
GeekOS Overview
A. Udaya Shankar

shankar@cs.umd.edu

Jeffrey K. Hollingsworth
hollings@cs.umd.edu

February 25, 2015

Abstract This document gives an overview of the GeekOS distribution (for 412
Spring 2015) and related background on QEMU and x86. It describes some operations
in GeekOS in more detail, in particular, initialization, low-level interrupt handling and
context switching, thread creation, and user program spawning.

Previous versions: 2/2014 version (multi-core); 9/2013 version (single-core).

Contents

1 Introduction 3
2 Qemu 4
3 Intel x86 real mode 5
4 Intel x86 protected mode 6
5 Booting and kernel initialization 8
6 Synchronization 11

6.1 Spin locks . 11
6.2 Disabling interrupts globally . 11
6.3 Mutexes . 11
6.4 Conditions . 12

7 Context switching 13
7.1 Context state . 13
7.2 Stopping and resuming threads . 13
7.3 Handle_Interrupt . 14
7.4 Switch_To_Thread(threadptr) . 14

8 Starting threads and spawning user programs 15
8.1 Starting a kernel thread . 15
8.2 Starting a user thread . 15
8.3 Spawning a user program . 15

9 Filesystem overview 16
10 Vfs 17
11 Pfat 19
12 Geekos/fileio.h 22
13 Bufcache 23
14 Blockdev 24
15 Ide 25
16 OS subsystems 26

16.1 Utilities . 26
16.2 Memory system . 26

1

http://www.cs.umd.edu/~hollings/cs412/s14/GeekOSoverview.pdf
http://www.cs.umd.edu/~shankar/412-Notes/geekos-overview-2013.pdf

CMSC 412 GeekOS overview – Jan 30 2015 Page 2/31

16.3 Process management . 26
16.4 Interrupt system . 26
16.5 Syscall system . 27
16.6 Device drivers . 27
16.7 Console . 27
16.8 File system . 27

A GeekOS distribution listing (spring 2015) 28
B Memory organization after setup and after Main 31

CMSC 412 GeekOS overview – Jan 30 2015 Page 3/31

1. Introduction

The GeekOS distribution considered here is for CMSC 412 Spring 2015:

svn co https://svn.cs.umd.edu/repos/geekos/spring2015

It contains source code (in C, x86 assembly (mostly NASM, some AT&T), Makefile, Perl) and resulting
executables for a PC-like hardware platform (multi-core x86 processor, memory, IO devices, etc). In
this class, the hardware platform is simulated by QEMU. The project is done in a Linux VM.

The directories and files of the GeekOS distribution are listed in appendix A. Briefly:

• Directory build has makefiles for starting QEMU with GeekOS and user programs. Its subdi-
rectories (which can be initially empty) holds object and executable modules. In particular, there
will be two disk images: diskc, containing a PFAT filesystem with the GeekOS image and user
programs; and diskd, initially raw and empty.

• Directories src/geekos and include/geekos contains the kernel code. Executed by QEMU’s pro-
cessor in kernel mode. You will be adding and modifying significant parts of the files here. You
should understand very well what is already there in order to have any hope of gracefully com-
pleting the projects.

• Directory src/user contains user programs that run on GeekOS. Executed by QEMU’s processor
in user mode.

• Directory src/libc contains C entry functions for system calls. User programs call these functions
to obtain OS services. Executed by QEMU’s processor in user mode (but switches to kernel mode
while executing system calls). Header files are in directory include/libc.

• Directory src/common has heap manager bget, output formatter fmtout, string manipulation string,
and memmove. Nothing specific to operating systems here. Header files are in directory in-
clude/libc.

• Directory src/tools contains code for constructing the disk images that is supplied to QEMU. In
particular, buildFat.c constructs the PFAT file system on diskc.

• Directory scripts contains Perl scripts, some of which are used in the makefiles.

Section 2 describes the PC hardware simulated by QEMU (www.qemu.org).

Section 3 describes the x86 processor in “real mode”. Section 4 describes the x86 processor in “pro-
tected mode”. For more details, see “IA-32 Intel Architecture Software Developer’s Manual”.

Section 5 describes the boot process (bootsect.asm, setup.asm) and GeekOS initialization (main.c).

Section ?? describes spin locks and interrupt-disabling functions.

Section 7 describes the context state of a thread and the low-level steps for context switching and
interrupt handling (in lowlevel.asm).

Section 8 describes the steps for starting kernel threads and user threads and spawning user programs.

Section 9 gives a brief overview of the filesystem (from virtual filesystem to disks). The subsequent
sections go into a bit more detail: virtual filesystem (section 10); PFAT filesystem (section 11); fileio
(section 12); buffer caches (section 13); block devices (section 14); IDE devices (section 15).

Section 16 identifies “subsystems” of the OS and lists the associated files from the distribution.

Appendix A is a directory listing of the GeekOS distribution.

Appendix B describes the memory after setup and after initialization.

www.qemu.org
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

CMSC 412 GeekOS overview – Jan 30 2015 Page 4/31

2. Qemu

QEMU simulates a PC-like hardware. The QEMU configuration achieved by makefile includes the
following. Below addresses are referred to by their hex values or their source code names or both, for
example, “0xB800” or “VIDMEM_ADDR” or “0xB800 / VIDMEM_ADDR”.

• Two or more 386 cpus in SMP (symmetric multi-processing) configuration.
• PIC (programmable interrupt controller, 8259A): receives interrupts from IO devices (keyboard,

dma, ide, floppy drive) and funnels them to the IO APIC.
• APIC (advanced programmable interrupt controller):

A local APIC per cpu: rcvs interrputs from IOAPIC, and rcvs/sends interrupts to other cpus.
An IO APIC: routes interrupts from PIC to local APIC(s).

• BIOS:
At power up, BIOS designates one cpu as “primary” and the others as “secondaries”.
Puts each secondary cpu in halt state and clears its APIC.
Loads diskc/sector 0 into memory at offset 0 of memory segment 0x07C0 and starts the primary
cpu executing at that address (0x07C00).
Sets up MP configuration table (# cpus, APIC addrs, etc) in specified memory area.

• Memory: 512 MBytes (?)
• PIT (programmable interval timer): generates interrupts at programmable interval.

IRQ: 0 (to IOAIPIC?).
Ports: 0x40–43

• Keyboard
IRQ: to IOAPIC (via PIC?)
Ports: 0x64 / KB_CMD; 0x60 / KB_DATA.??

• VGA (monitor)
Video memory: 0xB8000–0x100000; 0xB8000 / VIDMEM_ADDR; CRT_ADDR_REG; etc.

• IDE: accomodates up to 4 hard disks.
Drive 0 (diskc) has a PFAT file system with the GeekOS image and user programs.
Drive 1 (diskd) is a raw “empty” disk (appears only in later projects).
IRQ: to IO APIC (via PIC?)
Ports: 0x1F6 / IDE_DRIVE_HEAD_REGISTER; IDE_DATA_REGISTER; IDE_SECTOR_COUNT_REGISTER; etc.

• DMA:
IRQ: to IO APIC (via PIC?)
Ports: 0x00 (DMA_BASE); DMA_COMMAND_REG; DMA_STATUS_REG; DMA_REQUEST_REG; etc.

CMSC 412 GeekOS overview – Jan 30 2015 Page 5/31

3. Intel x86 real mode

The x86 processor can be in one of several modes. Only two of them, “real” mode and “protected”
mode, are relevant for GeekOS. The processor starts in real mode upon power-up or reset. Here, it is a
16-bit machine (Intel 8086) with a linear address space of 1MB (= 220), addressed using a combination
of a 16-bit segment and a 16-bit offset.

