Transport Layer: Correctness Principles®

A. Udaya Shankar
Computer Science Department
University of Maryland, College Park

October 25, 2002

1 Introduction

The transport layer of a TCP/IP computer network is situated above the network layer and
below the applications layer, as shown in Figure 1. The network layer provides unreliable packet
transfer service between any two hosts. The transport layer uses this network service and pro-
vides transport services between any two applications in the network. Applications include email
(SMTP), remote login (TELNET, SSH), file transfer (FTP), web browsers (HTTP), remote file sys-
tems (NFS), name-to-address translation (DNS), voice and video streaming (e.g. Real Networks),
internet telephony (e.g. Vocaltec), etc. We refer to applications using the transport service as
transport users, or users for short. The transport services are provided by transport protocols,
which are distributed algorithms running on the hosts. There are different transport services, and
hence different transport protocols. We refer to the components of the protocols running at the
hosts as transport entities, or entities for short.

host 1 host 2 host n
application Iayer< eee ees s
transport service ——— +--f-ese-{--F--1--|-ess-{-|----- A s e e
transport layer
network service ——{-----f}------- - - -

network layer

Figure 1: The application, transport and network layers.

Historically, transport protocol design has been driven by the need to operate correctly inspite
of unreliable network service and failure-prone networks and hosts. In particular, the following
failure assumptions, which are still valid in today’s TCP/IP networks, were made:

e Hosts can fail and recover. A host failure is “fail-stop”, that is, a failed entity performs no
actions and retains no state information except for stable storage.

*An earlier version of this, titled “Transport Layer Principles”, appears in The Communication Handbook, CRC
Press, 1996

Transport Layer Principles Shankar — October 25, 2002

e The channels, i.e., packet transfer service, provided by the network layer between any two
hosts can lose, duplicate, and reorder messages in transit. The channels impose (usually
implicitly) a “maximum lifetime” on all messages, which is typically much larger than the
expected end-to-end delay (e.g., an hour versus seconds).

e Channels can fail and recover. A channel failure means that the probability of message
delivery becomes negligible, that is, even with retransmissions a message is not delivered
within a specified time.

User multiplexing and demulitplexing: Providing user-to-user service implies that the
transport layer has to do user multiplexing and demulitplexing at each host. The TCP/IP archi-
tecture uses IP addresses (32 bits in IPv4) to identify hosts, port numbers (16 bits in IPv4) to
identify users, and transport protocol numbers (8 bits in IPv4) to identify transport protocols.
Every transport user has a local port number (its port number) and a local IP address (the
IP address of its host). Every IP packet has (in its header) the following attributes: sender port
number, sender host IP address, destination port number, destination host IP address,
and transport protocol number. A packet’s sender attributes are the local attributes of the
user that sent the packet. A packet’s destination attributes are the local attributes of the user that
is supposed to get the packet.

User-user transport service: The “ideal” transport service between two users is one that
transfers data packets reliably and with low-delay and low-jitter. Reliable data transfer means
that data is delivered in the same sequence it was sent and without loss. Low-delay means that
data sent is delivered within a specified (usually small) time bound of it being sent. Low-jitter
means that the time intervals between data sends is preserved at delivery within specified (usually
small) time bounds. Achieving such ideal service requires the network to be capable of handling
the worst-case load at any time, which, if the network is not to be incredibly expensive, means
imposing severe restrictions on the network access and the data rates available to users (as in
telephony networks).

Fortunately, this ideal service is hardly ever required by applications. The transport layer in
TCP/IP networks does not strive for it. Instead it provides two separate services: a reliable
service which can suffer high delays and jitter, and an unreliable service which does no better
than the network-layer service. The reliable service, implemented by a transport protocol known
as TCP, is used by applications where data integrity is essential, such as file transfer, email, remote
login, etc. The unreliable service, implemented by a transport protocol known as UDP, is used by
applications where data loss can be tolerated but low-delay or low-jitter is desired, such as internet
telephony, voice/video streaming, and periodic control updates (e.g., DNS, routing). A TCP/IP
network can also have other transport protocols (e.g., IPX).

To a first approximation, reliable transport service is nothing but reliable data transfer between
any two users. But reliable data transfer requires resources at the entities, such as buffers and
processes for retransmitting data, reassembling data, etc. These resources typically cannot be
maintained across failures. Furthermore, maintaining the resources continuously for every pair
of users would be prohibitively inefficient, because only a very small fraction of user pairs in a
network exchange data with any regularity, especially in a large network such as the Internet.
Therefore, a reliable transport service involves connection management and data transfer.
Data transfer provides for the reliable exchange of data between connected users. Connection
management provides for the establishment and termination of connections between users.

In summary, reliable transport service (e.g., TCP service) involves three aspects: user multiplex-
ing, reliable connection management between users, and reliable data transfer between connected

Transport Layer Principles Shankar — October 25, 2002

users. Unreliable transport service (e.g., UDP service), on the other hand, involves two aspects:
user multiplexing and unreliable data transfer between users.

Application-level architecture: Currently, applications follow the so-called client-server
architecture. Here, the users of the transport layer are partitioned into clients and servers and con-
nections are initiated only by clients and only to servers. Traditionally, servers are on prespecified
machines and use prespecified ports. A recent trend is peer-to-peer architectures, where servers
are use arbitrary machines and ports and are typically on the same machines as clients.

However, the transport and lower layers are not concerned about whether its users follow the
traditional client-server model or a peer-to-peer model. There is nothing in the TCP /IP protocols
and message headers that identifies these aspects of the sender or destination.

Organization of this note: Section 2 describes UDP, in particular, user multiplexing in
UDP. Section 3 describes the basic features of reliable transport services. Section 4 describes user
multiplexing in TCP. Section 5 describes a protocol that provides reliable data transfer. Section 6
describes a protocol that provides connection management. Section 7 combines the previous proto-
cols to obtain a transport protocol that provides the same service as TCP and is simpler. Section 8
describes so-called minimum latency transport protocols. Section 9 concludes.

Note: This report deals with correctness issues in the transport layer. It does not address
the equally important performance issues, which deal with how to specialize, or “tune”, a correct
system to achieve good performance for the situations usually encountered.

