
412-F13 (Shankar) Quiz 5 SOLUTION Page 1/2

2 problems. 40 points. 30 minutes Closed book. Closed notes. No electronic device. Write your name above.

Program BB models a “bounded-buffer” of size N.

Awaits are weak (i.e., a thread passes await (B) S if B holds continuously).

Parameter j is an integer in 1..N.

program BB():
N: positive integer
num ← 0

function cAdd(j):
await (num ≤ N− j)

num ← num + j

function cRmv(j):
await (num ≥ j)

num ← num− j

1. [25 points] Implement program BB (including its progress) using locks and condition variables as the only syn-
chronization constructs. Your answer will consist of

• Definitions of additional variables (e.g., locks, condition variables).
• Pseudocode bodies of functions cAdd(j) and cRmv(j). Each function must be less than 12 lines.

Solution

Shared variables:
Lock lck [1 pt]
Condition(lck) cvAdd, cvRmv [4 pt]

cAdd(j):
lck.acq() [1 pt]
while (num > N − j) [4 pt]

cvAdd.wait()
num ← num + j
cvRmv.signal() [2 pt]
if (num < N) ** [1 pt]

cvAdd.signal() ** [1 pt]
lck.rel() [1 pt]

cRmv(j):
lck.acq() [1 pt]
while (num < j) [4 pt]

cvRmv.wait()
num ← num − j
cvAdd.signal() [2 pt]
if (num > 0) ** [1 pt]

cvRmv.signal() ** [1 pt]
lck.rel() [1 pt]

Note: The ** lines are needed. Otherwise the following can happen, which voilates BB’s progress:

initially num is 0
thread u calls cRmv(1) num is 0; u stuck at cvRmv
thread v calls cRmv(1) num is 0; u, v stuck at cvRmv
thread w calls cAdd(2), returns num is 2; u unstuck, v stuck at cvRmv
thread u returns num is 1; v stuck at cvRmv

End of solution

412-F13 (Shankar) Quiz 5 SOLUTION Page 2/2

2. [15 points] Implement program BB using semaphores as the only synchronization constructs. Your solution must
ensure priority for awakened threads, i.e., if a thread is awakened at a gate, it must not get blocked again.

Your answer will consist of

• Definitions of additional variables (e.g., semaphores).
• Brief description of function bodies. No need for pseudocode.

Solution

Suppose thread u is blocked in cRmv(j). It should be awakened, say by thread v, only if num ≥ j; otherwise, u would
get blocked again. So v has to know the value of u’s parameter j. Here are two ways:

• v reads u’s j (requires new functions)
• u waits on a gate specific to j (requires new variables)

Let’s do the second option here.

Shared variables:
Semaphore(1) mutex [1 pt]
Semaphore(0) gateAdd[1..N] // thread stuck in cvAdd(j) waits on gateAdd[j] [2 pt]
int nwAdd[1..N] // nwAdd[j] is # threads waiting on gateAdd[j]; initially 0 [2 pt]
Semaphore(0) gateRmv[1..N] // thread stuck in cvRmv(j) waits on gateRmv[j] [2 pt]
int nwRmv[1..N] // nwRmv[j] is # threads waiting on gateRmv[j]; initially 0 [2 pt]

Function cAdd(j):

1. do mutex.P()
if guard does not hold, do nwAdd[j] ++, mutex.V(), gateAdd[j].P(), nwAdd[j]−− [3 pt]

2. do action
if there is a k such that nwAdd[k] > 0 and num≤N− k, do gateAdd[k].V() and return
or if there is a k such that nwRmv[k] > 0 and num≤N− k, do gateRmv[k].V() and return
or if there is no such k do mutex.V() and return [3 pt]

Function cRmv(j) is symmetric (step 3 is exactly the same).

[6 pt] max for solution that uses one gate (instead of N gates) and works for the case N=1

[7 pt] max for solution that uses memory proportional to the max # of threads (= max # of ongoing calls).

[−1 pt] for not using gate counters

[−1 pt] for doing mutex.P() after gate.P() in step 1.

[−2 pt] for not doing the selection in step 2, e.g., waking up more than one thread and/or releasing mutex.

End of solution

