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Abstract. Packet traces from 802.11 wireless networks are incomplete
both fundamentally, because antennas do not pick up every transmission,
and practically, because the hardware and software of collection may be
under provisioned. One strategy toward improving the completeness of
a trace of wireless network traffic is to deploy several monitors; these are
likely to capture (and miss) different packets. Merging these traces into
a single, coherent view requires inferring access point (AP) and client
behavior; these inferences introduce errors.

In this paper, we present methods to evaluate the fidelity of merged
and independent wireless network traces. We show that wireless traces
contain sufficient information to measure their completeness and clock
accuracy. Specifically, packet sequence numbers indicate when packets
have been dropped, and AP beacon intervals help determine the accuracy
of packet timestamps. We also show that trace completeness and clock
accuracy can vary based on load. We apply these metrics to evaluate
fidelity in two ways: (1) to visualize the completeness of different 802.11
traces, which we show with several traces available on CRAWDAD and
(2) to estimate the uncertainty in the time measurements made by the
individual monitors.

1 Introduction

Studying wireless networks “in the wild” gives researchers a more accurate
view of 802.11 behavior than simulations alone. Researchers deploy monitors
at hotspots such as cafes or conferences [10], or measure other deployed net-
works [1], to obtain traces of MAC and user behaviors. These traces provide
realistic models of mobility [11, 18] and interference [1, 3] and many traces are
readily available through sites such as CRAWDAD [7].

However, traces of real wireless networks have their own errors or assump-
tions. Indeed, capturing a high-quality wireless trace requires great care. Us-
ing too few monitors, placing them poorly, or using inadequate hardware can
introduce missed or reordered packets and incorrect timestamps [10, 16, 17].
If multiple monitors are used, a merging algorithm combines the independent
traces into a single view of the wireless network [10], but this process may order
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packets incorrectly. These potential errors mean that publicly available wireless
traces vary greatly in quality (§5). Researchers must decide for themselves which
wireless trace will provide them the most accurate, reproducible results.

We consider the problem of measuring the fidelity of wireless traces, which we
decompose to their completeness—what fraction of the packets that could have
been captured in fact were—and the accuracy of their timestamps. Our work
is motivated by others’ observations on how to use and improve the data that
drives the networking community. As Paxson [12] notes, it is beneficial to identify
how closely a measurement compares to reality before using it as experiment
data. Haeberlen et al. also observe that researchers may fall into the trap of
inappropriately generalizing their results if based on very specific or perhaps
error-ridden data [8]. The difficult nature of capturing wireless traces further
motivates a set of metrics and systematic means of measuring their quality.

We discuss how wireless trace fidelity can be measured by exploiting infor-
mation in the trace (§3); external validation data is rarely available. We analyze
a scoring method for wireless traces (§4). The percent of packets captured has
been thought to be sufficient for quantifying a trace’s fidelity, but we show that
a richer description of fidelity is important and propose a way to visualize trace
completeness that incorporates load (§5). We present several case studies from
the CRAWDAD repository. We then study the accuracy of monitor and bea-
con timestamps, showing that clock accuracy is largely inversely proportionate
to load and that clocks may need to be synchronized more frequently than at
beacon intervals (§6). We conclude with lessons learned and directions for future
work (§7). http://www.cs.umd.edu/projects/wifidelity holds our code and results.

2 Related Work

Because wireless traces are imperfect, many researchers have sought to improve
trace fidelity. Yeo et al. [16, 17] and Rodrig et al. [14] discuss the steps they
took to obtain high-fidelity traces, and use missing packets (§4) as a measure
of fidelity. We focus on the relationship between trace quality and load on the
monitor, and compare existing traces using our metrics.

Wit [10] attempts to refine existing traces by inferring and inserting missing
packets. We believe traces that are as complete as possible at the time of capture
are preferable, but that more complete traces will help the missing packet infer-
ence. Our tools are intended to help guide researchers toward capturing better
traces and choosing the trace that best suits their needs.

Wireless traces are used for many reasons: to validate models of wireless be-
havior, study usage characteristics, and so on. Jigsaw [4, 5] uses wireless traces
to measure and troubleshoot wireless networks. We emphasize that these pieces
of work evaluate the network, and not the trace. We expect our work to com-
plement these and other similar projects as pathologies in the input trace data
could easily lead to false diagnosis by troubleshooting tools.



3 Self-Evident Truths of Wireless Traces

Ideally, one could determine a trace’s fidelity by comparing it to “truth”: a
perfect, complete trace of what was sent and when. In practice, only the trace
itself is available. We show how the information in a wireless trace itself can be
used to measure the trace’s fidelity by detecting missed packets and measuring
clock skew, and discuss the limitations of our methods.

