
ABSTRACT

Title of Dissertation: INVESTIGATIONS INTO THE NEURAL BASIS

OF STRUCTURED REPRESENTATIONS

Carol Susan Whitney, Doctor of Philosophy, 2004

Dissertation directed by: Professor Amy Weinberg

Departments of Computer Science and Linguistics

The problem of how the brain encodes structural representations is investigated via the
formulation of computational theories constrained from the bottom-up by neurobiological
factors, and from the top-down by behavioral data. This approach is used to construct models
of letter-position encoding in visual word recognition, and of hierarchical representations in
sentence parsing.

The problem of letter-position encoding entails the specification of how the retinotopic
representation of a stimulus (a printed word) is progressively converted into an abstract
representation of letter order. Consideration of the architecture of the visual system, letter
perceptibility studies, and form-priming experiments led to the SERIOL model, which is
comprised of five layers: (1) a (retinotopic) edge layer, in which letter activations are deter-
mined by the acuity gradient; (2) a (retinotopic) feature layer, in which letter activations
conform to a monotonically decreasing activation gradient, dubbed the locational gradient;
(3) an abstract letter layer, in which letter order is encoded sequentially. (4) a bigram layer,
in which contextual units encode letter pairs that fire in a particular order; (5) a word layer.

Because the acuity and locational gradients are congruent to each other in one hemi-
sphere but not the other, formation of the locational gradient requires hemisphere-specific
processing. It is proposed that this processing underlies visual-field asymmetries associated
with word length and orthographic-neighborhood size. Hemifield lexical-decision experi-
ments in which contrast manipulations were used to modify activation patterns confirmed
this account.

In contrast to the linear relationships between letters, a parse of a sentence requires hi-
erarchical representations. Consideration of a fixed-connectivity constraint, brain imaging
studies, sentence-complexity phenomena, and insights from the SERIOL model led to the



TPARRSE model, in which hierarchical relationships are represented by a predefined dis-
tributed encoding. This encoding is constructed with the support of working memory, which
encodes relationships between phrases via two synchronized sequential representations. The
model explains complexity phenomena based on specific proposals as to how information is
represented and manipulated in syntactic working memory. In contrast to capacity-based
metrics, the TPARRSE model provides a more comprehensive account of these phenomena.
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Chapter 1

Introduction

1.1 Overview

The ultimate goal of computational neuroscience is to specify how cognition arises from
neural activity. This requires understanding how neurons represent information about the
world. One of the more challenging aspects of such an investigation is the question of how
structured information is represented. That is, how are the sub-parts of an entity encoded? It
is not sufficient to simply encode their identities. Rather, the relationships between sub-parts
must be represented. My overarching interest is to investigate the nature of such structured
representations. I will first address this question in a limited visual domain (visual word
recognition) and then in a linguistic domain (creation and representation of a syntactic
tree).

In this work, I will distinguish between implemented and theoretical models. An im-
plemented model refers to a simulation or a mathematical demonstration. In contrast, a
theoretical model is a framework specifying the nature of the computations that are carried
out in the brain. All or part of a theoretical model can be implemented to demonstrate the
validity of related claims, essentially by offering an existence proof. This requires choos-
ing specific functions and parameters for the implementation. Thus an implemented model
is but a single instantiation of a more general theoretical framework. Reasoning about a
theoretical model can often be more fruitful than building an implemented model. I am
primarily interested in formulating theoretical models, using implementations of portions of
the resulting models as a proof of concept. Throughout this work, model will refer to either
a theoretical model or an implemented model when there is no ambiguity as to which is
meant. Otherwise, the type of model will be specified.

In particular, I seek to understand what representations and transformations are used
by the brain once a task has been learned. Formulation of such a theoretical model requires
in-depth consideration of all available sources of information. Behavioral data indicate what
algorithms the brain is using. Neurobiological and anatomical data constrain how these
algorithms are realized in tissue. The goal is to create a model that explains the behavioral
data and can be mapped onto a neural network. Ideally, such a theory should lead to novel,
experimentally verifiable predictions.

I have used this approach in two domains. The first is the question of how the brain
encodes letter position in a string during visual word recognition. This model specifies how a
retinotopic representation is progressively converted into an abstract encoding of letter order.
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Location-invariance is achieved by creating a temporal (serial) representation of letter order.
The model is consistent with the neuroanatomy of the lower levels of the visual system, and
explains a wide range of letter perceptibly and form-priming data. Moreover, the model has
generated precise predictions concerning the source of visual-field asymmetries, which have
been experimentally confirmed.

As we will see, there are many novel aspects to this model:

• The effect of visual acuity is explicitly considered.

• The retinotopic representation is initially split (across the hemispheres).

• Hemisphere-specific processing is proposed at the feature level.

• A location-invariant representation is created by mapping space onto time.

