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Abstract

Designing 3D worlds is challenging for many and re-
mains time consuming to perfect. One limiting factor is
constructing realistic materials to give the world life. Ex-
isting material generation tools are limited in expressive-
ness. Measured bidirectional reflectance distribution func-
tions (BRDFs) offer a unique mechanism for capturing and
rendering real world materials. These datasets are expen-
sive to collect and use too much memory to be practical for
large scale computer graphics applications, such as full 3D
VR environments. Current solutions leverage deep learn-
ing to compress these materials or rly on limited analyti-
cal solutions. Although these approaches improve useful-
ness in rendering pipelines, they fail to give artists deep
control over the material appearance. This work presents
a machine learning approach that generates a parameter
space of the measured BRDF data to enable material edit-
ing. We explore applying β -Variational Autoencoders to
disentangle the learned latent space. Demonstrations of
these learned editable BRDFs are available at this link.

1. Introduction
Natural material appearance is complex with respect to

many parameters. This large set of dimensions makes ap-
pearance hard to represent by a single analyitcal function.
Bidirectional Reflection Distribution Function (BRDF) are
the standard for representing materials. There are two
kinds: analytical and measured. Analytical BRDFs have
shown promise in describing various appearances [1, 2, 3].
However, analytical models are restricted in range and may
diverge from real world properties. Measured BRDFs on
the other hand exactly replicate real world properties at the
cost of an understandable parameterization [4, 5, 6]. Exist-
ing methods that perform deep compression offer material
interpolation and 2D latent space traversal for material edit-
ing. This pales in comparison to the power of analytical
approaches.

Our contributions include:

• We propose a deep learning approach for a flexible par-
materization of measured BRDFs

• Develop a color-reflectance decomposition to improve

Figure 1. Examples of MERL’s BRDFs

human editability

• Design a friendly user-interface for editing and gener-
ating BRDFs in real time.

2. Related Work

2.1. Measured BRDFs

Mitsubishi Electric Research Laboratories (MERL)
BRDF Dataset [7] Their acquisition system requires a
spherically homogenous sample of the material. The sys-
tem is placed in a completely isolated room painted in
black matte. Then, a high dynamic range RGB image is
taken at many camera viewing angles and light incident
angles according to the sampling scheme. They choose
Rusinkiewicz’s coordinate system and discretize θh,θd into
90 bins, and φd into 180 bins. In total, each isotropic ma-
terial is approximately 35MB and takes 4 hours to collect.
Figure 1 demonstrates examples.

EPFL’s Realistic Graphics Lab Material Database [8]
This work introduces an adaptive parameterization to lower
the required samples and improve resolution for specular
materials. Each isotropic material on average takes under
1MB to store. Figure 2 demonstrates examples.

1

https://www.cs.umd.edu/~shah2022/xr/index.html


Figure 2. Examples of RGL’s BRDFs

2.2. BRDF Editing

Analytical There have been many works that offer analyt-
ical models through mathematics and comparing accuracy
to measured data. The primary challenge of this approach
is to develop an analytical model complex enough to repre-
sent the richness of the measured data, yet simple enough
so that the fitting process remains stable.

User studies Some works call for user studies to gather
perceptual data such as how glossy a material is [9]. These
have the advantage of producing a paramterization inline
with human needs, but may fail at capturing the full com-
plexity of real world materials.

Machine learning Machine learning approaches have been
used to find manifold representations of measured BRDF
data. In the original paper introducing the MERL BRDF
dataset, a non linear dimension reduction technique was
used [7]. By grouping similar materials on the manifold,
they can find paths between those groups to edit the appear-
ance. The approach to find the manifold and interpolation
scheme has been refined in [10]. This process however is
pseudo-random making it hard to control specific properties
independently. Recent works use deep learning to compress
the input measurements [11, 12, 5]. Their approaches offer
some editing possibilities through linear interpolation.

3. Method
Our method trains a variational autoencoder to learn the

distribution of measured BRDFs. At inference time, the en-
coder is discarded and users can change latent vector val-
ues to reconstruct new BRDFs. Our proposed network is
visualized in Figure 3. We use two different training reg-
imens Figure 4 and Figure 5. The first takes as input the
entire BRDF cube (3× φd × θh × θd) while the second ig-

Figure 3. Network Architecture

Figure 4. VAE Architecture

Figure 5. Colorless Architecture

nore color and decomposes the cube into individual chan-
nels (φd ×θh ×θd).

3.1. Training Details

The network was implemented in PyTorch. All models
were trained using the β -VAE system for 2000 epochs with
a learning rate of 3× 10−5, and β = 12. We experimented
with latent sizes from 3 to 16 but found model 1 performed
best with 8 while model 2 with 3.

4. Experimental Results
4.1. Model 1 - MERL Trained

Our first model trained on just the MERL dataset demon-
strated reasonable disengagement as seen in Figure 6. How-
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Parameter property
1 Diffuse color from blue to red
2 Sheen
3 Subsurface
4 Clear coat from blue to red
5 Specular to Diffuse
6 Haziness
7 Color lightness
8 Specular color from red to blue

Table 1. We associate a name to the factor controlled by each pa-
rameter through visual perception.

ever, we observed that the green color had poor reconstruc-
tion.