Registers The processor has the following 16-bit registers (assembly names used below):

• Main registers: in each, the 8-bit halves are independently addressable.
AX: primary accumulator; halves AH (higher) and AL (lower).
BX: base, accumulator; halves BH and BL
CX: counter, accumulator; halves CH and CL
DX: accumulator, other functions; halves DH and DL

• Index registers:
SI: source index
DI: destination index
BP: base pointer
SP: stack pointer

• Status register:
Flags: carry, parity, auxiliary, zero, sign, trap, interrupt, direction, overflow

• Segment registers:
CS: code segment
DS: data segment
ES: extra segment
SS: stack segment

• IP: instruction pointer

Addressing The processor can address 1MB (220 bytes) of memory. A 20-bit memory address is
constructed by combining a 16-bit segment (from a segment register) and a 16-bit offset as follows:

• 16×segment + offset // equivalently: (segment « 4) + offset

The address is usually denoted by segment:offset.

Stack, IO, interrupts The hardware stack grows towards lower memory addresses. Push and pop is
in terms of 2-byte words. Stack top is pointed to by SS:SP. Stack bottom is pointed to by SS:FFFF.

16-bit IO (port) address space, each referencing an 8-bit IO register. There are 256 interrupts (hardware
and software).

CMSC 412 GeekOS overview – Jan 30 2015 Page 6/31

4. Intel x86 protected mode

The x86 processor switches from real mode to protected mode upon executing a certain instruction. In
protected mode, the processor is a 32-bit machine with many more features, some of which are described
next.

The processor can switch between 4 privilege levels: 0–3, in decreasing order of privilege; 0 is kernel
mode and 3 is user mode. A task has a separate stack for each level.

The linear address space is 4GB (= 232).

16-bit IO (port) address space, each referencing an 8-bit IO register. There are 256 interrupts (hardware
and software).

Segmented memory

The linear address space can be segmented, with an address being formed by combining a 16-bit “seg-
ment selector” and a 32-bit “offset”. Briefly, the segment selector indexes into a “segment descriptor
table” in memory, which yields a 64-bit “segment descriptor” that points to a segment (in memory).
There is a “global descriptor table” (GDT) and zero or more “local descriptor tables” (LDTs).

A segment selector contains the following:

• 1 bit: indicates GDT or LDT.
• 13 bits: index into GDT or LDT.
• 2 bits: protection level of segment.

A segment descriptor contains the following:

• linear base address of a segment: 32 bits
• limit (size) of the segment: 20 bits
• descriptor privilege level (dpl): 2 bits
• type of segment (data, code, system, tss, gate): 4 bits
• present (i.e., in memory): 1 bit
• Various 1-bit attributes

The GDT (global descriptor table) entries point to kernel segments and optionally user segments. GDT
entry 0 cannot be used to access memory but it does serve as a “null segment selector”. There is a
GDTR register in the processor that points to the GDT.

An LDT (local descriptor table) is like the GDT except that it is local to task (its entries point to segments
of that task) and entry 0 can be used to access memory. There can be zero or more LDTs in memory.
(In GeekOS, each user process gets an LDT.) There is a LDTR register in the processor that points (via
the GDT) to the LDT currently being used (if any).

Paging

Linear or segmented memory modes can be direct (no paging) or paged. If paged, the linear addrress is
[dir, table, offset]:

• dir: indexes into page directory, yields base addr of page table
• table: indexes into page table, yields base addr of page
• physical addr = [page base addr, offset]

Interrupts and task switching

An interrupt indexes into an “interrupt descriptor table” (IDT) in memory, which yields a 64-bit “gate”
that points to the interrupt handler and indicates its privilege level. There is a IDTR register in the
processor that points to the IDT.

CMSC 412 GeekOS overview – Jan 30 2015 Page 7/31

If the interrupt handler’s privilege level is numerically lower than that of the interrupted task, the proces-
sor also switches to another stack. The location of this new stack is available in a “task state segment”
(TSS) in memory, which is pointed to by a task register (TR) in the processor.

(The TSS can also be used to automatically store and retrieve the rest of the processor’s state upon a
task switch. But GeekOS does not exploit this feature: it maintains only one TSS and uses it only for
the stack pointer; it saves and loads the rest of the processor state in software.)

An interrupt gate contains the following:

• segment selector (for the segment containing the handler code): 16 bits
• offset within segment (pointing to the handler code): 16 bits
• descriptor privilege level (dpl): 2 bits
• type of segment (data, code, system, tss, gate): 4 bits
• present (in memory): 1-bit

When a task is interrupted and the interrupt handler is at the same privilege level as the interrupted task:
the processor pushes on the current stack the EFLAGS, CS, and EIP registers (i.e., pertaining to the
interrupted task) and (for certain interrupts) an error code.

When a task is interrupted and the interrupt handler is at a numerically lower privilege level, a stack
switch occurs. The SS and ESP for the stack to be used by the handler are obtained from the current
TSS. On this new stack, the processor pushes the SS and ESP of the interrupted task and then (as before)
the EFLAGS, CS, and EIP registers and error code (if present).

A “return from interrupt” IRET instruction undoes the above (including popping the interrupted task’s
SS and ESP if they are saved on stack).

Processor registers

The processor has the following registers.

• 8 general purpose registers (each 32-bit):
EAX: accumulator
EBX, ECX, ESI, EDI: pointers to data segment; counters
EDX: IO pointer
ESP: stack pointer (in SS segment)
EBP: pointer to data on stack (in SS segment)

• 6 segment registers (each has a 16-bit part + “invisible” 64-bit part):
CS: code segment register
SS: stack segment register
DS, ES, FS, GS: data segment registers
The 16-bit part is a segment selector. The 64-bit invisible part caches the segment descriptor
(from GDT or LDT) pointed to by the segment selector.

• GDTR: 48-bit, points to GDT: 32 bits for GDT base addr, 16 bits for GDT size (in bytes).

• IDTR: 48-bit, points to IDT: 32 bits for IDT base addr, 16 bits for IDT size (in bytes).

• LDTR: 16-bit segment selector (+ invisible 64-bit); points (via GDT) to an LDT.

• TR: 16-bit segment selector (+ invisible 64-bit): points (via GDT) to a TSS.

• EIP: 32-bit instruction pointer (used with CS).

• EFLAGS: 32-bit status and control register: carry, overflow, sign, interrupt enable, new task, etc.

• CR0–CR4: 32-bit control registers: paging enable, cache enable, cache write-mode, protected/real
mode, page fault, etc.

• Other registers: debug, memory type range, machine check, etc.

CMSC 412 GeekOS overview – Jan 30 2015 Page 8/31

5. Booting and kernel initialization

Upon powering up the PC platform, BIOS does the following:

• Set one cpu as “primary” and the others as “secondaries”.
• Puts each secondary cpu in halt state and clears its APIC.
• Sets up MP configuration table in specified memory area (FEC00000, FEE00000) indicating the

number of cpus, IO APICs (1), buses, etc. Assigns consecutive ids to the the local APICs, starting
with 0 for the primary; these ids also serve as cpu ids.

• Loads diskc/sector 0 into memory at offset 0 of memory segment 0x07C0 (BOOTSEG), and starts
the primary cpu executing at that address (0x07C00). The makefiles have put src/bootsect.asm
(in machine language) in diskc/sector 0.

Thus the primary cpu, aka cpu 0, starts executing src/bootsect.asm starting at memory location BOOT-
SEG:0. From this point until the kernel is (almost) completely initialized, cpu 0 is the only active “thread”
in the system. It does the following:

• bootsect.asm: from BeginText to after_move:
Moves the 512 bytes at BOOTSEG:0 to INITSEG:0 and jumps to INITSEG:0.