• Representational units based on ordered letter pairs are proposed.

• The model has provided new insights into the source of visual-field asymmetries at
both the letter and word levels.

The second domain that I have investigated is the question of how the brain creates the
representation of a parse of a sentence. The letter-position model has informed this parsing
model; there is a serial representation of phrases in stored working memory. In addition
to this serial representation, there is also a distributed representation of sentence structure.
The interaction of these two types of representations allows a comprehensive account of
phenomena related to sentence complexity. Novel aspects of the model include:

• The proposal that working memory uses dual, synchronized sequences to encode syn-
tactic information.

• Specifications of a parsing algorithm and a hierarchical representation which are based
on the computational properties of a predefined distributed representation.

• An account of complexity phenomena that is not based on storage limitations, but
rather arises from the way in which syntactic information is encoded in working mem-
ory.

These computational theories demonstrate the feasibility of bridging the neural and cognitive
levels via the close integration of modeling and experimental work.

A similar method of presentation will be used for both models. First, the computational
problem is introduced and specified. Then the anatomical and neurobiological constraints
are addressed, followed by a review of the relevant behavioral data. Previous models are pre-
sented, and their ability to meet these constraints is discussed. My model is then overviewed
at a high level, and then given in detail. Implementations of portions of the model are
presented, followed by experimental results (for the letter-position encoding model). A de-
scription of future work concludes the discussion of each model.
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Chapter 2

Introduction to The Problem of Letter-Position Encoding

In this chapter, I define the problem of letter-position encoding, and discuss why it is an
excellent problem for investigating structured neural representations.

2.1 Definition of LPE

Letter-position encoding (LPE) is required during visual word recognition due to the
existence of anagrams. That is, letter identities are not sufficient to uniquely identify a word
because there may be several words comprised of the same letters. For example, the letters
A,I,R,L can be used to form the words LAIR, LIAR, RAIL (and others). Thus there must
also be some encoding of the position or order in which the letters occurred. This encoding
of the input is then compared against stored representations in order to recognize the word.

Therefore, at the highest level, the problem of LPE is the question of what type of
sublexical orthographic encoding maps onto the lexical level during visual word recognition.
For example, such an encoding might be position-specific, with separate representations for
each letter in each position. Under this scheme, the input liar is represented by activating
units L1, I2, A3 and R4, whereas the input rail is represented by activating R1, A2, I3 and
L4. Here L1,L2,L3 etc., are encoded by different sets of neurons. In contrast, there may be
position-independent letter units which can dynamically represent positional information in
some way. Alternatively, a letter’s position may not be represented explicitly, but rather its
context may be encoded. For example, the input liar could activate *LI, LIA, IAR and AR*
units, where * denotes a word boundary. Thus, this representation specifies relationships
between letters (i.e., each unit specifies the letters immediately to the right and left of the
central letter).

However, in understanding how the brain represents structured information, it is not
sufficient to merely address the nature of the high-level representations. It is also necessary
to understand how those representations are formed. Thus, taking a comprehensive approach
to LPE, I also investigate the question of how such an abstract sub-lexical representation
is created from an early, location-specific representation. It is well-known that the earliest
cortical visual levels are retinotopically organized. That is, each letter occurs at a specific
spatial location on the retina, and this spatial organization is maintained into the cortex.
How is an abstract representation of letter position created from input that is tied to specific
retinal locations? In the following, position will refer to a letter’s position within a string,
while location will refer to a letter’s location in the visual field and hence on the retina.
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One aspect of processing not included in the question of LPE is how letters are recognized.
Rather, the question is more abstract. Given the ability to recognize letters, how is string-
centered positional information calculated, and combined with letter identity information?

This work assumes an experienced reader, under the assumption that brains solve the
problem in a standard way, as discussed below. The details of how the relevant transfor-
mations and representations are learned during reading acquisition is left for future work,
although some speculations on this topic are included in Chapter 10.

Note also that a full model of visual word recognition is not being sought. For exam-
ple, phonological and frequency effects will not be considered. Rather, the focus is on an
orthographic route to the lexicon. However, I do note that the encoding of letter order must
also subserve the learning of grapheme-phoneme correspondences, and thus it must also be
suitable for this task. This topic is also briefly addressed in Chapter 10.

A viable theoretical model of LPE should be consistent with relevant neurobiological and
behavioral data. The lowest level of the model should employ a retinotopic representation,
and the highest should employ a lexical representation. The model should specify the nature
of the representations at in-between levels, and the transformations between levels. An
important criterion is that the transformations should be biologically plausible. That is,
they should employ known neural encoding mechanisms, or be compatible with the type
of local, numeric computations that can be carried out by a network of simple, neuron-like
units.