4.2. Model 2 - MERL+RGL Trained

Because the MERL dataset is biased against green (Fig-
ure 1), we decided to also mix in the RGL dataset and in-
crease the latent size to 12. This resulted in better recon-
structions, but worse disengagement.

4.3. Model 3 - New Parameters

We learned a relatively good disentangled parameteriza-
tion for measured BRDFs in the MERL dataset from Model
1. Importantly, only 2 parameters control the color proper-
ties 1 and 8. In order to increase the color range, we intro-
duce two new parameters that control diffuse and specular
color from green to purple (Figure 7). We generate two ma-
terials, M1 and M2, from two sets of parameters. The first
set uses parameters 1 through 8, the second set swaps 1 with
9 and 8 with 10. Finally, the materials are merged by re-
placing the green channel of M1 with the red channel of M2.
This manual addition of parameters is only possible because
the initial parameterization learned is interpretable and dis-
entangled. Indeed, the disentanglement feature forces the
color to be controlled by two parameters only and the inter-
pretability allows us to modify the original purpose of the
parameters. The two newly created parameters allow us to
broaden the range of generated material colors.

4.4. Model 4 - Reflectance Only Model

A fundamental problem is that color cannot be captured
via a single scalar unlike specularity and haziness. Instead,
red, green and blue need to be mixed together to produce
any color. Our model learned simple red-blue interpolation,
but in order to solve the 3-point interpolation problem the
model architecture needs to change. Because reflectance
functions are wavelength dependent, in theory, each chan-
nel of the BRDF should be independent. Therefore, we can
instead learn a general reflectance model and stack the color
channels after the fact Figure 5. This produced the best re-
constructions while maintaining some understandable pa-
rameters.

Method MSE ↓
MERL Trained 0.0074

MERL+RGL Trained 0.0013
Reflectance Only 0.0007

Table 2. Reconstruction accuracy of the major methods presented.

4.5. Reconstructions

Using a simple lit-sphere shader based render in Python,
we compute the mean squared error between the recon-
structed BRDFs and the original BRDFs. Table 2 shows the
error for each method. Observe that adding the RGL dataset
improves reconstruction accuracy marginally, but separat-
ing color and reflectance shows the most improvement. Vi-
sually this is also obvious Figure 8.

4.6. UMAP Latent Traversal

Other neural compression works offer a 2D or 3D la-
tent space traversal as a means of editing a BRDF. The
latent vector z is mapped to a 2D embedding space using
Uniform Manifold Approximationa nd Projection (UMAP)
[13]. UMAP is particularly useful because the algorithm
preserves the global data structure and is invertible. A 2D
point can be dragged over the manifold and mapped back to
a latent vector that is then passed through the decoder before
rendering. We observe that this interface has limited editing
control over generated material appearance Figure 9.

5. Editing Tools
We created 5 different editing experiences based on the

ideas we presented. They are all web accessible via this
link. An example of the interface is visualized in Figure 10.
In addition, we developed an extension to Disney’s BRDF
Explorer to demonstrate editing with 2D latent traversals
[1]. Informally, three non-author users played with each
variation of the interface. After getting an internal sense of
what each slider controls, they were tasked with achieving
a certain edit, such as making a material shiner or bluer.
User sentiment demonstrated interfaces with more precise
control over color were preferable. We hypothesize this is
because color changes are the fastest and most obvious to
observe.

6. Course Items
In general we worked together on all items, but some

specific individual contributions include:
Sachin

• Wrote/trained BRDF VAE

• Wrote/trained colorless VAE

• Developed base web-demo
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Figure 6. Latent traversal of each variable of the latent space. We observe that each variable controls a distinct generative parameter. Rough
name assignments are shown in Table 1.

Figure 7. Example traversal of new parameters.

Sakshum

• Wrote MERL/RGL BRDF dataloader

• Wrote/trained TC-VAE

• Created 2D latent traversals

7. Future Work

Future work might include a more light-weight re-
flectance only decoder model to target even better deep
compression. A user study with a range of professionals and
average users should be conducted to determine if these new
interfaces are better for material editing. Exploring other
measured BRDF datasets that also include more ansiotropic

Figure 8. Selected reconstructions.

materials would also be a useful direction. Separately, eval-
uating other editing schemes such as text and integration
into neural radiance field factoring would be useful.

8. Conclusions
In an effort to combine the best of both worlds between

the richness of measured BRDFs and the high control of
analytical BRDF models, we developed a machine learn-
ing approach to create a disentangled space for measured
BRDFs. Our method is self-supervised and has demon-
strated strong visual interpretability. Futhermore, we ex-
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Figure 9. Example of uniform sampling over the 2D latent space.
Left, first model - MERL trained VAE model. Middle, second
model - MERL+RGL trained VAE model. Right, third model -
reflectance only VAE model. Observe that although many charac-
teristics are represented, it is difficult to tweak any one indepen-
dently.

Figure 10. Example of web-based BRDF editor

plore color-reflectance decomposition for a better editing
interface to overcome the 3-point interpolation problem.
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