2 Unreliable Transport Service

UDP, the TCP/IP transport protocol that provides unreliable service, is essentially user multiplex-
ing added on top of the unreliable host-to-host message transfer service provided by the network
layer. Hence the rest of this section describes user multiplexing in UDP.

As mentioned earlier, TCP/IP associates a local port number to each user, and TCP /IP pack-
ets identify the end-users by sender port number, sender IP address, destination port number,
destination IP address, and transport protocol number.

The application layer invariably has other forms of identifiers for users, depending on the host
operating system. Thus users need to be mapped to port and protocol numbers. Furthermore, the
mapping to port numbers should be dynamic because the set of users of a transport service at a
host is not static.

UDP uses the obvious approach to mapping. Each UDP user is identified network-wide by its
local port number, its IP address, and its protocol number (17 for UDP). The local port number
is assigned when it starts UDP service.

e When a user requests access to the UDP service, it gets a local port number, which is either
one that is specified by the user (e.g., if it is a server) or any free port number. If no
appropriate port number is free, the user is denied access to the UDP service.

e Once a user has access to the UDP service, it can send UDP packets with packet sender
attributes set to the user’s local attributes, transport protocol number set to UDP, and any
destination attributes. [More precisely, the UDP entity adds the sender port number and
destination port number and IP address. The IP entity attaches the sender IP address and
protocol number.]

Transport Layer Principles Shankar — October 25, 2002

e Once a user has access to the UDP service, it can receive any UDP packet with the packet
destination attributes equal to the user’s local attributes. [More precisely, the local IP entity
at a host screens a received packet based on the packet’s destination IP address and protocol
number, either discarding it or passing it up to the appropriate transport entity. The UDP
entity at the host screens a received packet based on the packet’s destination port, either
discarding it or passing it up to the appropriate user.]

e When a user stops using the UDP service, its local port number becomes free.

3 Reliable Transport Service

Recall that reliable transport service has three aspects: user multiplexing, connection management,
and data transfer. TCP, the TCP/IP transport protocol that provides reliable service, has sophis-
ticated mechanisms for each of these aspects. User multiplexing in TCP uses a different mechanism
from that in UDP. Data transfer provides for the reliable exchange of data between connected users.
Connection management provides for the establishment and termination of connections between
users. Users can open and close connections to other users, and can accept or reject incoming
connection requests. Resources are acquired when a user enters a connection, and released when
the user leaves the connection. An incoming connection request is rejected if the user has failed or
its transport entity does not have adequate resources for new connections.

A key concern of transport protocols is to ensure that a connection is not infiltrated by old
messages that may remain in the network from previous terminated connections. The standard
techniques are to use the 3-way handshake mechanism for connection management and the
sliding window mechanism for data transfer within a connection. These mechanisms use cyclic
sequence numbers to identify the connection attempts of a user and the data blocks within a con-
nection. The protocol must ensure that received cyclic sequence numbers are correctly interpreted,
and this invariably requires the network to enforce a maximum message lifetime.

To define the correctness properties of reliable transport service, we first define the notion of
incarnations. Each user goes through a succession of incarnations. An incarnation of a client
is started whenever the client requests a connection to any server. An incarnation of a server
is started whenever the server accepts a (potentially new) connection request from any client.
Every incarnation is assigned an incarnation number when it starts; the incarnation is uniquely
distinguished by its incarnation number and user id. (In TCP, a user is identified by its local /remote
port numbers and IP addresses and the apppropriate protocol id.)

Once an incarnation x of a user c is started in an attempt to connect to a user s, it has one
of two possible futures. The first possibility is that at some point x becomes open and acquires
an incarnation number y of some incarnation of s — we refer to this as “x becomes open to
incarnation y of s”; at some later point x becomes closed. The second possibility is that x becomes
closed without ever becoming open. This can happen to a client incarnation either because its
connection request was rejected by the server or because of failure (in the server, the client, the
relevant transport entities, or the channels). It can happen to a server incarnation either because
of failure or because it was started in response to a connection request that later turns out to be a
duplicate request from some old, now closed, incarnation.

Because of failures, it is also possible that an incarnation x of ¢ becomes open to incarnation y
of s but y becomes closed without becoming open. This is referred to as a “half-open” connection.

A connection is an association between two open incarnations. Formally, a connection exists
between incarnation x of user ¢ and incarnation y of user s if y has become open to x and x has
become open to y. The following properties are desired of connection management:

Transport Layer Principles Shankar — October 25, 2002

e Consistent connections: If an incarnation x of user ¢ becomes open to an incarnation y of user
s, then incarnation y is either open to x or will become open to x unless there are failures.

e Consistent data-transfer: If an incarnation x of user ¢ becomes open to an incarnation y of
user s, then x accepts received data only if sent by y.

e Progress: If an incarnation x of a client requests a connection to a server, then a connection is
established between x and an incarnation of the server within some specified time, provided
the server does not reject x’s request and neither client, server nor channels fail within that
time.

e Terminating handshakes: The transport entity (of either user) cannot stay indefinitely in a
state (or set of states) where it is repeatedly sending messages expecting a response that never
arrives. (Such “infinite chatter” is worse than deadlock because in addition to not making
progress, the transport protocol is consuming precious network resources.)

Given a connection between incarnations x and y, the following properties are desired of the
data transfer between x and y:

e In-sequence delivery: Data blocks are received at y (x) in the same order as they were sent
by x ().

e Progress: A data block sent by x (y) is received at y (x) within some specified time, provided
the connection is not terminated (either intentionally or due to failures) within that time.

As you can see, reliable transport service is not easily defined. As you can guess, TCP uses
sophisticated mechanisms to achieve it. To ease our understanding of these mechanisms, we shall
first examine not TCP itself but some conceptually cleaner protocols that achieve the same services.

In the following sections, we develop in stages a transport protocol that achieves this reliable
service. We first describe the user multiplexing mechanism of TCP. We next develop a protocol sim-
pler than TCP that provides reliable one-way data transfer between permanently connected users.
We next develop a protocol simpler than TCP that that provides reliable connection management
between a client user and a server user. We then combine the components to form a protocol that
provides reliable transport service (minus user multiplexing).