2.2 Why Study LPE?

LPE is an ideal arena for studying structured neural representations, because it is complex
enough to be interesting, but simple enough to be tractable. Moreover, the processing must
tap into basic neural mechanisms because there can be no specific adaptation for reading
due to its recent appearance on the cognitive scene.

One central, outstanding issue in cognitive science is the binding problem. How are
separate features combined within a single object? For example, consider color and shape.
It is known that these attributes of an object are processed in separate areas of the brain.
When you see a red square and a yellow triangle, how are the correct associations between
color and shape encoded (so that you don’t perceive a yellow square and a red triangle)? A
similar problem exists in LPE. How are a letter’s identity and its position bound together?

Another important issue is how location invariance is obtained during object recognition.
How are we able to recognize the same object at different locations and sizes? Given that the
input to the visual system is retinotopic, either a recognizer must be duplicated over and over
for differing retinal locations, or there must be a mechanism to abstract away from retinal
location before input reaches the recognizer. It is clear that the replication method is used by
the visual system for low-level features, such as edges. Such replication is highly inefficient
for complex objects, since so many different objects are possible. Thus it is unlikely that it
is employed for high-level object recognition.

However, it has been claimed that a single detector could recognize an object in a location-
invariant way without an explicit abstraction capability, as receptive-field size and featural
complexity increase through the processing hierarchy. This approach has been implemented
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for recognition of simple objects, where the identity of low-level features (i.e., types of line
intersections) is sufficient to recognize an object [Fuk88, Ore00]. It has also been used in
implemented model of visual word recognition [Moz91], but as discussed in section 5.3.3,
this model relied on an unrealistic jump in receptive-field size. As discussed by Hummel and
Biederman, a recognizer that is based on feature conjunctions has the inherent limitation
that it is susceptible to illusory recognition, wherein recognition is erroneously triggered by
a set of jumbled features that have the correct identities, but not the correct relationships
to each other [Hum92]. This difficulty occurs because relationships between sub-parts are
not explicitly represented. In contrast, an abstraction mechanism that specifically maintains
relational information while removing locational information would not have this problem.
As discussed above, a similar problem arises in LPE. How is a representation that is initially
tied to retinal location converted to an abstract letter-order encoding that can be matched
against a stored representation?

Thus the question of LPE involves key problems in cognitive science. At the same time,
it is a very circumscribed problem, allowing ease of investigation. It involves a small number
of known, basic units (i.e., letters) which can organized along a single dimension (i.e., string
position). Bottom-up aspects of stimuli can be experimentally varied, by manipulating
retinal location, letter order, and contrast levels. Top-down factors can also be selected
for, such as lexicality, frequency, length, reading direction, etc. Thus, the problem is easily
investigated experimentally.

Recent brain imaging studies have identified a left-hemisphere, inferotemporal cortical
area that seems to be involved in the abstract encoding of letter order, dubbed the Visual
Word Form Area (VWFA) [McC03]. Interestingly, there is very little variation across subjects
in the location of the VWFA [Coh02]. This suggests that brains solve the problem of LPE
in a standard way [McC03]. However, this solution must rely on general representational
mechanisms, due to the recency of reading on an evolutionary timescale. Thus, understanding
how the brain solves the problem of LPE should reveal binding and abstraction mechanisms
that are relevant to other domains.
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Chapter 3

Neurobiological Constraints on LPE

The architecture of the visual system from the retinas to early cortical areas determines
the characteristics of the input into the functional LPE network. I first discuss these con-
straints, and then review brain-imaging and neurological studies on higher cortical areas
implicated in visual word recognition.

3.1 Terminology and Overview of the Visual System

The cortex is divided into the right and left hemispheres, and the fibers which connect
the hemispheres are known as the corpus callosum. Each hemisphere is comprised of four
lobes. Occipital cortex lies at the back of the head. Parietal cortex lies above the occipital
area, while temporal cortex lies forward of the occipital area. Frontal cortex lies in front of
the parietal and temporal areas.

The visual image is initially projected onto the retinas. This visual information is pro-
cessed through several layers of cells, and leaves the retina via ganglion cells. Ganglion cell
axons extend through the optic tracts to the lateral geniculate nucleus (LGN), the visual
area of the thalamus. LGN cell axons then extend to the cortex.

In the retina, there are two major classes of ganglion cells, magnocells and parvocells. The
larger magnocells process information more quickly than the smaller parvocells. Magnocells
are sensitive to motion and low spatial frequencies (i.e. overall shape), while parvocells are
sensitive to color and high spatial frequencies (i.e., fine detail). Separate magnocellular and
parvocellular pathways are maintained through the LGN into the cortex. The first cortical
area to receive visual inputs lies in occipital cortex and is known as V1. V1 connects to V2,
and then the visual pathway splits into two streams. The ventral stream extends though
region V4 into lower temporal (inferotemporal) cortex. The ventral stream handles object
recognition, and receives inputs from both the the parvocellular and magnocellular pathways
[Fer92]. The dorsal stream extends through region V5 into parietal cortex. The dorsal stream
handles motion processing, spatial localization, and attention, and receives inputs primarily
from the magnocellular pathway [Mau90].