3.1 Core data in wireless traces

Traces vary in the information they include. Some traces have timestamps precise
to nanoseconds, others only to milliseconds; not all traces record 802.11 acknowl-
edgments; to maintain users’ anonymity, few researchers release full payloads,
and so on [13, 15]. The following data are available in all 802.11 CRAWDAD
traces; we assume them as the core data that are likely to be available in future
wireless traces:

1. All types of data packets.
2. All types of management packets including beacons, probe requests, and

probe responses.
3. Full 802.11 header in all captured packets, including source and destination

addresses (possibly anonymized), sequence number, retransmission bit, type,
and subtype. Beacon packets also have timestamps applied by the AP.

4. Monitor’s timestamp (set by the kernel or possibly the device).

3.2 Detecting missed packets

Monitors can fail to capture a packet because the monitor is overloaded, because
there is interference and perhaps no stations receive the packet, because the
signal is too weak at the monitor, and so on (Fig. 1). A common practice to
reduce the number of missed packets is to place each monitor near an AP.

Most packet loss at the monitor can be inferred from 802.11 sequence numbers
and the retransmission bit. When initially transmitted, each host (AP and client)
assigns a packet a monotonically increasing sequence number from 0 to 4095 (or
2047 in some Cisco APs), and sets the retransmission bit to zero. One sign of
missed packets is a gap in captured sequence numbers from a given host. Another
sign of missed packets is a retransmitted packet without the corresponding first
(non-re)transmission.

Missed retransmissions are more difficult to infer. Upon retransmission, the
packet’s sequence number remains unchanged, but the retransmission bit is set
to one; future retransmissions of this packet are identical, which means that
not all retransmissions can be inferred. If 802.11 acks and accurate timestamps
are available, some of these retransmissions could be inferred. For instance, if a
monitor captures an ack that is too late to correspond to any captured retrans-
mission, we could infer that there must have been another retransmission. We do
not consider this approach further, since not all traces contain acknowledgments.



preemption
Packet

wireless
card

device
driver

device
driver

wireless
card

interrupt
Ignored

buffer full
Socket

packets dropped
Redundant

kernel app

Access Point Monitor
Out−of−rangeInterference

...

Causes timing delays Causes missed packets

Fig. 1. Example sources of packet loss or timing errors in capturing wireless traces.

3.3 Detecting incorrect timestamps

Monitors apply a timestamp to every packet in the kernel or possibly in the
wireless device itself. The accuracy of these timestamps is vulnerable to delay
at the AP and clock skew or clock drift at the monitor. Delay at monitors can
come for many reasons, some of which we show in Fig. 1.

Beacon packets serve as a source of “truth” in that they allow us to syn-
chronize the monitor’s clock [5, 10]. However, this introduces its own sources of
inaccuracy; timestamps in the beacon packets are subject to delay errors at the
AP. Delay at the AP comes predominately in times of high load. When it is time
to send a beacon packet, the AP creates the payload (including the timestamp),
and attempts to send it. The timestamp in the beacon packets denotes when
the packet was created, not necessarily when it was sent. Under high load, the
packet may be stalled until the medium becomes free [2], increasing the difference
between the packet’s timestamp and when it was actually sent.

4 Scoring a Wireless Trace’s Completeness

We propose a method to score wireless trace completeness. We value complete-
ness—the fraction of packets captured—with the expectation that the more
complete a trace is, the more useful it is. In the following section, we use our
score along with traffic load to visualize completeness.

4.1 Estimating the number of missed packets

Our scoring method is based on the number of missing packets from the wireless
trace. This is an extension of what was introduced by Yeo et al. [16]. We define
Pt to be the number of packets that should have appeared over time t.

Pt
def=

∑
nodes

SeqNumChanget +
∑

nodes

Retransmissionst

The number of missing packets during time t, Mt, is the number of packets that
should have been captured minus the number of packets that were captured:

Mt
def= Pt −

∑
nodes

NumPacketsCapturedt
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Fig. 2. Validation of our missing packets estimation. Starting with a high-quality trace
(the Portland State University ug trace [13]), we remove non-beacon packets uniformly
at random. Error bars represent 95% confidence intervals.

To evaluate the accuracy of this expression, we apply it to traces that we inten-
tionally degrade. Starting with a high-quality trace (the Portland ug trace), we
created progressively lower-quality traces by removing non-beacon packets uni-
formly at random and computed our score on these degraded traces (we expect
monitors to capture most beacon packets: §5). We present the error of our miss-
ing packets estimation in Figure 2. Ideally, our method would detect all of these
removed packets, but it is impossible to detect missing retransmission packets
without 802.11 acknowledgments (§3). Even with a drastically degraded trace
missing 95% of non-beacon packets, our score underestimates actual packet loss
by only 10%. For more reasonable packet loss, our score has less than 5% error.
These results indicate that this method of detecting missing packets is accurate
for both high- and low-quality traces.

