
Operating Systems: Intro

Shankar

September 3, 2013



Overview

Computer-system hardware

processors, memory, IO devices (display, keyboard, disks, ...)
connected by buses
IO device: device + adaptor

Operating system

Software: runs directly on the hardware, always running

Provides a more convenient virtual machine

processes, threads; communication, protection
virtual address space, �lesystem, high-level IO, users

Shares hardware among processes and OS

sharing mechanisms + scheduling policies



Course outline � 1

Hardware review

OS overview

ToyOS

Booting and kernel initialization

Process: instance of an executing program

resources: processor, memory, �les, IO devices, ...
scheduling: short/medium/long term

IPC: pipes, signals, shared memory, ...

Threads: active agents of a process

user, kernel, kernel-mode user



Course outline � 2

Multi-threaded programs

synchronization constructs: semaphores, locks, swap, ...
critical section, producer-consumer, ...

Deadlocks

Memory management

swapping, segmentation, paging, allocation, ...

Filesystem:

interface, implementation, ...
GOSFS, UFS, log-structured, distributed, ...

Block devices: disks, SSD, ...

Throughout, relevant parts of GeekOS will be discussed



Hardware Review



Processor � 1 Hardware review

Executes (machine) instructions from memory

State

general-purpose registers (gpr)
instruction pointer (ip) // aka program counter
stack pointer (sp)
processor status (ps)

arith/logic �ags: over�ow, carry, zero, ...
mode: user/kernel
intrpts on/o�
paging on/o�
...

address-translation stu�

segment/page table base address, associative maps

...



Processor � 2 Hardware review

Instructions

move
io (in/out)
arith/logic

jmp[cond] addr

push reg: mem[sp�] ← reg
pop reg: reg ← mem[+sp]

call addr : push ip; ip ← addr

ret: pop ip



Processor � 3 Hardware review

Instructions

sw-intrpt n // aka traps, exceptions; from cpu

push ip, ps
ip ← mem[n]
ps ← intrpt-o�, kernel-mode
rti: pop ps, ip

hw-intrpt n // from external, adaptor

same action as swi

...

Privileged instr: io, set kernel mode, clear cache, ...

user-mode execution → exception

user-mode → kernel-mode: only via sw/hw intrpts



Adaptors (aka controllers) Hardware review

Adaptors (aka controllers)

processor/memory ←→ adaptor ←→ device

Disk adaptor

disk: holds blocks at surface/track/sector
data register: holds input/output data
pcontrol register:

operation: r, w, seek, ...
location: in disk
addrress: of bu�er in memory
intrpt on/o� dma on/o�
busy: on/o� // for non-interrupt IO

Adaptors: display, keyboard, mouse, USB, Ethernet, WLAN, ...

Varying data unit size, transfer bandwidth, latency



Memory Hardware review

Ideal

single-level memory
accessible to all processors and dma-capable adaptors
fast enough to handle simultaneous requests
unrealistic

Reality

multiple levels: caches, memories
small/fast −→ large/slow
caches: local to a processor
local memories: accessible by a subset of processors/adaptors
global memory: accessible by all processors/adaptors



Active agents Hardware review

Active agents: processors + adaptors

Execute independently

Interact via

io instructions

processor reads/writes adaptor registers

hw-interrupts

adaptor makes processor execute io code

shared memroy

bu�ers accessed by processor and by adaptor via dma



Operating System Overview



Introduction OS overview

Provides a more convenient virtual machine

processes + threads

protection for each process
synchronization (IPS): semaphores, locks, signals, ...
communication (IPC): sockets, pipes, shared memory, ...

virtual structured address space
�lesystem, high-level IO
users

Shares hardware among processes and OS

sharing mechanisms + scheduling policies

Active agents: processes + threads

execute independently
interact via synchronization/communication constructs



Processes + Threads OS overview

Process: executing instance of a program

Life: start, execute, terminate (perhaps)
Address space: text segment (code) + data segment
Resources: �les, sockets, ...
Threads: each executes code; has its own stack

Traditional programs: process has exactly one thread

address space: text, data, stack

Multi-threaded programs: one or more threads per process

address space: text, data, stack1, stack2, ...

OS makes all processes and threads execute concurrently

gives each process/thread a share of the hardware resources
sharing done in time and/or space (depends on resource)



PCB (Process Control Block) OS overview

PCB per process: holds enough state to resume the process

address-space: text/data locations; memory or disk
for each thread: processor state; stack location
IO state
accounting info
...
status

running: executing on a processor
ready (aka runnable): waiting for a processor
waiting: for a non-processor resource (eg, memory, IO, ...)
swapped-out: its process holds no memory

running ↔ ready: timer intrpt/short-term scheduler
running → waiting → ready: io request/completion
ready/waiting ↔ swapped-out: medium-term scheduler



Virtual Address Space OS overview

Address space of a process

Structured into segments/pages

attributes: size, allowed access, ...
checked during execution

OS maps each virtual address to

address in physical memory (accessible to processor)
location in disk (processor access → exception)

Mapping: segment/page tables, associative maps, ...

Allocation of physical memory to process

maximize multi-processing w/o thrashing



Filesystem OS overview

Non-volatile structure of directories and �les

Tree/acyclic structure

Each node is a directory or a �le

�le: holds data; variable size
directory: pointers to directories and �les
attributes: owner, access rights, creation time, ...

Processes can create/delete/read/modify/execute nodes

Executable �le: code + data segments, loading/linking info

OS implements �lesystem on block devices (disks, ...)

each node is mapped to one or more blocks
pointer structure to locate blocks of any node
use free blocks to expand nodes



System Calls OS overview

swi-syscall n: like a function call except

function (�syscall handler�) is in kernel
n is not address but an index to a kernel table of addresses

Classes of system calls

Process management

create/terminate a process/thread (including self)

Filesystem and IO

create, delete, open, read, write, close, modify attributes

Information

time, process information, hardware, IO devices, ...

Communication

connect, send, receive, terminate


	Hardware Review
	Operating System Overview