• bootsect.asm: from after_move to load_kernel:
Loads the diskc sector containing setup.asm to memory SETUPSEG:0.

• bootsect.asm: from load_kernel to ReadSector:
Loads the diskc sectors containing the OS kernel image into memory starting at KERNSEG:0. Then
jumps to location SETUPSEG:0 and starts executing setup.asm.

• setup.asm: from BeginSetup to setup_32):
Determines the size of extended memory available, kills the floppy motor (which is not used
henceforth), points GDTR and IDTR to temporary GDT and IDT tables (in setup.asm), initializes
A20 address line, initializes the PIC (to bypass BIOS), enters protected mode, and jumps to
setup_32 (setting the processor’s CS register to KERNEL_CS).

• setup.asm: from setup_32 to just before .returnAddr:
Sets data and stack segment registers (DS, ES, FS, GS, SS) to KERNEL_DS, pushes on the stack a
Boot_Info struct (defined in geekos/bootinfo.h) and a pointer to the struct, then jumps to KER-
NEL_CS:ENTRY_POINT (which points to function Main in geekos/main.c).

The memory now looks as shown in appendix B (under the column titled “At end of setup”).

Cpu 0 now starts executing Main, which initializes the OS. There is still only one “thread” executing.
We refer to it as the “initial kernel thread”. In executing Main, this thread initializes the OS kernel and
enters itself in the OS data structures, thus becoming a true thread.

• Init_BSS (defined in geekos/mem.c:
Zeros the BSS (global variables area) of the kernel image.

• Init_Screen (defined in geekos/screen.c:
Blanks the VGA screen and initializes its hardware cursor.

• Init_Mem (defined in geekos/mem.c):
Calls Init_GDT(0) (defined in geekos/gdt.c):

– Creates a permanent GDT (static variable s_GDT[0]) for cpu 0.
– Entry 1 of the GDT points to the kernel code segment and entry 2 to the kernel data segment.
– Loads the GDT base address and limit into GDTR (of cpu 0).

Treats memory as a sequence of 4KB pages. Creates (in kernel memory) a list of Page structs
corresponding to the memory pages, each storing the attributes of its page (kernel, available for
users, allocated, etc). Global variable g_pageList points to the list. Also creates a list of the
available pages (s_freeList).

CMSC 412 GeekOS overview – Jan 30 2015 Page 9/31

Calls Init_Heap (defined in geekos/malloc.c) to initialize the kernel heap. (Malloc itself is im-
plemented by bget.)

• Init_CRC32 (skipped).
• Init_TSS (defined in geekos/tss.c):

Creates a TSS (static variable s_theTSS[0]) for cpu 0. Zeros the TSS struct, adds the TSS descrip-
tor to cpu 0’s GDT, updates TR. [GeekOS uses a single TSS for each cpu, not one per process.]

• Init_Interrupts(0) (defined in geekos/int.c):
Calls Init_IDT(0) (defined in geekos/idt.c):

– Creates a permanent IDT (static variable s_IDT[0]) for cpu 0, with 256 interrupt gate entries
(one for every exception and interrupt). The first 32 entries are for exceptions and traps.
The remaining entries are for external interrupts, i.e., external interrupt j is mapped to entry
32+j.

– Each IDT entry points to an entry point (g_entryPointTableStart) in geekos/lowlevel.asm.
[lowlevel.asm latter gets a pointer to the interrupt handler function (from g_interruptTable
in idt.c) and calls the handler with the appropriate Interrupt_State argument.]

– Each IDT entry is at kernel privilege level, except for the syscall trap, which is at user
privilege level.

Installs a pointer to a dummy interrupt handler function in every g_interruptTable entry (in
idt.c).
Loads the IDT base address and limit into IDTR (of cpu 0).

• Init_SMP (defined in geekos/smp.c):
Identifies (from MP config table) how many secondary cpus there are, and get them running. For
each secondary cpu i, it assigns an initial stack page, sends an inter-procesor interrupt (IPI) to
wake up cpu i, and another IPI to start cpu i executing at start_secondary_cpu (in setup.asm).
(This is the “initial kernel thread” for cpu i.)
The awakened cpu i reaches setup_2nd_32 (in geekos/setup.asm), where it enters 32-bit mode,
and then calls Secondary_Start (in geekos/smp.c), where it does the following:

– Init_GDT(i)
– Init_TSS()
– Init_Interrupts(i)
– Init_Secondary_VM() // nothing for now
– Init_Scheduler(i, CPUs[i].stack):

// creates a thread object for this thread, makes it currently running (g_currentThreads[i])
// creates runnable Idle thread for cpu i

– Init_Traps()
– Init_Local_APIC(i) // initializes cpu i’s APIC
– Init_Timer_Interrupt() // installs interrupt handler
– Exit() // Idle thread now takes over cpu i?

Cpu i is left spinning until cpu 0 calls Release_SMP() later in Main.
• Init_VM() (defined in geekos/paging.c); nothing for now
• Init_Scheduler(0, KERN_STACK) (defined in geekos/kthread.c):

Creates a Kernel_Thread object for the initial kernel thread and makes it the currently executing
thread (g_currentThreads[0]). (At this point, the initial kernel thread becomes a true OS thread.)
Creates Idle thread (runs when there is no other thread to run) for cpu 0 and makes it runnable.
Creates Reaper thread (responsible for cleaning up terminated threads) and makes it runnable.
[Note: s_allThreadList is a list with an entry for every thread. s_runQueue is a queue with an
entry for every runnable thread. g_currentThreads[i] indicates the currently executing thread on
cpu i.]
• Init_Traps (defined in geekos/trap.c):

Installs interrupt handlers for interrupts 12, 13 and 0x90 (syscall) (in g_interruptTable). The

CMSC 412 GeekOS overview – Jan 30 2015 Page 10/31

handler for interrupt 12 (stack exception) terminates the current thread. The handler for interrupt
13 (general protection failure) terminates the current thread. The handler for interrupt 0x90 calls
the syscall handler function.

• Init_Local_APIC(0) defined in (geekos/smp.c) initializes the local interrupt controller for cpu 0.
• Init_Timer (defined in geekos/timer.c): Initializes the timer. Installs interrupt handler for timer

interrupt (IRQ 0, corresponding to IDT entry 32). Enables timer interrupt. (Currently IO APIC
directs timer interrupt to cpu 0 only.)

• Init_Keyboard (defined in geekos/keyboard.c):
Initializes the keyboard state. Installs interrupt handler for keyboard interrupt (IRQ 1, correspond-
ing to IDT entry 33). Enables keyboard interrupt.

• Init_DMA (defined in geekos/dma.c):
Resets the DMA controller.

• Init_IDE (defined in geekos/ide.c):
Reset the IDE controller and drives. Start “IDE request” thread, to wait for requests to IDE.
(Interrupt handler?)

• Init_PFAT (defined in geekos/pfat.c): Registers the PFAT filesystem interface to the virtual file
system.

• Init_GFS2, Init_GOSFS, Init_CFS: registers different filesystem interfaces.
• Init_Alarm

• Init_Serial

• Release_SMP() allows all secondary cpus to start running (and they quickly finish their initial
threads and start running the Idle thread for that core??).

• Init_Sound_Devices

• Mount_Root_Filesystem: mounts the root drive (diskc) as a PFAT file system to the virtual file
system (in vfs.c) at root prefix “/”.

• Spawn_Init_Process: starts the user shell program and waits.
• Hardware_Shutdown: after shell terminates.