4.2 Score definition

We define the score of a wireless trace’s completeness during time t, St, as the
fraction of packets captured during time t: St

def= 1− Mt

Pt
. Both APs and clients

increment an independent sequence number for each unique packet transmitted.
The technique used to reveal missing packets sent by an AP can do the same for
clients. Unlike APs, clients do not transmit beacon packets at a regular interval.
We must therefore be careful to keep track of how long it has been since the
monitor last received a packet from a given client, so as to distinguish loss
from, say, mobility. Our scoring method is subject to the same limitations as the
missing packet estimation; the score cannot identify missing retransmissions.

5 Visualizing Wireless Trace Completeness

Trace completeness is an important component of fidelity. Rodrig et al. [14], for
example, have used the percent of packets captured, similar to the score from
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Fig. 3. Example T-Fi plots from the Sigcomm 2004 “chi” dataset, with scoring for only
the AP (left), and scoring for APs and clients in a BSS (right).

§4, but we find a single number to be insufficient. This is in part because trace
quality can depend on load. A monitor may appear to capture a high percentage
of packets, and one may be inclined to use that percentage to quantify the quality
of a trace, but this number is misleading. For example, the Sigcomm 2004 trace
“chi” contains 81% of AP data and management transmissions on channel 11.
This percentage does not reveal that 37% of the packets collected were beacon
packets sent when the AP was idle; not sending any other data or management
packets. Excluding beacon packets sent during otherwise idle times, the monitor
only saw 70% of the AP’s transmissions.

5.1 T-Fi plots

To overcome this problem, we visualize the score with a colormap, as shown
in Figure 3. We refer to the colormaps as T-Fi or Trace Fidelity plots. The x-
axis denotes the load from an epoch (beacon interval) in terms of the sequence
number change during that epoch, and the y-axis denotes the score for that load.
Color intensity denotes how often that (x, y)-pair occurred throughout the trace.
The T-Fi plot displays these trace features:

1. The location on the y-axis shows completeness.
2. The width of the shaded region on the x-axis shows the range of load.
3. The intensity of the shaded region shows the frequency of load.

An ideal trace would have no missing packets and therefore a score of 1; in our
visualization, this corresponds to a dark bar only at the top of the graph (the
closest example of this is the Portland UG trace in Fig. 4).

Fig. 3 (left) shows how the single number problem can be overcome with a
T-Fi plot. The darkest point on the plot is in the upper left hand corner. The
upper left hand corner (sequence number change 1 and score 1) represents idle
time beacon packets sent from an AP. The number of beacon intervals in this
trace that fell in this region is 100 times larger than any other region in the
plot. This would dominate a simple percentage, but is relegated to a small, clear
region of the T-Fi plot. For load between 30 and 50, the trace scores no greater
than 0.1, indicating low fidelity under high load. Indeed, Fig. 3 (left) shows a
negative correlation of fidelity to load.
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Fig. 4. Trace completeness visualization for Portland PDX traces [13].

 1

 10

 100

 1000

 10000

IETF 2005 chan. 6 ple

 0  10  20  30  40  50

Load (change in sequence number)

 0

 0.2

 0.4

 0.6

 0.8

 1

S
co

re

 1

 10

 100

 1000

 10000

IETF 2005 chan. 1 day

 0  10  20  30  40  50

Load (change in sequence number)

 0

 0.2

 0.4

 0.6

 0.8

 1

S
co

re

 1

 10

 100

 1000

 10000

IETF 2005 chan. 6 day

 0  10  20  30  40  50

Load (change in sequence number)

 0

 0.2

 0.4

 0.6

 0.8

 1

S
co

re

Fig. 5. Trace completeness visualization for IETF 2005 conference traces [9].

5.2 Case studies

We analyzed the completeness of several traces obtained from CRAWDAD using
the T-Fi visualization. We show two sets of traces: the Portland PDX VWave
dataset and traces collected during the 2005 IETF meeting. Monitors from these
traces may have captured unintended traffic from outside sources. The T-Fi plots
shown in Figs. 4 and 5 are filtered to show only the BSS with the highest traffic.

Portland PDX traces show how specialized 802.11 monitor equipment can
improve trace quality. Phillips et al. [13] used a VeriWave WT20 commercial
wireless monitor to capture their traces. VeriWave has a hardware radio inter-
connect to provide real time merging with 1 microsecond synchronization accu-
racy. UG has the best combination of high score and load. UG’s T-Fi plot has a
wide shaded region scoring 1 covering load values 1 to 40. This trace is close to
complete and contains both high and low load epochs; Fig. 3 (left) represents a
comparatively incomplete trace.