We next consider the connectivity from the retina to the cortex in more detail, because
the architecture of the early part of the visual system has ramifications for visual word
recognition.
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3.2 Retina to V1

Light coming into the eye is focused onto the retina, where it is transduced by photore-
ceptor cells (rods and cones) into electrical signals. Cones provide the high spatial resolution
which is necessary for letter identification during reading. The center of the retina, the fovea,
only contains cones and is free of blood vessels. Therefore, this area provides the highest
acuity. It corresponds to about 1.5◦ of visual angle. (For reference, 4 or 5 letters occupy
about 1◦ under normal reading conditions). Cone density (and therefore visual acuity) is
highest at the very center of the fovea (corresponding to the fixation point), and rapidly
falls off away from the center. For example, at an eccentricity of 0.17◦ from fixation, cone
density is decreased by 25% [Wes87]. The rate of decrease in cone density is highest closest
to fixation, and falls off as eccentricity increases [Wes87].1 Resolution remains elevated into
the parafovea, the retinal region surrounding the fovea, corresponding to a diameter of about
5◦.

Each cone cell projects to about three ganglion cells [Was95]. Ganglion cell axons from
both eyes converge in the optic chiasm. There, the fibers from each eye split. Imagine
a vertical line dividing each retina in half through the center of the fovea. Those fibers
originating from the nasal side of this line cross the optic chiasm to enter the contralateral
(opposite) optic tract, while those originating from the outer side of this line remain in the
ipsilateral (same) optic tract. Therefore, after the optic chiasm, information is split by visual
field, not by eye. Information from the left half of the visual field (LVF) is carried in the
right optic tract, and information from the right half of the visual field (RVF) is carried in
the left optic tract.

The spatial relationships between cells are maintained from the retina through the LGN
and V1. Thus V1 is retinotopically organized, with nearby cells representing nearby points
in space. Due to the routing of fibers at the optic chiasm, each visual field is projected onto
the contralateral cortical hemisphere. That is, the LVF projects to the right hemisphere
(RH) portion of V1, while the RVF projects to the left hemisphere (LH) portion of V1.
The pattern of spatial resolution is magnified into V1. The number of cells representing a
fixed amount of visual space is highest at fixation and decreases as eccentricity increases.
As a result, a disproportionate amount of V1 is devoted to representing the fovea and the
parafovea [Ino09, Bri68].

There has been some controversy regarding whether information is precisely split by vi-
sual half-field in humans, primarily due to the phenomenon of macular sparing. Often brain
damage to one hemisphere of V1 obliterates vision in the contralateral visual field except for
the foveal area. This suggests that the entire fovea may be bilaterally represented. That is,
foveal vision may be spared because it also also represented in the undamaged hemisphere
[Ino09]. Alternatively, foveal vision may be spared because damage to the lesioned hemi-
sphere is incomplete, due to the large cortical area devoted to representing the fovea. This
issue is highly relevant to visual word recognition, because if the visual fields do not overlap,

1This acuity pattern is commonly misrepresented as “acuity falls off rapidly outside the fovea”, implying
that acuity is uniformly high across the fovea and then falls off. This is not the case. Rather, acuity falls
off rapidly within the fovea, so that acuity is substantially reduced by the fovea / parafovea boundary (but
still remains higher than outside the parafovea). The rate of decrease in acuity is actually sharper across the
fovea than the parafovea.
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the representation of a fixated string is initially split across the cerebral hemispheres, requir-
ing downstream integration of the representations of the two halves of the string [Bry04].
(In fact, a special edition of Brain and Language was devoted to this topic [Bra04]).

Mounting evidence from several lines of investigation indicates that the representation of
the fovea is indeed initially split across the hemispheres [Lav04b]. Behavioral experiments
have shown that length and orthographic-neighborhood effects, which occur in the LVF
but not the RVF under unilateral presentation, are also specific to the LVF portion of the
string under central presentation [Bry94, Bry96, Lav01a, Lav04a]. Transcranial magnetic
stimulation was used to disrupt neural function over either left or right V1 during processing
of centrally presented strings. Unilateral disruption caused effects specific to the half of the
word presented in the contralateral visual field, as would be expected under a split fovea
[Lav03]. Leff [Lef04] discusses several arguments against bilateral representation. There is
no evidence in humans for the white matter pathways that would be required for such a
representation. Also, “there has been no direct demonstration of this extra representation of
ipsilateral central vision in human visual cortex, which, given the resolution of modern non-
invasive techniques and the amount of cortex these regions must occupy if they are to support
high acuity vision, is damning.” ([Lef04], p.276.) Furthermore, about 30% of hemianopia
victims do not experience macular sparing, and so suffer from complete obliteration of a
visual half-field [Lef04]. If the fovea were truly bilaterally represented, such a deficit pattern
should not occur under unilateral damage. Thus, there is no positive evidence for bilateral
representation of the fovea. The most likely source of macular sparing is incomplete damage
to the affected hemisphere, due to the extensive cortical area devoted to representing the
fovea [Lef04, Lav04b].