CMSC 412 GeekOS overview – Jan 30 2015 Page 11/31

6. Synchronization

6.1. Spin locks

A spin lock, in assembly language, is an integer that is 0 iff unlocked. It is accessed via the following
functions (in lowlevel.asm), where x is a pointer to a lock.

Spin_Lock_INTERNAL(x):
repeat

busy wait until *x is false
set eax to 1
atomically swap eax and *x

until eax equals 0
return

Spin_Unlock_INTERNAL(x):
set eax to 0
atomically swap eax and *x
return

In C, a spin lock is an Spin_Lock_t object (lock.h), consisting of an int (the assembly level lock) and
two thread pointers (current and previous lockers). The spin lock is accessed via the following functions
(in smp.c), where x is a pointer to a spin lock:

• Spin_Lock(x): wrapper to the corresponding assembly function
• Spin_Unlock(x): wrapper to the corresponding assembly function
• Try_Spin_Lock(x): like Spin_Lock(x) but it tries just once and returns 0 if unsuccessful.
• Is_Locked(x):

The GeekOS distro has several spin locks, eg, globalLock, kthreadLock, a lock for every list, etc. In
particular, globalLock is also known as the “kernel lock” and “big” global lock. Functions lockKernel(),
unlockKernel() and Kernel_Is_Locked() are wrappers for the corresponding operations on globalLock.

6.2. Disabling interrupts globally

Disable_Interrupts() disables interrupts (on the local cpu) and acquires the global lock (via lockKer-
nel()). Thus it blocks any other cpu from completing Disable_Interrupts(), and in particular, from
executing interrupt handlers.

Enable_Interrupts() releases the global lock and enables interrupts (on the local cpu).

Begin_Int_Atomic() calls Disable_Interrupts() if they are enabled and otherwise acquires the global
lock. So it can be called with or without the global lock.

End_Int_Atomic(iflag) is the inverse, enabling interrupts if iflag is true.

6.3. Mutexes

In GeekOS, a mutex is a lock in which blocked threads wait in a queue. A Mutex object (in synch.h)
consists of a “state” (int indicating locked or unlocked), an “owner” (thread holding the lock), and a
“waitQueue” (queue where blocked threads wait).

Mutex_Lock and Mutex_Unlock (see synch.c) put a blocked thread on a wait queue until the lock is re-

CMSC 412 GeekOS overview – Jan 30 2015 Page 12/31

leased. The former must be called with interrupts enabled.

Mutex_Lock(x):
KASSERT(intrpts enabled, I do not hold x)
Disable_Interrupts()
while x locked

wait on x’s waitQueue // calls Schedule
update x’s state and owner
Enable_Interrupts()

Mutex_Unlock(x)
KASSERT(intrpts enabled)
Disable_Interrupts()
KASSERT(I hold x)
update x’s state and owner
wakeup a thread (if any) in x’s waitQueue
Enable_Interrupts()

6.4. Conditions

In GeekOS, a Condition object consists of a waitQueue (recall that this includes a spin lock). It is
accessed via the following functions, where c is a condition pointer and x is an associated mutex.

Cond_Wait(c,x):
KASSERT(intrpts enabled, I hold x)
Mutex_Unlock(x) // no preemption yet
Disable_Interrupts()
wait on c’s waitQueue // calls Schedule
Enable_Interrupts()
Mutex_Lock(x)

Cond_Signal(c)
KASSERT(intrpts enabled,

I hold assoc mutex)
Disable_Interrupts()
wakeup a thread (if any) in c’s waitQueue
Enable_Interrupts()

Cond_Broadcast(c) is like Cond_Signal(c) except that all threads in c’s waitQueue are woken up.

CMSC 412 GeekOS overview – Jan 30 2015 Page 13/31

7. Context switching

7.1. Context state

The context state of a thread is stored in three structures, all reachable from the first:

• A Kernel_Thread struct (defined in geekos/kthread.h):
esp: kernel stack pointer
numTicks, totalTime, priority
thread_queue link(s)
pointer to stack page
pointer to user context
...

• A stack page. This is the kernel stack of the thread. When the thread is not executing, the
processor state of the thread is stored here as follows:

userSS, userESP [present only if thread was stopped in user mode] // stack interior
eflags,
eip (= return address),
cs (= code segment selector),
error code, interrupt number,
gp and seg registers // stack top

Thus the thread can be resumed simply by popping the gp and seg processor registers, clearing
the error code and interrupt number, and executing “return from interrupt” (IRET).

• A User_Context struct (defined in geekos/user.h). This is present only if the thread is a user
thread, i.e., started by spawning a user program. It contains user-level OS state (LDT, code/data/stack
selectors, entry address, etc.).

7.2. Stopping and resuming threads

The context switching code appears in the following two functions (both in file lowlevel.asm):

• Handle_Interrupt:
// Thread comes here upon an interrupt (issued by itself or externally).
// Cpu is using the thread’s kernel stack
Constructs the interrupt state of the current thread.
Calls the C interrupt handler.
Either resumes the current thread or switches it out and switches in a thread from the run queue.

• Switch_To_Thread:
// Thread comes here due a call (and not due to an interrupt).
// The call’s argument (on the stack) is a pointer to a thread object.
// The current thread has already been moved to the run/wait queue.
Constructs the context of the current thread (so it can be resumed later).
Switches in the thread pointed to by the call’s argument.

In both functions, the context switching code makes use of the kernel stack of the current thread (i.e.,
the one to be switched out). Think about what can go wrong if this is not done properly.

CMSC 412 GeekOS overview – Jan 30 2015 Page 14/31

7.3. Handle_Interrupt

// here on (external or trap) interrupt.
// Cpu using interrupted thread’s kernel stack, which has following:
// - user.ss, user.esp (iff thread interrupted in user mode) // placed by hardware
// - eflags, cs, eip // by hardware
// - error code // by hardware or by g_entryPointTable code (in lowlevel.asm)
// - interrupt number // by g_entryPointTable code (in lowlevel.asm)
// [stack top]

// save interrupt state of current thread on stack and call C handler
push gp and seg registers // completes interrupt state on stack
get kernel lock if interrupted when interrupts enabled
push esp // pointer to interrupt state
call C interrupt handler // get address from g_interruptTable in int.c

if this thread is to be switched out // based on g_preemptionDisabled, g_needReschedule of cpu
move current thread to run queue;
get a thread from run queue and make current;
set esp to its kernel stack (avail in thread’s context).

activate user context if thread has one // update LDTR, s_TSS.esp0, s_TSS.ss0, etc.

release kernel lock if new thread has will have interrupts enabled

process signal if present // not present in distribution

pop gp and segment registers

IRET

7.4. Switch_To_Thread(threadptr)

// here on a call from Schedule (and not from an interrupt)
// current thread’s object has already been moved to run/wait queue(?)

// switch in the thread pointed to by threadptr (latter on stack)
change current thread’s stack to following (so it can be switched in later):

threadptr, // stack interior
eflags,
return addr in Schedule (= eip),
fake error code, fake intrpt num,
gp and seg registers // stack top

clear APIC interrupt info ??
get kernel lock if interrupted when interrupts enabled
save esp and clear numTicks on current thread struct
// current thread’s context is now saved accurately

// switch in threadptr’s thread
restore esp to point to threadptr // pass over previous thread’s interrupt state
make threadptr’s thread current

clear APIC interrupt info ??

activate user context if thread has one // update LDTR, s_TSS.esp0, s_TSS.ss0, etc.

process signal if present // not present in distribution

release kernel lock if new thread has will have interrupts enabled

pop gp and segment registers

IRET

CMSC 412 GeekOS overview – Jan 30 2015 Page 15/31

8. Starting threads and spawning user programs

8.1. Starting a kernel thread

Start_Kernel_Thread(startFunc, arg, priority)

Create_Thread:
– get memory for kthread struct and for stack;
– initialize kthread fields: stackPage, esp, numTicks, pid, etc.