4 Multiplexing in TCP

TCP uses a more sophisticated multiplexing scheme than UDP. A TCP user is identified network-
wide by five attributes: local port number, local host IP address, transport protocol number (6 for
TCP), remote port number, and remote host IP address. The first three attributes are as
in UDP. The remote port number and remote IP address are the local port number and local host
IP address of the remote peer user. The remote attributes are “nil” if the remote user has not yet
been identified. Once the remote user is identified, the remote attributes become non-nil and do
not change.
A user’s interaction with the TCP service is as follows:

e When the user requests access to the TCP transport service, the request can specify (1) a
particular local port number, (2) a remote port number and IP address, or (3) both. If 1 is
not specified, any local port number will do. If no appropriate port number is free, the user
is denied access to the TCP service. If 2 is not specified, the remote attributes are set to nil.
[Typically, a server specifies 1 but not 2 and a client specifies 2 but not 1.]

Transport Layer Principles Shankar — October 25, 2002

e A TCP user whose remote attributes are not nil can (1) send TCP packets whose sender
attributes match the user’s local attributes and destination attributes match the user’s remote
attributes; and (2) receive TCP packets whose destination attributes match the user’s local
attributes and sender attributes match the user’s remote attributes.

e A TCP user whose remote attributes are nil (presumably a server) can receive TCP packets
whose destination atributes match the user’s local attributes provided there is no other local
TCP user whose local and remote attributes match, respectively, the destination and sender
attributes of the packet (such a user, if present, would get the packet).

e When a user stops using the TCP transport service, its local port number becomes free.

This approach of using both local and remote attributes to identify a user supports the client-
server paradigm very nicely, in particular, the handling of many clients simultaneously using the
same service. Consider a host H providing a service over TCP. H dedicates a prespecified local port
number, say pl, to the service (standard services have prespecified, or “well-known” port numbers,
e.g., FTP has port number 21). H creates a server user, say S, with local port number set to pl,
transport protocol number set appropriately, and remote port number and IP address set to nil.
When a client user, say C, on another host G wants to avail of this service, C would get local port
number set to an arbitrary value, say p2, remote port number set to pl, remote IP address set to
H’s IP address, and transport protocol number set appropriately. When the request packet arrives
at the transport layer in H, it gives the packet to S (assuming that there is no user at H with local
port number pl, remote port number p2, remote IP address equal to G’s IP address). The server S
then can create another server specifically for servicing client C; this new server would have remote
port number set to p2 and remote IP address set to G’s IP address, and hence it can use local port
number pl, same as S.

5 A Data-Transfer Protocol

This section describes the sliding-window method for achieving reliable flow-controlled data trans-
fer, assuming that users are always connected and correctly initialized. Later we incorporate con-
nection management. Throughout these sections, we consider the configuration shown in Figure 2,
with users ¢ and s, and associated transport entities ¢ and s connected by unreliable channels.

transport service

entity ¢ entity s

B %,,,,,,,,,,n,etyy@rk,servige ,,,,,,,,,,, E— -

(lose, reorder, duplicate
fail. recover)

Figure 2: Network with two users.

Consider the two entities ¢ and s connected by unreliable network channels. User ¢ produces
data blocks to be delivered to user s. Because the channels can lose messages, every data block
has to be retransmitted until it is acknowledged. For throughput reasons, entity ¢ should be able
to have several data blocks outstanding, i.e., sent but not acknowledged. Similarly, entity s should

Transport Layer Principles Shankar — October 25, 2002

be able to buffer data blocks received out-of-sequence (due to retransmissions or network-layer
reordering).

Let us number the data blocks produced by user ¢ with successively increasing sequence num-
bers, starting from 0. The sliding-window mechanism maintains two windows of sequence numbers,
one at each entity, as shown in Figure 3,

entity ¢ entity s
data blocks data blocks
generated delivered
0 0
1 1
2 2
acked | . . delivered
= nd
na —*4 received
outstanding -~ nr
Se&'d (not received) receijve
window) window
ns —= possibly
natsw—1 —— received
<— nd+RW-1
not yet sent

ng —

awn

Figure 3: Sliding window mechanism.

Entity ¢ maintains the following variables:

e shuff: buffer of size SW data blocks.

e ng: { 0,1, .. }; initially 0. Number of data blocks generated by the local user.
e ns: {0, 1, .. }; initially 0. Number of data blocks sent at least once.

e na: { 0, 1, ... }; initially 0. Number of data blocks acknowledged.

e sw: {0,1,.. SW }; initially SW (any value is acceptable). Maximum number of data blocks
that can be outstanding. Used for flow control, i.e., controlling the rate at which packets are
sent.

Data blocks na to ng—1 have been accepted from the local user and are not yet acked, so they
must be buffered. Data blocks na to ns—1 are outstanding. The sequence numbers na to na+sw—1
constitute the send window; only data blocks in this window can be sent. Note that sw is the
size of the send window; flow control is achieved by controlling sw. The following hold at all times:
na<ns<ng, ns—na<sw, and ng—na<SW. Note that na 4+ sw can be higher or lower than ng; that
is, entity ¢ may be allowed to send more data blocks than it has.

Entity s maintains the following variables:

Transport Layer Principles Shankar — October 25, 2002

e rbuff: buffer of size RW data blocks.
e nd: {0, 1, ... }; initially 0. Number of data blocks delivered to the local user.
e nr: {0, 1, ... };initially 0. Number of data blocks received in sequence from the remote user.

e rw: {0, 1, .., RW }; initially RW. Number of out-of-sequence data blocks that the entity can
buffer. Always equals RW—nr+nd.

Data blocks 0 to nd—1 have been delivered in sequence to the local user. Data blocks nd to
nr—1 have been received and ready for delivery to the local user, but until then they must be
bufered. At all times, nd<nr holds. Entity s can buffer up to RW data blocks, that is, the ones
in the range nd to nd+RW—1. Data block nr has not been received. Any data block in the range
nr+1 to nd+RW—1 that has been received (out of sequence) is buffered. The sequence numbers nr
to nd+RW—1 constitute the receive window, and rw indicates its size.