Therefore, available evidence indicates that the representation of the fovea is initially
split across the hemispheres. This information must be then be integrated into a unitary
representation of a letter string. Recent studies indicate that specific cortical areas become
specialized for this task.

3.3 Higher Cortical Areas

Neuroimaging studies have provided converging evidence that areas of left occipital and
inferotemporal cortex play a special role in reading. In an EEG study, normal readers
showed a LH-specific increase in theta-band power (5 to 10 Hz) at occipital sites during
reading, while dyslexics show reduced, bilateral theta-band activity [Kli01]. An MEG study
[Tar99] has identified an early string-specific response at approximately 150 ms post-stimulus
in the posterior region of occipitotemporal cortex, where activation was stronger for letter
strings than for strings of symbols. Response strength and latency in this area correlated
with the speed with which subjects were able to read words aloud. For dyslexic subjects,
this area did not show preferential activation for letter strings [Hel99].

EEG and fMRI studies have revealed a more anterior string-specific response in the LH
beginning at about 180 ms post-stimulus. This activity has been localized to specific cortical
coordinates (x = -43, y = -54, z= -12 mm to the left, posterior and below the anterior
commissure, respectively) [Coh02]. This area corresponds to an activation peak in about
90% of subject scans, with a standard deviation of 5 mm [McC03]. Thus the location of this
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response is remarkably uniform across subjects.
This area has been dubbed the Visual Word Form Area (VWFA) [McC03]. Although

there is some debate on whether this area should be so labeled since it also responds to other
types of stimuli and other areas also respond to letter strings [Pri03], there is strong evidence
that this area becomes preferentially tuned to processing letter strings [McC03].

VWFA response is preferentially tuned to letter strings (as compared to arrays of pseudo-
letters) [Nob94], but is insensitive to surface features of letters, such as font and case [Pol02,
Deh04], and to their string position and retinal location [Deh04]. Activation is also insensitive
to lexical features, such as frequency [Fie02], and whether a orthographically legal string is
a real word or a pseudoword [Deh02]. However, activation is reduced in response to strings
consisting only of consonants [Coh02]. VWFA activation is modality-specific, showing no
response to passive listening of spoken words [Deh02]. The activation of the VWFA is
independent of the location of the stimulus. For unilaterally presented strings, fMRI showed
contralateral activation up to an area probably corresponding to V4. Then, starting at the
VWFA, activation was lateralized to the LH, independently of stimulus location [Coh00].

Damage to the region of the VWFA is associated with pure alexia, wherein lexical access
via orthography is selectively impaired [Bin92, Bro72, Ges95, War80]. This impairment
often does not cause a total inability to read, but rather causes slowed reading that is
abnormally sensitive to word length (dubbed letter-by-letter reading). The abilities to write
and to recognize orally spelled words are preserved. Lesions that are limited to the callosal
connections between RH visual areas and the VWFA result in pure alexia that is specific to
LVF stimuli [Coh00].

Thus the VWFA seems to convert a visually presented letter string into a location-
invariant representation based on abstract letter identities. The results of [Coh00, Deh04]
indicate that this prelexical representation is assembled in the LH, and that lexical access
occurs in the LH. It is thought that letter-by-letter readers perform lexical access by rep-
resenting a letter sequence in verbal working memory, rather than by the more efficient,
direct route usually provided by the VWFA [Coh03]. Because writing and lexical access via
indirect routes are preserved, it seems that the VWFA does not actually encode how words
are spelled.

A pattern of acquired dyslexia (i.e., resulting from brain damage) observed in two He-
brew subjects suffering from left occipitoparietal lesions suggests that the encoding of letter
identity can be separated from the encoding of position. These subjects made reading errors
that were characterized by migration errors within a word; that is, errors were predomi-
nately anagrams of the target word [Fri01]. Such a dyslexia has not been encountered in
more commonly studied languages, such as English. However, Hebrew orthography is partic-
ularly conducive to revealing a deficit of this sort, since vowels are not explicitly represented.
Therefore, if letter order is misperceived, there is a high probability that a word correspond-
ing to the erroneous ordering exists for some combination of vowels. Thus, lexical constraints
are reduced, allowing a pure deficit in position-encoding to be revealed.