Setup_Kernel_Thread:
– configure kthread’s stack so that when this kthread is switched in (in lowlevel.asm),

it executes Launch_Thread, then startFunc(arg), then Shutdown_Thread.
Stack bottom:

startFunc arg, Shutdown_Thread addr, startFunc addr,
eflags (with intrpts off), KERNEL_CS (CS), Launch_Thread addr (EIP),
fake error code, fake intrpt number
fake gp registers, fake seg registers

Stack top

Add to runQ

8.2. Starting a user thread

Start_User_Thread(userContext)

Create_Thread:
– get memory for kthread object and stack; initialize (as with kernel thread)

Setup_User_Thread:
– point kthrd.userContext to userContext
– fix up (kernel) stack as above except:

first push userSS and userESP (avail from usercontext)
have interrupts on in eflags

Add to runQ

8.3. Spawning a user program

Spawn(programPathname, command, userContext)

Load user prog:
– get file from file system (vfs.c, pfat.c),

unpack into elf header and content, extract exeFormat (elf.c).
– get max virtual address of program and argBlockSize (from exeFormat),

acquire memory 1 for program segment, arg block and user stack,
load program segment into memory 1,
format argblock in memory 1,
acquire memory 2 for usercontext and initialize fields (size, ldt, entry point).

Start_User_Thread(userContext)

CMSC 412 GeekOS overview – Jan 30 2015 Page 16/31

9. Filesystem overview

GeekOS has a virtual filesystem (VFS) onto which “concrete” filesystems, such as PFAT, GOSFS,
GSFS2, and others are “mounted”. VFS acts as a wrapper to these mounted filesystems, allowing them
to be accessed by users in a uniform manner. Initially VFS consists of just an empty root directory (“/”).
At the end of OS initializing, the PFAT filesystem in IDE 0 is mounted onto VFS at position “/c”, after
which user programs can access the PFAT filesystem as the VFS subdirectory “/c”. Similarly, your
GOSFS filesystem (in project 5) can be mounted at another point (say “/d”) and accessed.

GeekOS also has a virtual block device into which any block-structured storage device (e.g., IDE,
floppy) can be registered. The block device acts as a wrapper to these registered storage devices, al-
lowing them to be accessed in a uniform manner. The users in this case are other parts of the kernel
(filesystems, paging, etc.).

The figure below illustrates the context. User programs invoke system calls, which invoke functions in
vfs.c, which invoke functions in pfat.c or gosfs.c, which invoke functions in blockdev.c, which in turn
invoke functions in ide.c. (In project 5, you implement the functions in gosfs.c.)

The pfat functions that are called by vfs have names of the form PFAT_<function> (see pfat.c). Similarly,
the gosfs functions that are called by vfs have names of the form GOSFS_<function> (see gosfs.c). Note
that vfs does not call these functions by name. Rather vfs gets pointers to these functions at run time
(when a filesystem type is registered, when a filesystem is mounted, etc.).

CMSC 412 GeekOS overview – Jan 30 2015 Page 17/31

10. Vfs

Vfs functions called by “users” (syscalls, main, other systems in the kernel)

Filesystem operations
Format(*devname, *fstype)
Mount(*devname, *pathPre-

fix, *fstype)
Get_Paging_Device(void);

Mount-point operations
Open(*path, mode, **pFile);
Close(*file);
Stat(*path, *stat);
Sync(void);

File operations
FStat(*file, *stat);
Read(*file, *buf, len);
Write(*file, *buf, len);
Read_Fully(*path, **pBuffer, *pLen);

Directory operations
Create_Directory(*path);
Open_Directory(*path, **pDir);
Read_Entry(*file, *entry);

Vfs functions called by filesystem implementations (pfat, gosfs)

Register_Filesystem(*fstype, *fsOps)
Register_Paging_Device(*pagingDevice);
Allocate_File(*fileOps, filePos, endPos, *fsData, mode, *mountPoint)

Vfs static variables

• s_vfsLock: lock for ensuring atomicity of vfs operations.
• s_mountPointList: list of mountPoints, one for each mounted file system (e.g., pfat on dev1 at

/c).
• s_filesystemList: list of fstypes (filesystem types), one for each registered filesystem (e.g., pfat).
• s_pagingDevice: registered paging device.

Struct with following: fileName, blockDev, start sector, number of sectors

Each mountPoint is a struct containing the following:
• ops: pointers to functions Open, Create_Directory, Open_Directory, Stat, Sync, Delete in filesys-

tem implementation (eg, pfat.c). (Note: SetSetUid, SetAcl omitted here.)
Each function’s args: mountpoint, path in filesystem, mode, pfile.
Pointers supplied by filesystem when mounted.

• prefix: where filesystem is mounted wrt root (eg, “/c”).
• blockDev: pointer to block device containing filesystem.
• fsData: filesystem info. Supplied by filesystem when mounted.

Each fstype is a struct containing the following:
• ops: pointers to functions Format(blockDev), Mount(mountPoint) in filesystem implementation

(eg, in pfat.c). pointers supplied by filesystem when registered.
• fsName: name of filesystemType (eg, “pfat”).

File struct for each opened file or directory containing:
• ops: pointers to functions FStat, Read, Write, Seek, Close, Read_Entry in filesystem implementa-

tion (eg, in pfat.c).
Set by filesystem when mounted. Function args include *file.

• filePos: current position in file.
• endPos: end position in file (i.e., length of file).
• fsData: for use by filesystem implementation.
• mode: mode of open file (read vs write). Set by Open(), Create_Directory(), Open_Directory().

CMSC 412 GeekOS overview – Jan 30 2015 Page 18/31

• mountPoint: mountPoint of filesystem that file is part of. Set by Open(), Create_Directory(),
Open_Directory().

Functions in vfs

Register_Filesystem(fstype, fsOps):
add fstype to list of fstypes.

Format(*devname, *fstype):
if [fstype is registered and has Format] and [device is registered (in blockdev) and opens]
call fstype.ops.Format(device)

Mount(*devname, pathPfx, *fstype):
if [fstype is registered and has Format] and [device is registered (in blockdev) and opens]
create mountPoint(device, pathPfx), call fstype.ops.Mount(mountpoint), add mountPoint to mount-
PointList.

Open(path, mode, pFile): // wrapper for mounted filesystem Open
split path into pfx and sfx
get mountPoint at pfx
call mountPoint.ops.Open(mountpoint, sfx, mode, pFile).