The pioneer trace (Fig. 4 center) was captured from an outdoor courtyard.
Even with powerful monitor hardware, the monitor missed many packets in the
pioneer trace. The trace contains a wide range of load values (1 to 50) but rarely
scored above 0.5 in higher load epochs. Evidently, the pioneer trace is missing
packets independently of the load. We believe the clients and AP captured by
the trace were out of range or the monitor was receiving interfered signals. The
psu-cs T-Fi plot (Fig. 4 right) has few dark-colored regions, indicating that there
was low load on the network.
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Fig. 6. Difference in monitor timestamps and beacon timestamps for the Sigcomm’04
“chi” trace (top left), with the load shown (bottom left). A controlled experiment with
50msec beacon intervals without load (middle) and with (right).

IETF 2005 traces exhibit high score variability under any given load. A load
that scores consistently is represented in a T-Fi plot by a column that has only
a few dark bars close together. This can be seen at sequence number change
40 on the T-Fi plot of “chan 6 ple” in Fig. 5. If the score varies greatly for a
sequence number change the column will consist of similar colored bars; “chan
1 day” shows this behavior between sequence number changes 10 and 40.

The traces captured during the plenary sessions are of higher quality than the
day sessions, showing the apparent effects of mobility on trace completeness. T-Fi
plots of the day traces in Figure 5 do not score as highly as the plenary trace. For
example, the plenary session traces score higher in high bandwidth epochs. We
posit that the day traces scored lower in high bandwidth epochs because clients
are mobile during the day. During the plenary sessions, the meeting participants
were likely to be stationary more often than in the day traces.

6 Timestamp Accuracy

The accuracy of a trace’s timestamps is important for many applications; merg-
ing algorithms [5, 10], for instance, use monitor and beacon timestamps to form
a single, coherent view of the wireless network as viewed from potentially many
monitors. A common assumption in these algorithms is that the difference be-
tween a monitor’s timestamp—stamped in the kernel or the device itself—and
the AP’s timestamp—included in the beacon packet—is predictable and consis-
tent on at least the order of beacon intervals (100msec).

We test this hypothesis by observing the difference between monitor times-
tamp and beacon timestamp over time throughout a trace. For the Sigcomm’04
trace (Fig. 6 left), we plot the clock difference (top) and the load in number of
packets captured (bottom). The clock difference is not consistent from one bea-
con interval to the next, indicating that there is clock skew at the monitor and/or
the AP. To see whether the clock difference was at least consistent within a given
beacon interval, we collected our own trace using the MeshTest testbed [6] with
a beacon interval of 50msec. When no clients are sending data (Fig. 6 middle),



the clock difference does change between normal (100msec) beacon intervals, but
in what appears, in this case at least, to be a predictable manner. However, when
a client is sending (Fig. 6 right), the clock changes are not predictable, again
indicating a correlation of clock difference with load.

These results show that the common assumption underlying known merging
algorithms is false. The question remains whether this is sufficient to cause a
mis-ordering of packets. Though we have observed mis-orderings from Wit [10],
it is unclear whether this is due to an algorithmic error or simply a bug in Wit.
Nonetheless, we propose as a sanity check that merging algorithms ensure proper
sequence number order (not necessarily strictly increasing: §7).

7 Discussion

We considered the problem of quantifying wireless trace fidelity and evaluated
a scoring method, proposed the T-Fi visualization, and presented an analysis of
clock accuracy in wireless traces. Wireless trace fidelity applies when choosing,
improving, or inferring gaps in wireless traces.

Choosing a trace. Researchers will choose traces from a repository like
CRAWDAD based primarily on the type of data in the trace, for example mo-
bility or traffic type. However, we expect fidelity to decide which trace—or subset
of the trace—to use.

Improving traces. Measuring trace fidelity need not be strictly a post-
mortem analysis; rather, researchers ought to measure the fidelity of their mea-
surements during their measurement, so that they may, for example, move their
monitors. An interesting and important area of future work is to develop tools
to aid in the active capture of wireless traces, so that researchers can ensure
high-fidelity traces in unique hotspots such as a conference.

We conclude with lessons we learned about merging and processing wireless
traces in the process of working with as many traces as we could collect.

Update tools in accordance with new specs. Tools to measure the fi-
delity of wireless traces must be updated frequently, as new 802.11 specs are de-
ployed. The 802.11e QoS amendment introduced a new sequence number space
for QoS in mid-2006. This did not turn up in our initial testing on the Sig-
comm’04 trace, but did in the Portland traces (late 2006), and we had to adjust
our tool accordingly.

Account for vendor-specific behavior. Some vendors introduce behav-
ior not specified in 802.11, and this may make the trace appear to be of lower
fidelity. We observed that the Cisco access point in the Sigcomm’04 trace as-
signed sequence numbers to broadcast and multicast packets, then transmitted
the packets after others were sent, causing some sequence numbers to appear out
of order. To account for this, we allowed these packets to appear out of order in
sequence number.
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