The lesions in the above subjects occurred along the dorsal route of the visual system.
A role for the dorsal pathway in encoding letter order is consistent with a study showing
that ability to detect coherent motion in two-dimensional arrays of moving dots was cor-
related with accuracy in letter-position encoding (for lexical decision involving nonwords
formed by transposing two letters of actual words) [Cor98]. This result is also consistent
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with evidence that developmental dyslexia is associated with subtly impaired magnocellular
function [Lov93, Ste97]. However, it remains unclear whether such visual impairment is a
causal factor in developmental dyslexia.

In contrast to these patterns of dyslexia, damage to the left angular gyrus results in
complete illiteracy (global alexia). Such patients cannot read or write, or even name letters
[Bro72, Ges95]. The angular gyrus is located at the junction of the occipital, temporal, and
parietal cortices. Thus it seems to be a multi-modal association area. In the case of reading,
the left angular gyrus is thought to subserve the translation of the orthographic encoding of
a word into its phonological and semantic representations [Dem92, Ges95]. Therefore, this
area seems responsible for encoding how words are spelled, and may provide the orthographic
lexicon.

3.4 Summary

Letters to the right of fixation are initially projected to the LH, and letters to the left
are projected to the RH. The representation in V1 is location-specific; each cell represents
a stimulus occurring at a specific retinal location. The number of cortical cells representing
a letter depends on the letter’s eccentricity, following an acuity gradient which originates in
the density of cones in the retina. Acuity is highest near fixation, and falls off as eccentricity
increases. The rate of decrease in acuity decreases as eccentricity increases. At about 150
ms post-stimulus, cortical activation becomes left lateralized in response to letter strings (in
normal readers). Areas of occipitotemporal and occipitoparietal cortex encode an abstract
representation of letter order, which may contact lexical representations via the angular
gyrus.

Thus, the location-specific representation of a string, which is initially split across the
hemispheres in V1, is integrated into a location-invariant, letter-based encoding in the LH.
However, neurological investigations and brain-imaging techniques cannot reveal how this
transformation is performed. For clues to the answer to this question, I turn to the results
of behavioral experiments.

10



Chapter 4

Behavioral Results on LPE

In this chapter, I review experimental evidence from behavioral studies. I first consider
those studies relevant to the issue of what type of prelexical representation contacts the word
level. In these studies, the target stimuli were words. I then consider studies in which targets
were random letter strings. Such studies can reveal patterns at the letter level under reduced
lexical influences.

As we will see, the studies indicate the following:

• The relative order of letters is important in word recognition.

• There are position-independent letter units. That is, there are abstract letter repre-
sentations that are not specific to string position or retinal location.

• Letter perceptibility varies with string position and retinal location, and these patterns
differ from those of non-letter symbols.

• The presence or absence of a length effect on RTs cannot reliably indicate whether
lexical access proceeds serially or in parallel.

• There is a serial readout of the visual image.

4.1 Word-Level Studies

4.1.1 Masked Form Priming

The most informative experiments on the nature of the prelexical encoding have used
the masked-priming procedure, wherein a mask (visual noise) is displayed, then a briefly
presented lower-case prime (for 40 ms or less), then a mask, and then an upper-case target
word [Eve81]. Such brief prime exposures lead to orthographic priming, but not semantic
priming. Thus such experiments are ideal for investigating the nature of orthographic en-
coding. In the description of such experiments, the following notation is used for describing
the relationship of the prime to the target. A target of length n is represented by 123...n
where 1 denotes the first letter, 2 the second letter, etc., and each letter is unique. The prime
is specified in terms of these numbers, with “d” representing a letter not in the target. For
example, the prime “rqgdzn” for the target GARDEN is denoted 3d14d6. This means that
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Prime Fac (% points)

1ddd 8
d2dd 0
dd3d 0
ddd4 0

12dd 6
d23d 6
dd34 6
1dd4 15

123d 20
1d34 20
12d4 20
123d 20

Table 4.1: Results from Exp. 1a - 1c of [Hum90]. Each group of rows represents a sub-
experiment. Fac =(accuracy for prime −accuracy for control), where 0 denotes no significant
facilitation. Stimuli with the same facilitation were not statistically different from each other;
the given value reflects their average.

the first letter of the prime is the third letter of the target, the second letter of the prime is
not in the target, etc.

Humphreys, Evett and Quinlan carried out an extensive series of masked form-priming
experiments where the task was perceptual identification [Hum90]. The target word was
briefly presented (for approximately 40 ms), and performance was measured in terms of
accuracy in identifying the word, where responses were typed. In Experiment 1, absolute-
position effects were investigated. All targets and primes were four letters. Facilitation was
measured with respect to a dddd prime. Primes with 1, 2, and 3 matching letters in differing
positions were used. The significant effects are given in Table 4.1. In summary, when 1 letter
matched, priming was only observed when the match occurred in the first position. When 2
letters matched, priming was strongest when they were the first and fourth letters; matches in
other positions gave reduced, equivalent levels of priming. When 3 letters matched, priming
was independent of position.