We now consider how an entity can identify a received data block or acknowledgement. The
easiest way is for the message to include the sequence number of the concerned data block. But
such a sequence number field would grow without bound, which is unsuitable for packet formats.
The typical solution is to use cyclic sequence numbers in packets; i.e., mod(N,j) for some N, instead
of the “unbounded” sequence number j. (Note: mod(N,j) is defined as satisfying 0 < mod(N,j) < N
and j = mod(N,j) + k for some integer k.)

When entity s receives a cyclic sequence number cj, it looks for a matching unbounded sequence
number j in the receive window, i.e., j such that mod(N,j) equals cj; if such a j exists it treats cj as
corresponding to that. Note that nr + mod(N, ¢j — nr) is the first unbounded number on or after
nr that matches cj; it lies in the receive window if mod(N, ¢j — nr) < rw.

Similarly, when entity c receives a cyclic sequence number cj, it looks for a matching unbounded
sequence number j in the send window i.e., j such that mod(N.,j) equals cj; if such a j exists it treats
cj as corresponding to that. Again, na+mod(N,cj —na) is the first unbounded number on or after
na whose modulo N value equals ¢j; it lies in the send window if mod(N, ¢j — nr) < rw.

To ensure that a received cyclic sequence number is correctly interpreted, it is necessary for the
network to enforce a maximum message lifetime, i.e., no message older than the lifetime remains
in the network. It then suffices if N satisfies

N > SW+RW+%

where SW and RW are the maximum sizes of the send and receive windows, L is the maximum
message lifetime, and ¢ is the minimum time between successive data block sends. This bound is
derived below.

Flow-control is another issue in data transfer, i.e., entity ¢ should not send data faster than
the network or entity s can handle. By dynamically varying the send window size, the sliding
window mechanism can also achieve flow control. In particular, consumer-directed flow control
works as follows: entity s regularly informs entity c of its current receive-window size and entity c
sets its send-window size accordingly. Note that in this case, the above condition on N reduces to
N > 2RW + L/J.

We finish this section with a specification of the sliding-window protocol, under the following
conventions:

e The data messages of the protocol have the form (D, sid, rid, data, cj), where sid is the
sender’s id, rid is the intended receiver’s id, data is a data block, and c¢j is its cyclic sequence
number.

Transport Layer Principles Shankar — October 25, 2002

e The ack messages of the protocol have the form (ACK, sid, rid, cj, w), where sid and rid are
as above, cj is a cyclic sequence number and w is a window size. When the message is sent,
cj and w are set to the values of mod(N,nr) and rw, respectively. Thus the message indicates
the data block next expected in sequence. Because it acknowledges all earlier data blocks, it
is referred to as a “cumulative ack”.

e Treat sbuff as a sequence of SW entries indexed from 0 to SW — 1, such that entry sbuff]i]
either holds data block na+i or is empty. In particular, sbuff[i] is empty iff (if and only if)
ng —na<i<SW-—1.

We say “slide sbuff by k” to mean that the entries 0 to k — 1 are dropped from sbuff and
k empty blocks are appended to sbuff at the other end (i.e., sbuff becomes the sequence
sbuff[k..SW — 1] followed by k empty entries).

e Treat rbuff as a sequence of RW entries indexed from 0 to RW — 1, such that entry rbuff]i]
either holds data block nd+i or is empty. So rbuff[i] is always empty for i = nr — nd and may
be empty for nr —nd 4+ 1 <i < RW — 1. “Slide rbuff by k” is defined in the same way as
“slide sbuff by k”.

e The activity of the producer and consumer entities are shown in Figure 4, using an event-based
notation. There are two types of events. A “nonreceive” event has an enabling condition,
denoted ec, and an action, denoted ac; the action can be executed whenever the event is
enabled. A receive event for a message has only an action; it is executed whenever the
message is received.

[Note: For the case tmp=0 in the receive ACK event, it may seem that sw := max(sw, w) should
be sw := w, in order to keep up with the most recent value of rw. In fact, sw := max(sw, w) is
the correct thing to do. The reason is that the top of the receive window, nr+rw, never decreases.
Consequently, if there are two ack messages with the same nr value and different rw values, the
message with the higher rw value is more recently sent. Note that doing sw := w, can degrade
performance (by causing the source to mistakenly withold sending data for a while).]

[Note: This event-based notation can be implemented in a standard programming language
such as Java as follows. Each entity is implemented as an object (i.e., class instance) with zero
or more threads. Events are of two types: events initiated by the entity itself (e.g., send dat-
ablock) and events initiated by the entity’s environment (e.g., accept datablock, receive message).
Locally-initiated events would be executed by the threads of the object; typically the threads would
introduce time delays between event executions (i.e., schedule events). Externally-initiated events
would be represented by public methods of the object. Each event execution should be atomic,
and this can be ensured by using appropriate locking mechanisms (e.g., semaphores, locks, the
synchronized construct in Java).]

There are various ways to extend the above protocol.

e The above protocol uses cumulative acknowledgments. We can also use “negative” acknowl-
edgements (nacks) to indicate gaps in the received data. Nacks allow the data source to
retransmit missing data sooner than cumulative acks. The protocol can also use “selective”
acknowledgements (sacks) to indicate out-of-sequence data received. This allows the data
source to retransmit only what is needed, rather than everything outstanding. Selective acks
and nacks are not usually used in TCP, although they are available as options and there are
studies indicating that they can improve performance significantly.

e The above protocol uses fixed-size data blocks. An alternative is to send variable-sized data
blocks. This can be done by augmenting the data messages with a field indicating the size of

Transport Layer Principles

Shankar — October 25, 2002

Entity c

Accept datablock from user

ec: ng—na < SW

ac: sbuff[ng—na] := datablock;
ng := ng+1

Send new datablock
ec: ns < ng and ns < na + sw

ac: Send (D, ¢, s, sbuff[ns-na], mod(N,ns));

ns := ns+1

Resend datablock (na+j)
ec: 0<j<ns—na—1
ac: Send (D, c, s, sbuff[j], mod(N,na+j))

