Operating Systems: Intro

Shankar

September 3, 2013



Overview

m Computer-system hardware

= processors, memory, |O devices (display, keyboard, disks, ...)
= connected by buses
= |O device: device + adaptor

m Operating system
= Software: runs directly on the hardware, always running

m Provides a more convenient virtual machine

= processes, threads; communication, protection
= virtual address space, filesystem, high-level 10, users

= Shares hardware among processes and OS
= sharing mechanisms + scheduling policies



Course outline — 1

m Hardware review

m OS overview

m ToyOS

m Booting and kernel initialization

m Process: instance of an executing program

= resources: processor, memory, files, 10 devices, ...

= scheduling: short/medium/long term
m IPC: pipes, signals, shared memory, ...
m Threads: active agents of a process

m user, kernel, kernel-mode user



Course outline — 2

m Multi-threaded programs

= synchronization constructs: semaphores, locks, swap, ...
m critical section, producer-consumer, ...

m Deadlocks
m Memory management

= swapping, segmentation, paging, allocation, ...
m Filesystem:

= interface, implementation, ...
= GOSFS, UFS, log-structured, distributed, ...

m Block devices: disks, SSD, ...

m Throughout, relevant parts of GeekOS will be discussed



Hardware Review



Processor — 1 Hardware review

m Executes (machine) instructions from memory

m State

= general-purpose registers (gpr)
= instruction pointer (ip) // aka program counter
= stack pointer (sp)
= processor status (ps)
= arith/logic flags: overflow, carry, zero, ...
= mode: user/kernel
= intrpts on/off
paging on/off

...
» address-translation stuff
= segment/page table base address, associative maps



Processor — 2 Hardware review

m Instructions
= move
= io (in/out)
= arith/logic

= jmp[cond] addr

push reg: mem[sp—| < reg
pop reg: reg < mem[+sp]

call addr: push ip; ip < addr
ret: pop ip



Processor — 3 Hardware review

m Instructions
= sw-intrpt n // aka traps, exceptions; from cpu
= push ip, ps
ip <— mem|[n]
ps < intrpt-off, kernel-mode
= rti: pop ps, Ip
= hw-intrpt n // from external, adaptor
= same action as swi

m Privileged instr: io, set kernel mode, clear cache, ...
= user-mode execution — exception
m user-mode — kernel-mode: only via sw/hw intrpts



Adaptors (aka controllers) Hardware review

m Adaptors (aka controllers)
m processor/memory <— adaptor <— device

m Disk adaptor

= disk: holds blocks at surface/track/sector

= data register: holds input/output data

= pcontrol register:
= operation: r, w, seek, ...
= location: in disk
= addrress: of buffer in memory
= intrpt on/off = dma on/off
= busy: on/off // for non-interrupt 1O

m Adaptors: display, keyboard, mouse, USB, Ethernet, WLAN, ...
m Varying data unit size, transfer bandwidth, latency



Memory Hardware review

m Ildeal

= single-level memory

m accessible to all processors and dma-capable adaptors
= fast enough to handle simultaneous requests

= unrealistic

m Reality

multiple levels: caches, memories

small /fast — large/slow

caches: local to a processor

local memories: accessible by a subset of processors/adaptors
global memory: accessible by all processors/adaptors



Active agents Hardware review

m Active agents: processors + adaptors
m Execute independently

m Interact via
= i0 instructions
= processor reads/writes adaptor registers
s hw-interrupts
= adaptor makes processor execute io code
= shared memroy
= buffers accessed by processor and by adaptor via dma



Operating System Overview



Introduction OS overview

m Provides a more convenient virtual machine
= processes + threads

= protection for each process
= synchronization (IPS): semaphores, locks, signals, ...

= communication (IPC): sockets, pipes, shared memory, ...

= virtual structured address space
= filesystem, high-level 10
= users

m Shares hardware among processes and OS
= sharing mechanisms + scheduling policies

m Active agents: processes + threads

= execute independently
m interact via synchronization/communication constructs



Processes + Threads 0S overview

m Process: executing instance of a program

w Life: start, execute, terminate (perhaps)

= Address space: text segment (code) + data segment
» Resources: files, sockets, ...

» Threads: each executes code; has its own stack

m Traditional programs: process has exactly one thread
= address space: text, data, stack

m Multi-threaded programs: one or more threads per process
= address space: text, data, stackq, stacks, ...

m OS makes all processes and threads execute concurrently

= gives each process/thread a share of the hardware resources
= sharing done in time and/or space (depends on resource)



PCB (Process Control Block) 0S overview

m PCB per process: holds enough state to resume the process

= address-space: text/data locations; memory or disk
= for each thread: processor state; stack location

» 1O state

= accounting info

" ...

= status

= running: executing on a processor

= ready (aka runnable): waiting for a processor

= waiting: for a non-processor resource (eg, memory, 10, ...
= swapped-out: its process holds no memory

m running <> ready: timer intrpt/short-term scheduler
running — waiting — ready: io request/completion
ready/waiting <> swapped-out: medium-term scheduler



Virtual Address Space 0S overview

m Address space of a process
m Structured into segments/pages

m attributes: size, allowed access, ...
= checked during execution

m OS maps each virtual address to

= address in physical memory (accessible to processor)
= location in disk (processor access — exception)

m Mapping: segment/page tables, associative maps, ...
m Allocation of physical memory to process
= maximize multi-processing w/o thrashing



Filesystem 0S overview

m Non-volatile structure of directories and files
m Tree/acyclic structure
m Each node is a directory or a file

= file: holds data; variable size
= directory: pointers to directories and files
= attributes: owner, access rights, creation time, ...

m Processes can create/delete/read /modify /execute nodes
m Executable file: code + data segments, loading/linking info

m OS implements filesystem on block devices (disks, ...)
= each node is mapped to one or more blocks
= pointer structure to locate blocks of any node
= use free blocks to expand nodes



System Calls 0S overview

m swi-syscall n: like a function call except

= function (“syscall handler”) is in kernel
m n is not address but an index to a kernel table of addresses

m Classes of system calls
» Process management
= create/terminate a process/thread (including self)
= Filesystem and 10
= create, delete, open, read, write, close, modify attributes
= Information
= time, process information, hardware, 10 devices, ...
= Communication
= connect, send, receive, terminate



	Hardware Review
	Operating System Overview