In experiment 2, the effects of scrambled letters were investigated. Primes in which order
was completely violated (e.g., 3142) produced no facilitation. Primes of the form 1324 and
1dd4 produced equivalent levels of facilitation.

An analysis of the errors to the dddd trials from Experiments 1 and 2 showed that letters
in positions 1 and 2 of the target were more likely to be correctly retained than letters in
positions 3 and 4. Thus, while there was an external letter advantage for primes matching
on two letters (in Experiment 1), this pattern was not replicated in the error data, where
the final letter had no advantage.

Experiments 4 through 6 employed primes and targets of differing length, in order to
investigate the effect of maintaining letter order, but not absolute position. For example,
a prime of the form 1245 includes the fourth and fifth letters in the correct order, but in
the incorrect positions. The results are displayed in Table 4.2. In summary, priming was
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Prime Fac (% points)

1245 14
1425 7
1dd5 7
d24d 0

12dd 11
d23d 11
d34d 11
dd45 11

1ddd5 9
d1d5d 0

Table 4.2: Results from experiments 4 through 6 from [Hum90]. Each group of rows repre-
sents the results from a single experiment. Fac=(accuracy for prime −accuracy for control),
where 0 denotes no significant facilitation. Stimuli with the same facilitation were not sta-
tistically different from each other; the given value reflects their average.

greatest when the first and final letters remained in those positions and order was maintained
among the internal letters. Primes matching on two contiguous letters gave equivalent levels
of priming, while a prime matching on two non-contiguous internal letters did not produce
priming. Letters did not have to match on absolute position in order for priming to occur.
These results are considered evidence for a relative-position encoding, where the first and
last letters are encoded as such, and the order of the internal letters is represented.

Peressotti and Grainger [Per98] investigated the properties of relative-position priming
further. They used the lexical-decision task, wherein the subject specifies whether or not the
target string is a word. Priming was measured in terms of decreased reaction times (RTs).
This task is now generally preferred to the perceptual task because it is taken to isolate
processing at the lexical level. That is, in the perceptual task, priming may occur at the
letter level because letters are difficult to perceive due to the short exposure duration. This
is not a factor in lexical decision, where target exposure duration is on the order of 200 ms.
Thus any effects that do occur are more likely to be at a higher level.

For six-letter (word) targets, they found that a prime of the form 1346 speeded RTs as
compared to a dddd control prime, whereas primes of the form 1436 and 6341 did not yield
facilitation. Thus unlike the results from Experiment 4 of [Hum90], where 1425 yielded some
facilitation for five-letter words, 1436 did not yield facilitation for six-letter words. This may
be a result of using different tasks, or may reflect the larger percentage of retained letters for
five-letter targets. To test whether maintaining absolute position yields any advantage, they
compared primes of the form 1346 with primes which included the “-” character in positions
2 and 5 (i.e., 1-34-6). There was no difference in the amount of facilitation provided by these
two types of primes. Thus priming only occurred when relative-position was respected, and
absolute-position information did not increase the facilitation.

In further investigations, Granier and Grainger explored positional effects in longer tar-
gets (seven- and nine-letter words) [Gra04a]. Primes consisting of the initial or final four
or five letters of the target all produced facilitation with respect to dddd or ddddd primes.
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Across five experiments, a small numerical advantage for initial primes over final primes
always occurred (ranging from 3 ms to 8 ms), but this difference was not statistically signif-
icant. They also performed a series of experiments with five-letter primes and seven-letter
targets in which primes matched on the first and last letters and the positions of the missing
letters was varied. Those primes having no more than one positional gap within the three
central letters (3,4, and 5) induced priming; those primes which included more than one
such gap did not. For example, 12457 (gap at position 3) and 13467 (gap at 5) produced
facilitation, while 12467 (gaps at 3 and 5), and 12367 (gaps at 4 and 5) did not. Thus the
proximity of the internal letters to each other seems to be important. This is line with the
finding that d23d and d34d primed five-letter words, while d24d did not (Experiment 4 of
[Hum90]).

In other experiments, the effects of transposing letters were investigated. For five-letter
targets, primes of the form 12435 produced facilitation with respect to 12dd5 primes [Per03].
This is in contrast to the results of [Hum90], where 1324 and 1dd4 were equivalent for four-
letter targets, and 1425 and 1dd5 were equivalent for five-letter targets. However, primes
of the form 12354 did not produce priming, indicating a special status for the final letter
(and presumably the initial letter, but 21345 was not actually tested) [Per03]. Transposition
of non-contiguous letters can also produce priming [Per04]. For six-letter targets, 125436
provided facilitation, while 12d4d6 did not. However, this result only held when 3 and 5
were both consonants. It is not clear if this specificity for consonants is due to a qualitative
difference in processing consonants and vowels, or to statistical differences stemming from
the fact that there are only 6 possible vowels.