Reception of (ACK, s, ¢, ¢j, w)
ac: tmp := mod(N, cj—na);
if 1 < tmp < ns—na then
// ¢j matches na+tmp
slide sbuff by tmp;

Entity s

Deliver datablock to user

ec: nd < nr

ac: deliver data block in rbuff[0];
slide rbuff by 1;
nd := nd+1;

Send acknowledgement
ec: true // also does resends
ac: Send (ACK, s, ¢, mod(N,nr), rw)

Reception of (D, ¢, s, data, cj)
ac: tmp := mod(N, cj—nr);
if0 < tmp < rw then
// ¢j matches nr+tmp;
rbufflnr — nd + tmp] := data;
// else tmp>rw; do nothing
if tmp=0 then // maximize nr
while rbuff[nr-nd] not empty
donr:=nr+ 1

na := na-+tmp;

SW =W
else if tmp = 0 then sw := max(sw, w)
// else tmp > ns—na; do nothing

Figure 4: Events of sliding-window protocol

the data block. Another alternative is to send a variable number of data blocks in a message;
if the data blocks are consecutive, the message needs only identify the sequence number of the
first data block and the number of data blocks. TCP does the latter with an octet, or byte, as
the data block size. A similar modification would be needed for selective and negative acks.

Deriving the bound on N

We now derive the bound on N shown above. It’s convenient to assume that each message contains
the unbounded sequence number corresponding to the modulo-N sequence number. So a (data or
ack) message j means a message with unbounded sequence number j.

Consider what happens when a data message j is received. The receiver has access to mod(N,j)
only. It looks for a “matching” k in the receive window, that is, k satisfying nr < k < nr + rw
and mod (N, k) = ¢j. If a matching k exists it is assumed to be the message’s unbounded sequence
number, and so we would want k to equal j. If no matching k exists, the message is ignored and so
k does not have to equal j.

What values of j ensure correct interpretation? If j lies in the receive window, it is correctly
interpreted. If j is very much lower than nr or very much higher than nr+rw, then mod(N.,j) wraps
around and incorrectly matches a number in the receive window.

Consider decreasing values of j starting from nr, i.e., nr — 1, nr — 2, ... The first encountered

10

Transport Layer Principles Shankar — October 25, 2002

value that is incorrectly interpreted is nr 4+ rw — 1 — N. So we want j > nr — N + rw to hold.

Let j be received at time to. We want j > nr(tg) — N+rw(to) to hold, where we use the notation
x(t) to denote the value of a variable x at time t. It suffices if j > nr(tg) — N + RW holds (because
rw is at most RW), which in turn holds if j > ns(tg) — N + RW holds (because nr(tg) is at most
ns(to))-

Let j have been sent at time t;. Then t; > tg — L (from the maximum message lifetime). We
have j > na(ty) (otherwise j would not have been sent). We have na(t;) > ns(t;) — SW (because
sw is at most SW). So we have j > ns(t;) — SW. We also have ns(t;) > ns(tg) — L/J, because ns
can increase at most by 1 in time d. So we have j > ns(tg) — SW — L/4.

So j > ns(tg) — N 4+ RW holds if SW 4+ L/§ < N — RW, which is iff N > SW + RW + L/6.

This ensures that a data message j will not be too small. We also need to ensure that j does not
become too high. We also need to ensure the same for ack messages. All this is left as an exercise
(the resulting constraints are all subsumed by N > SW + RW + L/J).

6 A Connection-Management Protocol

This section describes a connection-management protocol. Traditional transport protocols, includ-
ing TCP, identify successive incarnations by increasing, though not necessarily successive, incar-
nation numbers from some modulo-N space. Every entity uses a counter or a real-time clock to
generate incarnation numbers for local incarnations.

Another feature of traditional transport protocols is that an entity stores a remote incarnation’s
number only while it is connected to the remote incarnation. This necessitates a 3-way handshake
for connection establishment. A client that wants to connect to a server sends a connection request
with its incarnation number, say x. When the server receives this, it responds by sending a response
containing x and a server incarnation number, say y. When the client receives the response, it
becomes open to y and responds by sending an ack containing x and y. The server becomes open
when it receives the ack. The server could not become open when it received the connection request
containing only x, because it may have been a duplicate from previous now terminated connection.

A 2-way handshake suffices for connection closing: an open entity sends a disconnect request
that is acknowledged by the other entity.

A 2-way handshake also suffices for connection rejection. It is obvious that a server may have
to reject a connection request of a client. What is not so obvious is that a client may have to reject
a “connection request” of a server. Specifically, if a server receives an old connection request from
a terminated incarnation of the client, the server attempts to complete the second “stage” of the
3-way handshake. In this case, the client has to reject the server.

The unreliable channels imply that a k-way handshake has the following structure: In every
stage except the last, a message is sent repeatedly until the message of the next stage is received.
The message of the last stage is sent only in response, otherwise the handshake would never termi-
nate.

It is convenient to think of the protocol as a distributed system that is driven by user requests.
Each user request causes the associated entity to initiate a 2 or 3-way handshake with the other
entity. At each stage of the handshake, one entity learns something about the other entity and
may issue an appropriate indication to its local user. At the end of the handshake, the protocol
has ‘served’ the user request. The protocol’s behavior can be complex because two handshakes can
be executing concurrently, with one of them conveying information that is relevant to the other.

We now give a specification of the connection-management protocol.

A client entity maintains the following variables for each server s:

11

Transport Layer Principles Shankar — October 25, 2002

e status[s|: { CLOSED, OPENING, OPEN, CLOSING }; initially CLOSED. Status of client’s
relationship with server s. CLOSED iff client has no incarnation involved with s. OPENING
means client has an incarnation requesting a connection with s. OPEN means client has an
incarnation open to s. CLOSING means client has an incarnation closing a connection with
S.

e lin[s]: { NIL, 0, 1, ... }; initially NIL. Local incarnation number. NIL if status[s] = CLOSED.
Otherwise identifies client incarnation involved with server s.

e dinfs]: { NIL, 0, 1, ... }; initially NIL. Distant incarnation number. NIL if status[s] equals
CLOSED or OPENING. Otherwise identifies the incarnation of server s with which the client
incarnation is involved.

