
412-F13 (Shankar) Quiz 2 Page 1/3

4 problems. 40 points. 30 minutes Closed book. Closed notes. No electronic device. Write your name above.

1. [6 points] An OS has 1 cpu, 2 io devices (io1, io2), pre-emptive cpu scheduling, and no multi-threaded processes.
A process is terminated only by itself. The possible states of a process are given below. Draw the possible transitions
(and omit the impossible ones).

new ready running io1 wait io2 wait terminated

Solution [6 pt]

ready terminatedio2 waitio1 waitrunningnew

1

1

1

1

unlikely but possible1

1

Points as shown above.

Because a process is terminated only by itself, there are no transitions to terminated from new, ready or io wait.
−1 pt for each such transition.

2. [6 points] A collection of cpu-bound processes are scheduled on a cpu. The curve in the graph below shows the
average wait vs service for SJF (shortest-job first, non-preemptive) scheduling.
(Recall: the service of a process is the total cpu time it requires; the wait of a process is the total time it spends in the
ready queue; the average wait for service s is the average wait of all processes with service s.)

Draw on the same graph the expected curve for FIFO (instead of SJF). Repeat for SJF-preemptive. Repeat for RR
(round robin). (So your answer is three curves on the same graph.)

Solution [6 pt]

0

average wait

service

SJF

FIFO

RR

SJF−P

2 pt for each curve.
1 pt if the curve is wrong but non-decreasing.



412-F13 (Shankar) Quiz 2 Page 2/3

3. [12 points] A multi-cpu shared-memory machine has a swap instruction (and no other “read-modify-write”
instructions). Specifically, swap(x,y) atomically exchanges the contents of register x and memory location y.

Implement a (weak or strong) spin lock using the swap instruction. Specifically, give code chunks (at a level of detail
as in the os-process slides) for

• lock definition
• lock acq()
• lock rel()

Solution [6 pt]

swap(x,y), with x true, has the same effect as test&set(y). So the solution is almost identical to a test-and-set solution.

Here is a weak lock.

• Lock lck: [3 pt]
acqd ← false

• lck.acq(): [6 pt]
register tmp ← true
while (tmp)

swap(tmp,acqd)
return

• lck.rel(): [3 pt]
acqd ← false
return

Max 6 pt for a solution that uses the test-and-set instruction. Less if solution is not correct.

Max 5 pt for a solution that uses a pcb queue. Less if solution is not correct.

Several of you gave a solution that uses test-and-set but implemented the latter using the swap instruction. This is fine
if your implementation is correct. Usually, it was wrong: the test-and-set function was not atomic. This got max 6 pts.



412-F13 (Shankar) Quiz 2 Page 3/3

4. [16 points] You are given a multi-cpu machine with spin locks. Give an efficient implementation for a lock whose
acquired durations can be long (e.g., seconds or minutes). Specifically, give code chunks (at a level of detail as in the
os-process slides) for

• lock definition
• lock acq()
• lock rel()

Solution [6 pt]

Because the lock can be acquired for long durations, the solution must use a pcb queue and a spin lock to protect the
queue. So the answer is the one titled “Lock: spin, pcb, multi-cpu” in the os-process-slides.

• Lock lck: [5 pt]
boolean lckAcqd [2 pt]
spinlock lckSplock [2 pt]
PcbQueue lckQueue [2 pt]

• lck.acq(): [6 pt]
lckSplock.acq()
if (not lckAcqd) [2 pt]

...
return

else [4 pt]
rrSplock.acq()
...
scheduler()

• lck.rel(): [4 pt]
lckSplock.acq()
if (lckQueue empty) [2 pt]

...
else [2 pt]

...

Max 8 pt for a busy-waiting solution

Max 8 pt for not using a spin lock.

Max 8 pt if lock acquire never blocks.


