
412-F13 (Shankar) Quiz 3 SOLUTION Page 1/2

3 problems. 40 points. 30 minutes Closed book. Closed notes. No electronic device. Write your name above.

1. [10 points]
Requests are issued to an io device at the rate of 100 requests/second. The requests are of two types: 1/3 are type
1 and the remainder are type 2. The average completion time (from entry to departure) over all requests is 55ms
(milliseconds). The average completion time for type 1 requests is 33ms.

a. What is the average number of requests (of both types) at the io device (both waiting and served)? Explain briefly.

b. What is the average number of type 2 requests at the io device. Explain briefly.

Solution

Part a [4 pt]
Overall throughput X = 100 req/s [1 pt]
Avg completion time R = 55ms [1 pt]
From Little’s Law, avg number of requests N = X ×R
= 100 req/s ×55 ms = 100× 55× 10−3 = 5.5 [2 pt]

Part b [6 pt]
Type 1 throughput X1 = 100/3 req/s [1 pt]
Type 1 avg completion time R1 = 33ms [1 pt]
From Little’s Law, avg number of type 1 requests N1 = X1 ×R1

= (100/3) req/s ×33 ms = 100× 11× 10−3 = 1.1 [2 pt]
So avg number of type 2 requests N2 = N −N1 = 5.5− 1.1 = 4.4 [2 pt]

2. [10 points] Here is an attempted 2-user spinlock for a multi-cpu system. Does it ensure that at most user holds
the lock at any time? If yes, explain very briefly. If no, give an evolution ending with both users holding the lock.

Lock:
flag[0], flag[1]: initially false
turn: initially 0

rel():
flag[myid] ← false

acq():
j ← 1− myid

s1: turn ← j
s2: flag[myid] ← true
s3: while (flag[j] and turn = j) skip

Solution

NO. For example, evolution 0.s1, 1.s1..s3, 1.s2..s3 ends with both threads holding the lock. Here is a more
detailed look at this evolution.

flag[0] flag[1] turn
initially false false 0
0.s1 false false 1 0 becomes hungry
1.s1 false false 0 1 becomes hungry
1.s2 false true 0
1.s3 false true 0 1 acquires lock
0.s2 true true 0
0.s3 true true 0 0 acquires lock

Grading if you said YES (i.e., at most one thread holds lock at any time)
• attempted a good analysis (identifying the cases, etc.) [5 pt]
• poor analysis (e.g., treating s1,s2 as atomic) [2 pt]



412-F13 (Shankar) Quiz 3 SOLUTION Page 2/2

3. [20 points] Here is a skeleton (multi-cpu) implementation of a condition variable cv associated with lock lck.
Complete the implementation by filling in the boxes. Do not change what is already given.

Variables

• runq: run queue
• runqL: spinlock protecting runq
• readyq: ready queue
• readyqL: spinlock protecting readq

• lck: lock associated with cv

• cvq: pcb queue for cv
• cvqL: spinlock protecting cvq

• supply other static variables if needed

Functions
• scheduler(): assumes runqL and readyqL

are free when called

• updateRunqPcb()

• cv.signal():
cvqL.acq()
if (cvq not empty)

readyqL.acq()
move a pcb from cvq to readyq
readyqL.rel()

cvqL.rel()

• cv.wait():

supply code

Solution

No other variables are needed

cv.wait():
cvqL.acq() [2 pt]
runqL.acq() [2 pt]
lck.rel() [2 pt]
updateRunqPcb() [2 pt]

with ra ← a1 [1 pt]
move my pcb to cvq [2 pt]
cvqL.rel() [2 pt]
runqL.rel() [2 pt]
scheduler() [2 pt]

a1: lck.rel() [3 pt]

[−1 pt] if lck.rel() comes after runqL.rel() or updateRunqPcb()
(Probably would not work if lck is a regular (not spin) lock.)

No points lost for acquiring and releasing readyqL, as long as solution is ok.