A server entity maintains the following state variables for each client c:

e status|c]: { CLOSED, OPENING, OPEN }; initially CLOSED. Status of server’s relationship
with client c. CLOSED iff server has no incarnation involved with ¢. OPENING means
server has an incarnation accepting a connection request from ¢. OPEN means server has an
incarnation open to c.

e lin[c]: { NIL, 0, 1, ... }; initially NIL. Local incarnation number. NIL if status[c] = CLOSED.
Otherwise identifies server incarnation involved with client c.

e din[c]: { NIL, 0, 1, ... }; initially NIL. Distant incarnation number. NIL if status[c] =
CLOSED. Otherwise identifies the incarnation of client ¢ with which the server incarnation
is involved.

The messages of the protocol have the form (M, sid, rid, sin, rin), where M is the type of
the message, sid is the sender’s id, rid is the intended receiver’s id, sin is the sender’s incarnation
number, and rin is the intended receiver’s incarnation number. In some messages, sin or rin may
be absent.

Each message is either a “primary” message or a “secondary” message. A primary message
is sent repeatedly until a response is received or the maximum wait duration has elapsed. A
secondary message is sent only in response to the reception of a primary message. Note that the
response to a primary message may be another primary message, as in a 3-way handshake.

The messages sent by clients are as follows:

e (CR, sid, rid, sin): Connection request. Sent when opening. Primary message.

(CRRACK, sid, rid, sin, rin): Acknowledgement to connection request reply (CRR). Sec-
ondary message.

(DR, sid, rid, sin, rin): Disconnect request. Sent when closing. Primary message.

(REJ, sid, rid, rin): Reject response to a connection request reply (CRR) that is received
when closed. The sin of the received CRR is used as the value of rin. Secondary message.

The messages sent by servers are as follows:

e (CRR, sid, rid, sin, rin): Reply to connection request in 3-way handshake. Sent when
opening. Primary message.

e (DRACK, sid, rid, sin, rin): Response to disconnect request. Secondary message.

12

Transport Layer Principles Shankar — October 25, 2002

e (REJ, sid, rid, rin): Reject response to a CR received when closed. The sin of the received
message is used as the value of rin. Secondary message.

The events of the client and server entities are shown in Figures 5 and 6, assuming unbounded
incarnation numbers. Figures 7, 8, and 9 illustrate some of the possible evolutions of the protocol.

Modulo-N incarnation numbers

We now show how the unbounded incarnation numbers used above can be changed to modulo-N
incarnation numbers. There is an intricate relationship between the modulo-N space of the incarna-
tion numbers and the handshaking algorithms, much more so than in the case of data transfer, since
the latter assumes correctly initialized users. To achieve correct interpretation of received cyclic
incarnation numbers, it is necessary to have bounds on message lifetime, incarnation lifetime, wait
duration, and recovery duration. Under the reasonable assumption that the incarnation lifetime
dominates the wait and recovery durations, it is sufficient and necessary to have

4L +1
o

N >

where L is the maximum message lifetime, I is the maximum incarnation lifetime, and « is the min-
imum time between successive incarnation creations at an entity. Most references in the literature
incorrectly assume that N > 2L/« is sufficient.

The above bound may not be satisfiable for exceedingly long-lived incarnations, say, of the
order of days. In that case, if we assume that the probability of two successive connections having
identical modulo-N client and server incarnation numbers is negligible (it is approximately 1/N?
under reasonable assumptions of incarnation lifetimes), then the following bound which does not
depend on I suffices:
4L
o

N >

The events for modulo-N incarnation numbers are obtained by making the following changes,
where M = 2L /c::

e Redefine the domains of variables lin[s], din[s], lin[c], din[c] and message fields sin, rin to be
{NIL, 0, ..., N-11.

e The equality tests involving these variables and fields (e.g. sin = din[s]) are unchanged (but
now each side is a modulo-N number).

e The inequality tests involving these variables and fields are changed as follows:

— Replace the test sin > din[s] in the client by 1 < mod(N,sin — dins]) <M
— Replace the test sin > din[c] in the server by 1 < mod(N,sin — din[c]) <M

7 A Transport Protocol

A transport protocol between a client entity ¢ and a server entity s consists of a connection man-
agement protocol augmented with two data-transfer protocols, one for data transfer from c to s
and another for data transfer from s to ¢. At each entity, the data-transfer protocol is initialized
each time the entity becomes open and its events are executed only while open. The data-transfer

13

Transport Layer Principles Shankar — October 25, 2002

messages are augmented by incarnation number fields, which are used by receiving entities to filter
out data-transfer messages of old connections.

We illustrate with the protocols of the previous sections. Start with the connection-management
protocol of Section 6 between ¢ and s. Add two sliding-window protocols, one from ¢ to s and one
from s to c, as follows:

e At each entity, introduce variables ng, ns, na, sw and sbuff for the outgoing data transfer,
and nd, nr, rw and rbuff for the incoming data transfer. These data-transfer variables are
initialized whenever the entity becomes open. Whenever the entity becomes closed, these
variables are deallocated.

e Modify the client as follows. Add status[s|=OPEN to the enabling condition of every data-
transfer event. Add sin and rin fields to the sliding-window protocol messages. When a
data-transfer message is sent, sin is set to the local incarnation number lin[s| and rin is set
to the remote incarnation number dinfs]. When a data-transfer message is received, first test
for status[s|=OPEN, sin=din|[s] and rin=lin[s]. If the test fails, ignore the message, otherwise
process the message as in the sliding-window protocol specification.

e Modify the server similarly.

