
Distributed consensus: Paxos

Shankar

May 10, 2022



Distributed consensus service

Distributed system: nodes interacting via message-passing

Users at nodes can repeatedly submit values

System provides users a consensus-log λ of submitted values

each submitted value appears at most once in λ
each node j maintains a pre�x of λ
as values are submitted, λ and the pre�xes grow
users informed when their submitted values are rejected

Typically desired in a failure-prone environments

Eg, state machine (eg, �lesystem) replicated at each node

values are commands
each state machine executes the log



Failure model

Nodes can fail

each node has some non-volatile memory
when a node fails, it does nothing
when a node recovers, its volatile state is re-initialiazed and its
non-volatile state is preserved
this is a �fail-stop� (�non-Byantine�) failure model

Messages can be lost, duplicated, reordered

At any time, at least half the nodes are working

So for a value to be committed and always available, it must be
in the non-volatile memory of a majority of nodes



Paxos background

Each execution of Paxos proceeds in sessions (aka �rounds�). A node starts a
session to append new values to the log. In the session, the node goes through
a �prepare phase� followed by an �accept phase�.

Prepare phase: The node sends prepare requests to other nodes, and receives
prepare responses from them, each containing the responder's log (actually a
log su�x). Upon receiving responses from a majority of nodes, it merges them
into its log (which then equals the current consensus log), appends its new
values to the log, and enters the accept phase.

Accept phase: The node sends accept requests with its log to other nodes, and
receives accept responses from them, each signifying that the sender has
incorporated the log. Upon receiving acks from a majority of nodes, the log is
committed as the new consensus. (For brevity, our accept requests contain the
entire log; it is easy to have it include only the needed su�x.)

At any time, multiple sessions can be ongoing. Each session has a unique
session number, chosen by the node starting the session. At any time, a node
participates in the highest-numbered session it knows of.



Paxos node

Each node is de�ned by a set of variables and a set of rules.
Some variables are in non-volatile memory.

At any point, the values of the variables de�ne the state of the node.

The rules de�ne how the state of a node can change.
A rule has an enabling condition (�EC�) predicate.
A rule is atomically executed only when its EC holds.
An input rule is initiated by the node's environment.
A non-input rule is initiated by the node.

Let M be the minimum number of nodes for a majority, ie, (1 + #nodes)/2.



Node j non-volatile variables

csn ← 0 // current session number

Session number of this node's current session. Gets only increasing val-
ues. The session numbers generated by di�erent nodes have no element
in common (other than 0). This is typically achieved by using the node
id when generating a session number. (csn can be a [int, j ] tuple, in
which case �0� would be [0,j].)

log ← [[0,None]]

Non-decreasing sequence of [session number, value] pairs. Given any
log entry, the value �eld never changes but the session number �eld
may increase (intially it indicates the session in which the value was
generated).

cx ← 0 // commit index

log[0..cx] is committed. The sequence of value �elds of log[0..cx]
is the pre�x of λ available at this node, ie, the �log� that this node's user
sees.



Node j volatile variables

role ← �follower�

Can be �follower�, �candidate� or �leader�. It is �candidate� if this node
is in the prepare phase. It is �leader� if this node is in the accept phase.
Otherwise it is �follower�, ie, node did not initiate its current session.

prs ← {} // prepare responses

Exists only when this node is a candidate. Map from node ids to log
su�xes. prs[k] exists i� a prepare response was received from node k,
in which case it equals the log su�x in the response.

ars ← {} // accept responses

Exists only when this node is a leader. Map from node ids to commit
indices. ars[k] exists i� an accept response was received from node k,
in which case it equals the commit su�x in the response.



Messages exchanged between nodes

Messages are tuples with the following �elds:

type: PREQ, PRSP, AREQ, ARSP
// prepare request/response, accept request/response

src // sender's node id
sn // sender's current session number
cx // sender's commit index
log // sender's log or su�x of log

Prepare request: [PREQ, src , sn, cx ] // sent when candidate

Prepare response: [PRSP, src , sn, log ] // response to PREQ
log is the sender's log su�x (starting at the requested cx)

Accept request: [AREQ, src , sn, cx , log ] // sent when leader
log is the sender's log

Accept response: [ARSP, src , sn, cx ] // response to AREQ



Rules � 1

input rule submit(v):
IA: role = "leader"
log.append([csn,v])

rule become_candidate():
EC: role = "follower"
role ← "candidate"
csn ← next(csn, j)
prs ← {j:log[cx..]}

rule become_leader():
EC: role = "candidate",

prs.size ≥ M
role ← "leader"
log[0..cx].

append(getmax(prs))
ars ← {j:log.size}

rule commit():
EC: role = "leader", ars.size ≥ M
y ← max {n such that ars has M

entries that are at least n}
cx ← max(y, cx)

rule restart():
EC: True
role ← FOLLOWER

rule send_PREQ(k):
EC: role = "candidate", k not in prs
send(PREQ,j,csn,cx) to k

rule send_AREQ(k):
EC: role = "leader",

(k not in ars) or ars[k] < cx
send(AREQ,j,csn,cx,log) to k



Rules � 2

input recv(msg):
if msg.sn > csn:
role, csn ← "follower", msg.sn

if msg.type = PREQ and msg.sn = csn:
send(PRSP,j,csn,log[msg.cx+1..]) to msg.src

elif msg.type = AREQ and msg.sn = csn:
log ← msg.log // if msg.log is a suffix, use extendlog
cx ← max(cx, msg.cx)
send(ARSP,j,csn,log.len) to msg.src

elif msg.type = PRSP, role = "candidate", msg.sn = csn:
prs[msg.src] ← msg.log

elif msg.type = ARSP, role = "leader", msg.sn = csn:
if msg.src not in ars:

ars[msg.src] ← msg.cx
else:

ars[msg.src] ← max(ars[msg.src], msg.cx)

// Instead of ignoring msgs of old sessions, can send reject responses.



Helper functions

helper getmax(prs):
for k in prs, k6= j:
x ← min(prs[k].len, prs[j].len)

for i in 0..x-1:
if prs[j][i].sn < prs[k][i].sn:

prs[j][i].val ← prs[k][i].val
if prs[j].len < prs[k].len:

prs[j].append(prs[k][i..])
for in in 0..prs[j].len-1:
prs[j][i].sn ← csn

helper extendlog(log, ix, rlog): // currently not used in rules
minlen ← min(log.len, rlog.len)
for i in ix..minlen:
if log[i].sn 6= rlog[i].sn:

break
if i < minlen:
log.remove(i..)

log.append(rlog[i..])


