that the results are very similar to the BLE dataset,
demonstrating that the obfuscation strategy works well even for
WiFi devices. While in these experiments for WiFi devices we
used the same parameters as BLE devices, in practice we will
need to retune them. Particularly, we will need to modify
parameters such as obfuscation range to match WiFi standards
and requirements [24], and repeat a similar set of analysis as in
Section 4 to obtain the appropriate obfuscation parameters for
WiFi devices.

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e 
P

os
iti

ve
 R

at
e

Optimal
No obfuscation-10 Devices-1 minute
No obfuscation-50 Devices-1 minute
With Obfuscation-10 devices-30 minutes
With Obfuscation-10 devices-12 hours
With Obfuscation-50 devices-30 minutes
With Obfuscation-50 devices-12 hours

Figure 18: ROC that the attacker can achieve for different
number of devices around and different time durations.

0 5 10 15 20 25
Time (hours)

0.5

0.6

0.7

0.8

0.9

1

A
tta

ck
er

's
 S

uc
ce

ss
 R

at
e

No obfuscation-10 devices-1 minute
No obfuscation-50 devices-1 minute
With obfuscation-10 Devices
With obfuscation-50 Devices

Figure 19: Success rate of the attacker across time when
different number of devices are around.

A.8. Hierarchical Obfuscation Algorithm

Algorithm 1 Hierarchy of obfuscation distributions

Require: th, b1, b2, σ2

th: Number of MAC lifetimes to wait before resampling from
the first distribution.
U(−b1, b1): Uniform distribution with the range of ±b1.
Ñ(µr, σ2, b2): Truncated Gaussian distribution with mean µr

and standard deviation σ2, truncated at ±b2.
Counter ← 0
µr ← U(−b1, b1)
while 1 do

hr ← Ñ(µr, σ2, b2)
while MAC lifetime is not expired do

Send packets with the added CFO set to hr

end while
Counter ← Counter + 1
if Counter ≥ th then

Counter ← 0
µr ← U(−b1, b1)

end if
end while



Appendix B.
Meta-Review

B.1. Summary

This paper investigates obfuscation schemes to mitigate radio
hardware fingerprints caused by manufacturing imperfections by
establishing a probabilistic model using real-world BLE beacons
to capture the attack success rate based on different threat models
and environments. It further proposes a hierarchical combination
of different distributions for randomization. The implementation
is done using SDR, and a commodity radio chipset. The
evaluation shows the robustness of the proposed obfuscation
scheme.

B.2. Scientific Contributions

• Addresses a long-known issue.
• Provides a valuable step forward in an established field.

B.3. Reasons for Acceptance

1) This paper addresses a long-known issue in the
robustness of Bluetooth fingerprinting.

2) This paper proposes a mathematical model for capturing
the robustness of fingerprinting and shows the
effectiveness using an SDR-based PoC as well as a
commodity radio chipset implementation.


	1 Introduction
	2 Threat Model
	3 Challenges
	3.1 It is impractical to remove radio imperfections
	3.2 Strawman: Randomize imperfections

	4 Analysis Framework
	4.1 Modeling real-world CFO imperfections
	4.2 Analysis metrics and assumptions
	4.2.1 Attacker Success Rate
	4.2.2 Optimal Attacker
	4.2.3 Analysis setup


	5 Design and Analysis
	5.1 Obfuscation Interval
	5.2 Obfuscation Range
	5.3 Obfuscation Resolution
	5.4 Fingerprinting duration
	5.5 Hierarchy of Obfuscation Distributions
	5.5.1 Stalling the attacker
	5.5.2 Combining different distributions to get the best out of both
	5.5.3 Choosing the distribution parameters
	5.5.4 Comparing different distributions


	6 Implementation
	7 Field Evaluation
	7.1 Dataset
	7.2 Data Analysis
	7.2.1 Target identification accuracy
	7.2.2 Time duration
	7.2.3 Number of obfuscated surrounding devices
	7.2.4 Number of total devices
	7.2.5 Case Study 1: Obfuscation against a practical weaker attacker
	7.2.6 Case Study 2: Obfuscating a CC2640 chipset


	8 Discussion
	8.1 Effect of obfuscation on demodulation error
	8.2 Effect of obfuscation on power consumption
	8.3 Obfuscating other radio imperfections
	8.4 Does obfuscation only work for BLE?

	9 Related Work
	9.1 Device identification and tracking
	9.1.1 Physical Layer
	9.1.2 Link Layer

	9.2 Physical-layer obfuscation

	10 Conclusion
	11 Acknowledgements
	References
	Appendix A: Additional details
	A.1 Attacker optimality: Maximum A Posteriori (MAP) maximizes the attacker's success rate
	A.2 Discrete Uniform - Multiple Packets
	A.3 Continuous Uniform - Multiple Packets
	A.4 Uniform - Multiple MAC Addresses
	A.5 Truncated Gaussian Obfuscation - Multiple MAC Addresses
	A.6 Hierarchy of Gaussian Distributions
	A.7 Evaluating obfuscation for Wi-Fi devices
	A.8 Hierarchical Obfuscation Algorithm

	Appendix B: Meta-Review
	B.1 Summary
	B.2 Scientific Contributions
	B.3 Reasons for Acceptance