There are various ways to extend the transport protocol, and we mention some of them below.

e The messages of the two data-transfer protocols can be combined. For example, the data
messages sent by an entity can have additional fields to “piggy-back” acknowledgement in-
formation for incoming data, i.e., fields for nr and rw. This is done in TCP.

e The above protocol allows either user to close a connection at any point, without waiting for
data transfer to be completed. An alternative is so-called “graceful closing”, where a user
can close only its outgoing data transfer. The user must continue to handle incoming data
until the remote user issues a close also. TCP has graceful closing. It is a simple matter to
add graceful closing to a protocol that does not have it (How?).

e It is possible to merge connection establishment, data transfer, and connection termination.
The connection request can contain data, which would be delivered after the server becomes
open. The connection request can also indicate that after the data is delivered the connection
is to be closed. TCP allows this.

Comparison with TCP

TCP uses a single 32-bit cyclic sequence number space to identify both incarnations and data
blocks. When an incarnation is created at an entity, an initial sequence number is chosen
and assigned to the incarnation. Successive new message sent by the incarnation, whether of
connection-management or data-transfer, occupy increasing sequence numbers starting from this
initial sequence number.

TCP messages integrate both data transfer and connection management. Every TCP message
has fields indicating the sequence number of the message, the next sequence number expected,
the data segment (if any), the segment length, and receive window size. A connection-management
message that requires an acknowledgement is considered to use up a sequence number. So if the last
such message sent by an entity had sequence number n, then the next new connection management
message sent by the entity, whether or not it requires an acknowledgement, would have the sequence

14

Transport Layer Principles Shankar — October 25, 2002

number n+1. The remote entity can acknowledge a connection-management message by sending a
message of any type with its next expected sequence number field equal to n+1.

The TCP messages SYN, SYN-ACK, ACK, FIN, FIN-ACK and RST correspond respectively
to the messages CR, CRR, CRRACK, DR, DRACK, REJ of our protocol. An example evolution
of TCP is shown in Figure 10.

TCP provides balanced-opening, a service that is outside the client-server paradigm. Here, if
two entities request connections to each other at the same time, a single connection is established.
In fact, TCP’s algorithm for balanced opening is flawed: in certain situations it can result in
valid connection requests being rejected and invalid connection requests leading to connections.
Fortunately, no application seems to use TCP’s balanced-opening service.

8 Minimum Latency Transport Protocols

The delay in connection establishment incurred by the 3-way handshake is unacceptable for many
transaction-oriented applications (such as remote procedure calls). Note that although transaction
data can be sent with a connection request, the server cannot process the transaction until it
confirms that this is a new request. This has motivated the development of transport protocols
where the server can determine the “newness” of a connection request as soon as it is received,
thereby achieving connection establishment with a 2-way handshake, which is the minimum possible
latency.

To achieve this, the server has to retain information about clients even when it is not connected
to them. Consider a 3-way handshake between client incarnation x and server incarnation y. If the
server had remembered the incarnation number, say z, that the client had previously used when it
connected to the server, then the server could determine that the connection request with x was
new (because x would be greater than z). In that case, the server could have become open at
once, resulting in a 2-way handshake connection establishment. A server cannot be expected to
indefinitely remember the last incarnation number of every client to which it was connected, due to
the enormous number of clients in a typical internetwork. However, a cacheing scheme is feasible,
and several have been proposed, culminating in a proposed modification to TCP.

An alternative to cacheing is to use timer-based mechanisms. Here also, a server is required
to maintain information on each client it has served for a duration comparable to that in cache-
based mechanisms (the major component in both is the network-layer message lifetime). In most
timer-based protocols, if a client’s entry is removed before the specified duration, e.g., due to a
crash or memory limitation, then the server can incorrectly accept old connection requests of that
client. There is a timer-based protocol, called SCMP, that overcomes this problem by assuming
synchronized clocks. It maintains correctness but it may reject new connections for a period of
time depending on clock skews and other parameters. In any case, timer-based approaches do not
have a back-up 3-way handshake.

9 Conclusions

We have described the services expected of a transport layer and presented protocols that achieve
these services. In particular, the protocol for reliable transport service is comparable to TCP and
illustrates the inner workings of TCP. We have also outlined the basic approach to congestion
control in TCP/IP networks.

Detailed analysis and extensions of the data transfer and connection management protocols
described in this note may be found in the following:

15

Transport Layer Principles Shankar — October 25, 2002

e Data-transfer protocol with selective acks and rejects:
Shankar, A.U. 1989. Verified Data Transfer Protocols with Variable Flow Control, ACM
Transactions on Computer Systems. 7(3):281-316. August 1989.

e Connection management protocols including cacheing-based protocols and info on timer-based
protocols:
Shankar, A.U. and Lee, D. 1995. Minimum Latency Transport Protocols with Modulo-N
Incarnation Numbers, IEEE/ACM Transactions on Networking. 3(3):255-268. June 1995.

e Formal composition of data transfer and connection management:
Shankar, A.U. 1991. Modular Design Principles for Protocols with an Application to the
Transport Layer, Proceedings of the IEEE. 79(12):1687-1709. December 1991.

e Balanced opening and the flaws of TCP:
Murphy, S.L. and Shankar, A.U. 1991. Connection Management for the Transport Layer: Ser-
vice Specification and Protocol Verification, IEEE Transactions on Communications. 39(12):1762-
1775. December 1991.

16

Transport Layer Principles Shankar — October 25, 2002

Client entity c: events concerning server s

ConnectRequest(s)
ec: status[s] :== CLOSED
ac: status[s] := OPENING ; lin[s] := new incarnation number

DisconnectRequest(s)
ec: status[s] = OPEN
ac: status[s] := CLOSING

Abort(s)
ec: status[s] # CLOSED and “response timeout”
ac: status[s] := CLOSED ; lin[s] := NIL ; din[s] := NIL

SendCR(s)
ec: status[s] = OPENING
ac: Send (CR, ¢, s, lin[s])

SendDR(s)
ec: status[s] = CLOSING
ac: Send (DR, ¢, s, lin[s], din[s])