Close, Stat, FStat, Read, Write, Seek, Create_Directory, Open_Directory, Delete:
each is a wrapper for the corresponding mounted filesystem operation

Sync(): // wrapper for Sync of all mounted filesystems

ReadFully(path, buffer, pLen):
Stat(path)
Open(path)
Read repeatedly until all of stat.size is read

CMSC 412 GeekOS overview – Jan 30 2015 Page 19/31

11. Pfat

Pfat static variables

s_pfatFileOps: // instance of File_Ops (defined in vfs.h)
• &PFAT_FStat
• &PFAT_Read
• &PFAT_Write
• &PFAT_Seek
• &PFAT_Close
• 0: // (Read_Entry

s_pfatDirOps: // instance of File_Ops (defined in vfs.h)
• &PFAT_FStat_Dir
• 0, 0, 0, // Read, Write, Seek
• &PFAT_Close_Dir
• &PFAT_Read_Entry

s_pfatMountPointOps: // instance of Filesystem_Ops (defined in vfs.h)
• PFAT_Open
• 0, // Create_Directory()
• PFAT_Open_Directory,
• PFAT_Stat
• PFAT_Sync
• 0 //Delete

s_pfatFilesystemOps: // instance of Filesystem_Ops (defined in vfs.h)
• 0 // Format
• &PFAT_FStat_Dir

Pfat structs

bootSector:
• magic: filesystem id
• fatOffset: start of FAT
• fatLength: length of FAT (in sectors?)
• rootDirectoryOffset: start of root directory
• rootDirectoryCount: number of items in root directory
• setupStart
• setupSize
• kernelStart
• kernelSize

directoryEntry:
• filename: 8 + 4 chars (including null terminator). 12 bytes
• readOnly, hidden, systeFile, volumeLabel, directory: each 1 bit
• time: 2 bytes
• date: 2 bytes
• firstBlock: 4 bytes
• fileSize: 4 bytes

PFAT_Instance: // in-memory info of mounted PFAT fs; kept in mountpoint.fsInfo.
• fsinfo: bootsector instance
• *fat: pointer to fat table
• *rootDir: pointer to rootDirEntry
• rootDirEntry:
• lock:
• fileList: PFAT file list

CMSC 412 GeekOS overview – Jan 30 2015 Page 20/31

PFAT_File: // in-memory info of open PFAT file; kept in file.fsInfo.
• fsinfo: bootsector instance
• entry: directory entry of this file.
• numBlocks: number of blocks of file
• *fileDataCache:
• *validBlockSet: which data blocks of cache are valid

Pfat public functions

All exported when pfat filesystem is mounted.

PFAT_FStat(*file, *stat):
copy file.fsData info into stat

PFAT_Read(*file, *buf, numBytes):
// this function accesses file.fsData and file.mountPoint.fsData
set numBytes to min(endPos, filePos + numBytes)
traverse FAT (in file.mountpoint.fsData) for blocks of the file

for each block that is not in cache or not clean, read it into cache
copy relevant cache buffers into buf
update filePos
copy file.fsData info into stat

PFAT_Write(*file, *buf, numBytes):
return EACCESS // writes not allowed

PFAT_Seek(*file, pos):
set file.filePos to pos if in range

PFAT_Close(*file, pos):
return 0 // no-op

PFAT_FStat_Dir(*dir, *stat):
copy file.mountPoint.fsData.rootDirEntry into stat // only one directory

PFAT_Close_Dir(*dir):
return 0 // no-op

PFAT_Read_Entry(*dir, *entry):
if dir.filePos ≥ dir.endPos

return VFS_NO_MORE_ENTRIES
pfatDirEntry← dir.mountPoint.fsData.rootDir[dir.filePos++]
copy pfatDirEntry to entry.name.states

PFAT_Open(*mountPoint, *path, mode, **pFile):
if (mode is not O_READ) or (path is not a file entry in mountPoint.fsData)

return errorcode
get a pfatFile object for path // already cached?, else cache, etc.
create vfs file object (with pfatFileOps, pfatFile, etc) and return in **pFile

CMSC 412 GeekOS overview – Jan 30 2015 Page 21/31

PFAT_Open_Directory(*mountPoint, *path, mode, **pDir):
if (path is not “/”)

return errorcode
create vfs File object and set object’s

ops to s_pfatDirOps
filePos to 0
endPos to mountPoint.fsData.fsinfo.rootDirectoryCount
fsData to 0

return pointer to File object via **pDir

PFAT_Stat(*mountPoint, *path, *stat):
get pfatfile object for path from mountPoint.fsData
copy info from pfatfile object into stat

PFAT_Sync(*mountPoint):
return 0 // no-op; read-only fs

PFAT_Register_Paging_File(*mountPoint, *pfatInstance):
return if paging device already registered (Get_Paging_Device())
get dirEntry for file with PAGEFILE_FILENAME (“pagefile.bin”?)
create pagedev and set its

fileName to mountPoint.pathPfx + PAGEFILE_FILENAME
dev to mountPoint.dev
startSector to dirEntry.firstBlock
numSectors to dirEntry.fileSize / SECTOR_SIZE

Register_Paging_Device(pagedev)

PFAT_Mount(*mountPoint):
allocate pfatInstance and bootsect
read mountpoint.dev’s sector 0 into bootsect // using Block_Read
copy bootsect’s bootsector into pfatInstance.fsinfo
return if fsinfo’s magic number, FAT offset/size, root dir offset/size not ok
allocate pfatInstance.fat // in-memory FAT; fsinfo.fatLength gives size in sectors
read FAT from dev into pfatInstance.fat // using Block_Read
allocate pfatInstance.rootDir // in-memory rootDir; fsinfo.rootDirCount gives size in entries
read root directory from dev into pfatInstance.rootDir // using Block_Read
set psfatInstance.rootDirEntry’s fields (read-only/directory/fileSize) // fake root directory entry
initialize pfatInstance.lock
clear pfatInstance.fileList
PFAT_Register_Paging_File(mountPoint, pfatInstance) // if present and unregistered
set mountPoint.ops to s_pfatMountPointOps
set mountPoint.fsData to pfatInstance

Init_PFAT(void):
call vfs’s Register_Filesystem("pfat", &s_pfatFilesystemOps)

CMSC 412 GeekOS overview – Jan 30 2015 Page 22/31

12. Geekos/fileio.h

VFS_MAX_PATH_LEN 1023 // /d/d1/f1
VFS_MAX_FS_NAME_LEN 15 // "pfat", "gosfs", ...
VFS_MAX_ACL_ENTRIES 10 // max ACL entries per directory entry
SECTOR_SIZE 512 // sector size for all block devices
BLOCKDEV_MAX_NAME_LEN 15 // "ide0", "ide1", ...

// File permission flags for Open() VFS function
O_CREATE (create if file does not exist), O_READ, O_WRITE, O_EXCL, O_OWNER

struct VFS_ACL_Entry:
uid, permission

struct VFS_File_Stat: // dir entry metadata; filled by vfs.Stat(), vfs.FStat()
size, isDirectory, isSetuid, VFS_ACL_Entry acls[...]

struct VFS_Dir_Entry: // dir entry structure; filled by vfs.Read_Entry()
name[1024], VFS_File_Stat stats

struct VFS_Mount_Request: // request to mount a filesystem
devname (e.g., "ide1"), prefix (mount point), fstype (e.g., "gosfs")

To be completed

CMSC 412 GeekOS overview – Jan 30 2015 Page 23/31

13. Bufcache

Comes between vfs/pfat/gosfs and blockdev.

No static variable. No local thread.

Bufcache structs

FS_Buffer: // holds one fsblock
• fsBlockNum: filesystem block number
• *data: in-memory data of block. May be out of sync with disk.
• flags: state of buffer (dirty, pending, ...)

FS_Buffer_Cache:
• *blockdev: associated device
• fsBlockSize: size of filesystem blocks
• numCached: current number of buffers (cached blocks)
• fsBufferList: list of buffers
• lock: lock for synchronization
• cond: condition variable for waiting for a buffer

Bufcache public functions

All called by vfs/pfat/gosfs.

*Create_FS_Buffer_Cache(*blockdev, fsBlockSize):
malloc cache struct and set fields

Sync_FS_Buffer_Cache(*cache):
lock cache, write out all dirty buffers, release lock

Destroy_FS_Buffer_Cache(*cache):
synch and release all buffers and cache struct

Get_FS_Buffer(*cache, fsBlockNum, **pBuf):
sets **pBuf to buffer fsBlockNum

CMSC 412 GeekOS overview – Jan 30 2015 Page 24/31

14. Blockdev

Blockdev static variables

• s_blockdevLock: lock for ensuring atomicity of blockdev operations.
• s_deviceList: list of blockDevices, one for each registered block device (e.g., ide, floppy).

