
CMSC 712 Shared integer service page 1/3

Shared integer service

Informal description: A service consisting of an integer, say v, that can be accessed via a function

f(x), where x is a non-zero integer (positive or negative). Multiple calls (by di�erent threads) can

be simultaneously ongoing. The call adds x to v and returns the new value of x only if non-negative,

blocking if the value is negative (waiting for another thread to make v non-negative).

A blocked thread eventually returns if v is continuously non-negative.

Formalization 1

Here is a service program that formalizes the above informal description in a straightforward way.

service B1() {

int v ← 0

input f(int x):

// input part

ic {x 6= 0}

// output part

oc {v+x ≥ 0}

v ← v+x

return v

progress:

((thread t at oc) and (v+x ≥ 0)) leads-to

((t not at oc) or (v+x < 0))

}

This formalization of the informal English description is not conducive to parallelism in implemen-

tations. It requires an implementation to funnel all inputs to one location.

Question: Can the update to v be done in the input part. If so, would it be the same service?



CMSC 712 Shared integer service page 2/3

Formalization 2

We now come up with a service program that allows for more parallelism in implementations.

Speci�cally, we will make use of the notion of serializability (from databases):

� Let the global history at any point be the sequence of calls and returns so far.

� For any user, let its local history be the sequence of its calls and its returns.

� The global history is serial if at most one call is ongoing at any time (i.e., each return is

immediately preceded by its call) and each value returned is the sum of all previous call

values.

� The global history is serializable if it can be reordered to a sequence that is serial and

preserves each user's local history. (Equivalently, the global history is a merge of all its local

histories.)

� The service can return any value such that the global history is serializable.

Now to cast the above as a service program.

Introduce a variable gh that records the sequence of call and return entries. A call entry is a tuple

[CALL,x,j], where CALL is a constant, x is the parameter of the call, and j is the caller's tid (thread

id). A return entry is a tuple [RET,y,j], where RET is a constant, y is the value returned, and j

is the caller's tid.

service B2() {

gh ← [] // global history

constants CALL,RET

type Hstry = ``sequence of call entries and return entries''

// helper functions

bool serial(Hstry α) {``return true i� α is serial''}

Seq lh(j, Hstry α) {``return j's local history of α''}
bool valid1(Hstry α) {``return true i� α is serializable''}

input f(int x):

// input part

ic{x 6= 0}

gh.append([CALL,x,mytid])

// output part

output(int y)

oc{valid1(gh ◦ [RET,y,mytid]) and y≥ 0}
gh.append([RET,y,mytid])

return y

progress:

// t.oc is the output condition for thread t

((thread t at oc) and (t.oc)) leads-to ((t not at oc) or (not t.oc))

}



CMSC 712 Shared integer service page 3/3

Formalization 3

Service B2 allows a value to be returned only if all values that are used to make that value have

already returned. This makes sense when the operations are database transactions, because until

a transaction ends (commits), the service must allow for the possibility that it will abort. (So if

transaction p reads from transaction q, then the service cannot end p before ending q; otherwise, q
may abort after p's return.)

But in our service, the operations are simple additions; there are no aborts. So it is ok to return

a value p even if that value depends on a value q that has not yet been returned provided q will

eventually be returned.

Homework 1: De�ne service B3() that allows such parallelism.