Receive (CRR, s, ¢, sin, rin)

ac: if status[s] = OPENING and rin = lin[s] then
status[s] := OPEN ; din]s| := sin ;
Send (CRRACK, c, s, lin[s], din]s])

else if status[s] = OPEN and rin = lin[s] and sin = din[s| then
// duplicate CRR
Send (CRRACK, c, s, lin[s], din]s])

else if status[s] = OPEN and rin = lin[s] and sin>din[s] then
// server crashed, recovered, responding to old CR
Send (REJ, ¢, s, sin) ; status[s] := CLOSED ;
din[s] := NIL ; lin[s] := NIL

else if (status[s] is CLOSED or CLOSING) then Send (REJ, ¢, s, sin)

Receive (REJ, s, ¢, rin)
ac: if (status[s] is OPENING or CLOSING) and rin = lin[s] then
status[s] := CLOSED ; din[s] := NIL ; lin[s] := NIL
// else status]s| is OPEN or CLOSED; do nothing

Receive (DRACK, s, ¢, sin, rin)
ac: if status[s] = CLOSING and rin = lin[s] and sin = din[s] then
status(s] := CLOSED ; din[s] := NIL ; lin[s] := NIL
// else status[s] is OPENING or OPEN or CLOSED; do nothing

Figure 5: Client events of connection management protocol

17

Transport Layer Principles Shankar — October 25, 2002

Server entity s: events concerning client c

Abort(c)
ec: status[c] # CLOSED and “response timeout”
ac: statusc] := CLOSED ; lin[c] := NIL ; din|c] := NIL

SendCRR(c)
ec: status[c] = OPENING
ac: Send (CRR, s, ¢, lin[c], din[c])

Receive (CR, ¢, s, sin)
ac: if status[c] = CLOSED and “rejecting connnections” then
Send (REJ, s, ¢, sin) ;

else if status[c] = CLOSED and “accepting connections” then
lin[c] := new incarnation number ;

status[c] := OPENING ; din[c] := sin

else if status[c] = OPENING and sin>din[c] then
// previous din|c] value was from some old CR
din[c] := sin

else if status[c] = OPEN and sin>din[c] then
// client crashed, reconnecting
if “willing to reopen” then
lin[c] := new incarnation number ;
din[c] := sin ; status[c] := OPENING
else status|c] := CLOSED ; lin[c] := NIL ; din]c] := NIL
// else status[c] = OPEN and sin < din[c]; do nothing

Receive (CRRACK, c, s, sin,, rin,)
ac: if status[c] = OPENING and sin = din[c] and rin = lin[c] then
status[c] := OPEN
// else status[c] is OPEN or CLOSED; do nothing

Receive (DR, ¢, s, sin, rin)

ac: if status[c] = OPEN and sin = din[c¢] and rin = lin[c] then
Send (DRACK, s, c, lin|c], din[c]) ;
status|c] := CLOSED ; lin[c] := NIL ; din]c] := NIL

else if status[c] = CLOSED then Send (DRACK, s, ¢, rin, sin) ;
// else status[c] = OPENING; do nothing

Receive (REJ, ¢, s, rin)
ac: if status[c] = OPENING and rin = lin[c] then
status|c] :== CLOSED ; lin[c] := NIL ; din]c] := NIL
// else statusc] is OPEN or CLOSED; do nothing

Figure 6: Server events of connection management protocol

18

Transport Layer Principles

Shankar — October 25, 2002

o Client Server , ,
comments din lin status status lin din comments
nil nil closed closed nil il
X >previous nil x openin (accepting)
> fvalues pening (CR,)
resend CR openin X revious
untlglg)RR a P 9 y > in values
(r)erceiv‘tjad (CR rest?rgR%FAFéK
unti
y X open or REJ
CRRACK, X y) or newer CR
received
open y X
(data/acy Xy,)
data transfer
phase
Jata/ack, Yo X 2
(data transfer
phase
closing (DR, x, y)
resend DR .)
until DRACK K %) closed nil nil
received (DP\AC 3L
nil nil closed
Figure 7: Connection management: “normal” operation
o Client Server , ,
comments din lin status status lin din comments
nil nil closed closed ~ il il
x >previous nil x opening (CR, x) (not accepting)
lin values \
resend CR . .
until CRR closed nil nil
or REJ (REJ, X)
received)
nil x closed

Figure 8: Connection management: connection rejection

19

Transport Layer Principles

Shankar — October 25, 2002

lin din comments

o Client Server
comments din lin status status
closed
acceptin
opening
nil nil closed (REy, y)
X > previous nil x opening (CR X)
lin values \
resend CR .
unHIEC?JRR %) opening
or)
received (CRR.Y
y X open
C
(RRACK’ x.y)
open

nil nil
y Vv y>previous
lin values

resend CRR
until CRRACK
or REJ
or newer CR
received

y x x>V (newer CR)

y X

Figure 9: Connection management: old connection request at server

20

Transport Layer Principles Shankar — October 25, 2002

Example evolution of TCP protocol

— Entity variables as follows
status: closed, opening, open, etc
ssn: send sequence number to use on next new message
asn: send sequence number to be next acknoledged
rsn: receive segence number (next expected send sequence number of remote)

— Every message includes fields (A, B, C, D) where
A: message type
B: start sequence number of message
C: length (i.e., number of sequence numbers occupied by message)
D: receive seqgence number of sender

- x is initial sequence number of Client
-y is initial sequence number of Server

Client Server
rsn asn ssn status status ssn asn rsn
nil - nil nil closed closed nil - nil nil
(accepting)

nil nil x opening
nil - x+1 x+1 opening

opening 'y nil nil
opening y+1 y+1 x+1

y+1 x+1 x+1 open

y+1 x+1 x+11 open open y+1 y+1 x4

open y+1 y+1 x+11

y+1 x+1 x+21 open

open y+1 y+1 x+21

y+1 x+11 x+21 open
open y+31 y+1 x+21

y+1 x+11 x+22 fin—-wait1

y+31 x+21 x+22 fin—wait1 close-wait y+31 y+1 x+22

close-wait y+31 y+31x+22

y+31 x+22 x+22 fin—-wait2
last-ack y+32 y+31x+22

y+31 x+22 x+22 time—wai ck, x+22, ¢ 132
closed nil - nil il

y+31 x+22 x+22 time-wai
nil nil nil closed

Figure 10: TCP evolution example

21