Each blockDevice is a struct of the following:
• name: name of block device.
• *ops: struct of pointers to functions Open, Close, Get_Num_Blocks in device driver (e.g., ide.c).

Set when device is registered.
Each function’s arg: *dev.

• unit: device drive number
• inUse: opened?
• *driverData:
• *waitQueue: pointer to wait queue in device driver (e.g., ide). Set when device is registered. A

server thread in device waits here.
• *requestQueue: pointer to request queue in device driver (e.g., ide). Set when device is registered.

BlockRequests are queued here.

Each blockRequest is a struct of the following:
• *dev: block device.
• type: request type
• blockNum: number of block (to read, write, seek, ...)
• *buf: buffer for request
• requestState: pending, completed, error. (Volatile)
• errorCode: (Volatile)
• waitQueue: requesting thread waits here (until awakened by a server thread in device driver)

Blockdev functions

Register_Block_Device(devname, devOps, unit, driverData, waitQueue, requestQueue):
// called by device driver (e.g., ide.c)
malloc blockDevice struct, assign its fields, add to deviceList.

Notify_Request_Completion(req,state,errorCode): // called by device driver (e.g., ide.c)
wakeup(req.waitQueue),

*Dequeue_Request(reqQueue,waitQueue): // called by device driver (e.g., ide.c)
wait for non-empty requestQueue;
remove request from requestQueue and return it

Block_Read(dev,blockNum,buf): // called by user (e.g., vfs/pfat, vfs/gosfs)
create blockRequest, add to req.dev.requestQueue
wakeup(req.dev.waitQueue)
wait at req.waitQueue until req no longer pending

Block_Write(dev,blockNum,buf): // just like Block_Read(.)

Open_Block_Device(devname, **pDev) // // wrapper for dev.Open(); called by user (e.g., vfs/pfat)
lookup devname in blockDeviceList, and call device’s Open(), set pDev to device

Close_Block_Device(dev) // wrapper for dev.Close(); called by user (e.g., vfs/pfat)
call dev.Close()

Get_Num_Blocks(dev) // wrapper for dev.get_Num_Blocks(); called by user (e.g., vfs/pfat)

CMSC 412 GeekOS overview – Jan 30 2015 Page 25/31

15. Ide

Ide static variables

• numDrives: number of drives (4)
• drives[i]: holds drive i’s configuration (heads, cylinders, sectors/track, bytes/sector).
• s_ideWaitQueue: ide wait queue. Exported when drive is registered.
• s_ideRequestQueue: ide request queue. Exported when drive is registered.
• s_ideDeviceOps: pointers to functions IDE_Open, IDE_Close, IDE_Get_Num_Blocks;

all have arg blockDev.

Ide functions

IDE_Open(*blockDev): // exported when drive is registered
null-op if blockDev.inUse false, else crashes.

IDE_Close(*blockDev): // exported when drive is registered
null-op if blockDev.inUse true, else crashes.

IDE_Get_Num_Blocks(*blockDev): // exported when drive is registered
returns number of (disk) blocks in disk.

IDE_Read(driveNum, blockNum, *buffer):
reads disk block, doing busy waiting

IDE_Write(driveNum, blockNum, *buffer):
writes disk block; busy waiting.

IDE_Request_Thread(unused arg):
waits at ide wait queue (via blockdev.waitqueue) until awakened
ide request queue
dequeues request from ide request queue (via blockdev.requestqueue)
calls IDE_Read or IDE_Write
calls blockdev.Notify_Request_Completion.

Init_IDE():
reset IDE controller and turn off interrupts
for each drive:

read drive configuration and whether ATA or ATAPI
register drive with blockdev

start kernel thread on IDE_Request_Thread(unused arg)

CMSC 412 GeekOS overview – Jan 30 2015 Page 26/31

16. OS subsystems

Each subsection below identifies a “subsystem” of the OS and lists the associated files.

16.1. Utilities

The following files provide non-OS-specific functionality, such as debug macros, output formatting,
strings, generic lists, linking maps, etc.

• libc/bget.h, common/bget.c, geekos/bget.h: heap structure.
• malloc: memory manager; wrapper for bget.
• geekos/bitset.h|c: bitset structure.
• libc/fmtout.h, common/fmtout.c, geekos/fmtout.h: output formatting.
• geekos/ktypes.h: aliases to integer and char types, min/max functions, etc.
• geekos/kassert.h: debugging macros (KASSERT, TODO, PAUSE, etc).
• common/libuser.h: includes user library (conio.h, sema.h, sched.h, fileio.h).
• geekos/list.h: generic list structure.
• common/memmove.h: standard “memory move” function.
• geekos/range.h: checking memory range containership.
• libc/string.h, common/string.c, geekos/string.h: string manipulation.
• geekos/symbol.h|asm: symbol mangling macros (for linking C and asm).

16.2. Memory system

Physical memory management: divides physical memory into 4KB pages, keeps track of the pages
(kernel, user, free, kernel heap, etc.), gives out memory when needed (e.g., for process creation, data
structures, etc.), gets back memory when released.
Files: geekos/malloc.*, geekos/mem.*.

Segmented memory management: implements segmentation over physical memory; creates segment
selectors and descriptors, maintains GDT.
Files: geekos/segment.*, geekos/gdt.*.

16.3. Process management

Kernel process management: kernel thread state; thread queues; creation, deletion and switching of
kernel threads; thread signalling and synchronization.
Files: geekos/kthread.*, geekos/tss.*, geekos/lowlevel.asm (function Switch_To_Thread).

User process management: augmenting kernel threads with user context and user process creation, dele-
tion, switching. libc/process.*, geekos/user.*, geekos/userseg.c, geekos/tss.*, geekos/lowlevel.asm
(function Switch_To_Thread).

User program loading: loading a user executable (obtained from diskc) into memory.
Files: geekos/elf.*, geekos/argblock.*,

16.4. Interrupt system

This comprises the mapping from interrupt entry points (in IDT) to interrupt handlers and the mapping
from interrupt handlers back to resuming the interrupted processes. Covers both external (hardware)
interrupts and internal interrupts (exceptions, traps).
Files in geekos: idt, int, irq, trap, lowlevel.asm (function Handle_Interrupt, table g_entryPointTable).

CMSC 412 GeekOS overview – Jan 30 2015 Page 27/31

16.5. Syscall system

Syscalls are all instances of a trap 0x90; i.e., trap.c forwards it to the appropriate syscall handler.
Files in geekos: trap (function Syscall_Handler), syscall.

16.6. Device drivers

This comprises the functions for I/O on hardware devices and the interrupt handlers for handling inter-
rupts issued by these devices.

Files in geekos: timer, screen, keyboard, floppy, ide, dma, io.

16.7. Console

The console is the user-level “device” consisting of keyboard and screen.

Files: include/libc/conio.h, src/libc/conio.c, geekos/syscall (handlers for syscalls in conio).

16.8. File system

This comprises the virtual file system, the user interface to the virtual file system, the concrete file
systems (pfat, gsfs2, gosfs) that can be mounted on the virtual file system, and the block device interface
to the hardware disk devices.

OS side (all in geekos): vfs, pfat, gosfs, gsfs2, blockdev, bufcache, syscall (fileio syscall handlers).

User side: libc/fileio.*.

CMSC 412 GeekOS overview – Jan 30 2015 Page 28/31

A. GeekOS distribution listing (spring 2015)

Top level

build COPYING include LICENSE-klibc scripts sound src

/scripts, /sound

./scripts:
display_opt dobuildlib eipToFunction findaddr generrs kerninfo mkcdisk mkuprog numsecs
pad pcat pw random_port scan zerofile

./sound:
applause.wav curve.wav force1.wav README space.wav untie.wav

/build
./build:
cleanSymLinks.py common depend.mak diskc.img diskd.img
geekos libc Makefile Makefile.common Makefile.darwin
Makefile.linux Makefile.linux.x86_64 Makefile.submitserver mux.rb output.log
pagefile.bin routing.sh routing.txt sounds tcp.sh
tools user

./build/common:

./build/geekos:
hdbootsect kernel.bin kernel.exe kernel.syms net setup.bin sound

./build/geekos/net:

./build/geekos/sound:

./build/libc:
errno.c

./build/sounds:
login.wav pianokey.wav startup.wav

./build/tools:
builtFat.exe gfs2f

./build/user:
arp.exe b.exe blkpipe.exe cat.exe c.exe cp.exe echoclnt.exe
echoserv.exe ethrecv.exe ethsend.exe ethsendx.exe execr1.exe execr2.exe execr3.exe
forkexec.exe fork-p1.exe forkpipe.exe gfs2f.exe gfs2test.exe gfs2tst2.exe halt.exe
ifconfig.exe ipsend.exe kill.exe login.exe long.exe ls.exe mkdir.exe
mlc.exe mount.exe multimlc.exe nsp5test.exe nullderf.exe null.exe p5test.exe
pipe-p1.exe pipe-p2.exe ps.exe rec.exe recvbyte.exe rm.exe route.exe
sched1.exe sched2.exe sched3.exe schedtest.exe schedtst.exe sem-p1.exe sem-p2.exe
sem-p3.exe sem-ping.exe sem-pong.exe semtest1.exe semtest2.exe semtest.exe sendbyte.exe
setacl.exe setuid.exe shell.exe spin.exe sum.exe sync.exe time.exe
touch.exe type.exe whoami.exe workload.exe write.exe

CMSC 412 GeekOS overview – Jan 30 2015 Page 29/31

/include
geekos libc

./include/geekos:
alarm.h apic.h argblock.h bget.h bitset.h blockdev.h bootinfo.h bufcache.h
cfs.h cfsmodes.h crc32.h defs.h dma.h elf.h errno.h fileio.h
floppy.h fmtout.h gdt.h gfs2.h gosfs.h ide.h idt.h int.h
io.h irq.h kassert.h keyboard.h kthread.h ktypes.h list.h lock.h
malloc.h mem.h net paging.h pfat.h pipe.h projects.h range.h
screen.h segment.h sem.h serial.h signal.h smp.h sound.h string.h
symbol.h synch.h syscall.h sys_net.h timer.h trap.h tss.h user.h
vfs.h

./include/geekos/net:
arp.h ethernet.h ipdefs.h ip.h ne2000.h netbuf.h net.h port.h rip.h routing.h socket.h
tcp.h udp.h

./include/libc:
bget.h conio.h cyclone fileio.h fmtout.h ip.h libuser.h malloc.h mmap.h net.h
process.h sched.h sema.h signal.h socket.h spin.h string.h

./include/libc/cyclone:
cyclib.cys

CMSC 412 GeekOS overview – Jan 30 2015 Page 30/31

/src
./src:
common geekos libc tools user

./src/common:
bget.c fmtout.c memmove.c string.c

./src/geekos:
alarm.c argblock.c bitset.c blockdev.c bootsect.asm bufcache.c cfs.c crc32.c
defs.asm dma.c elf.c fd_boot.asm floppy.c gdt.c gfs2.c gosfs.c
ide.c idt.c int.c io.c irq.c keyboard.c kthread.c lowlevel.asm
main.c malloc.c mem.c net paging.c pfat.c pipe.c README.txt
screen.c segment.c sem.c serial.c setup.asm signal.c smp.c sound
symbol.asm synch.c syscall.c timer.c trap.c tss.c user.c userseg.c
uservm.c util.asm vfs.c

./src/geekos/net:
arp.c ethernet.c ip.c ne2000.c netbuf.c net.c rip.c routing.c socket.c sys_net.c tcp.c
udp.c

./src/geekos/sound:
docs sound.c

./src/libc:
compat.c conio.c entry.c fileio.c libuser.h lowlevel.s net.c process.c sched.c sema.c
signal.c socket.c spin.c

./src/tools:
buildFat.c fake-blockdev.c gfs2f.c Makefile

./src/user:
arp.c b.c blkpipe.c cat.c c.c cp.c echoclnt.c echoserv.c
ethrecv.c ethsend.c ethsendx.c execr1.c execr2.c execr3.c forkexec.c fork-p1.c
forkpipe.c gfs2f.c gfs2test.c gfs2tst2.c halt.c ifconfig.c ipsend.c kill.c
login.c long.c ls.c mkdir.c mlc.c mount.c multimlc.c nsp5test.c
null.c nullderf.c p5test.c pipe-p1.c pipe-p2.c ps.c rec.c recvbyte.c
rm.c route.c sched1.c sched2.c sched3.c schedtest.c schedtst.c sem-p1.c
sem-p2.c sem-p3.c sem-ping.c sem-pong.c semtest1.c semtest2.c semtest.c sendbyte.c
setacl.c setuid.c shell.c spin.c sum.c sync.c time.c touch.c
type.c whoami.c workload.c write.c

CMSC 412 GeekOS overview – Jan 30 2015 Page 31/31

B. Memory organization after setup and after Main

Address Name(s) in
source code

At end of setup At end of Main

000000 start BIOS code/data
(and PIC interrupt vectors)

001000 PAGE_SIZE end BIOS code/data start available pages

007C00 BOOTSEG:0 bootsect loaded here by BIOS

010000 KERNSEG:0
KERNEL_START_ADDR
KERNEL_THREAD_OBJ

start kernel image end available pages
start kernel image

BSS_START kernel global
structures initialized

BSS_END

kernEnd end kernel image end kernel image
start available pages

090000 INITSEG:0 bootsect reloaded here

090200 SETUPSEG:0 setup loaded here

090400 MEMMAPSEG:0 setup stack (grows towards 0)

0A0000 ISA_HOLE_START start ISA hole (hardware use) end available pages

0B8000 VIDSEG:0 start video memory

100000 ISA_HOLE_END
KERN_THREAD_OBJ

end ISA hole
start initial kernel thread object

start initial kernel thread object

101000 HIGHMEM_START
KERN_STACK

initial kernel thread stack
start of kernel heap

initial kernel thread stack
start of kernel heap

111000 pageListEnd
= HIGHMEM_START +

KERNEL_HEAP_SIZE

end of kernel heap end of kernel heap
start available pages

endOfMem end available pages

FEC00000 IO_APIC_Addr Start of IO APIC region

FEE00000 APIC_Addr Start of local APIC region

	Introduction
	Qemu
	Intel x86 real mode
	Intel x86 protected mode
	Booting and kernel initialization
	Synchronization
	Spin locks
	Disabling interrupts globally
	Mutexes
	Conditions

	Context switching
	Context state
	Stopping and resuming threads
	Handle_Interrupt
	Switch_To_Thread(threadptr)

	Starting threads and spawning user programs
	Starting a kernel thread
	Starting a user thread
	Spawning a user program

	Filesystem overview
	Vfs
	Pfat
	Geekos/fileio.h
	Bufcache
	Blockdev
	Ide
	OS subsystems
	Utilities
	Memory system
	Process management
	Interrupt system
	Syscall system
	Device drivers
	Console
	File system

	GeekOS distribution listing (spring 2015)
	Memory organization after setup and after Main