Overall, these results show that it is unlikely that the brain uses a prelexical encoding
based on absolute position. Rather, the encoding represents the relationships between letters.
There does seem to be some positional influence, with greater priming when external letters
are matched (as compared to internal letters) and an advantage for the first letter over the
final letter when only one letter matches the target. In contrast to the priming data, the
error data shows an retention advantage for the first and second letters over the third and
fourth letters.

4.1.2 Positional Patterns

Another potential source of information about how letter-position is encoded is the error
pattern in a perceptual task. The probability of retaining a target letter in the response
may be related to how the position of that letter is encoded. We have already seen that this
probability was higher for the first and second letters than for the third and fourth letters in
Experiments 1 and 2 of [Hum90]. In an experiment where words were presented very briefly
(33 ms) without a prime, retention probability decreased monotonically across the string for
five- and six-letter words [Mon98]. For longer words, there was an advantage for the final
letter. Thus for four- to six- letter words, retention probability decreases across the string,
showing no advantage for the final letter.

This pattern has also been observed in aphasic patients suffering from acquired dyslexia.
An analysis of their reading errors showed that retention probability decreased with increas-
ing letter position [Whi99]. This pattern was robust under a number of different scoring
measures, and did not obtain when the response and target were aligned at the final letter
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and scored from right to left. Because this pattern is similar to normals’ performance under
very brief presentations, it likely reflects some aspect of normal processing, rather than being
a result of altered processing due to brain damage.

4.1.3 Seriality

A key question is whether lexical access proceeds serially (letter by letter) or in parallel
(all letters activating the word level at the same time). It has generally been assumed that
this issue can be decided via the presence or absence of a length effect. That is, if RTs were
to increase with word length, this would indicate serial access; if RTs were independent of
word length, this would indicate parallel access. Before discussing the experimental results, I
wish to point out that this assumption is not necessarily warranted. Length may contribute
multiple, even opposing, influences to RTs. For example, serial access could yield constant
RTs with word length if the increased time that it takes for the final letter to fire for longer
words is canceled out by decreased settling time at the word level. That is, for longer words,
it may take less time for the lexical network to settle (following activation by the final letter)
than for shorter words, possibly due to an increased amount of bottom-up input from more
letters. Conversely, if a length effect were observed, it could be a result of parallel access
in conjunction with some other factor. For example, the reduced acuity of the outer letters
in longer words could lead to increased RTs despite parallel access. Thus, the presence or
absence of a length effect cannot definitively inform us as to whether lexical access proceeds
letter-by-letter or in parallel.

For centrally presented words of three to six letters, it was found that string length has
no effect lexical-decision RTs [Fre76]. This finding, in conjunction with the popularity of
parallel-processing models (e.g. the Interactive Activation Model [McC81]), has led to the
general assumption that lexical access proceeds in parallel.

However, a recent study has yielded a more complicated picture. New et al. [New04]
undertook an investigation of the length effect based on the English Lexicon Project [Bal94],
which is a on-line database of lexical-decision RTs for over 40,000 words. Once the effects
of frequency, number of syllables and orthographic-neighborhood size [Col77] were factored
out, they found that RTs actually decrease with increasing string length for words of three
to five letters1, are constant with string length for words of five to eight letters, and increase
with string length for words of eight or more letters. Thus string length has differing effects
over different lengths. It is highly unlikely that these differing effects reflect differences in
the method of lexical access. Rather, these results most likely indicate that the effect of
length is the sum of opposing forces, where the relative strength of the opposing forces varies
with length. For example, increased bottom-up input (from more letters) may contribute a
facilitatory effect, which reaches a ceiling level beyond a certain word length. Serial access

1It is likely that the reason that this facilitatory effect of word length has not been previously observed is
that the effect of orthographic-neighborhood size (N) was not factored out. N is the number of words that
can be formed by changing one letter of the target to another letter [Col77]. High N is actually facilitatory
[And97, New04] for words in lexical decision. Because longer words generally have lower N values than
shorter words, the lack of N facilitation longer words may have masked the facilitatory effect of more letters.
The N effect is discussed in more detail in Chapter 9.
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and/or decreased acuity may contribute an inhibitory effect, which dominates at longer
lengths.

The results of an EEG study [Hau04] are also consistent with the notion that there are
differing components in the effect of length. In occipital regions, longer words gave increased
amplitudes (as compared to shorter words) during the 80-125 ms period. After about 150 ms,
this pattern reversed, with shorter words giving larger amplitudes than longer words. Effects
of word frequency were seen at about 150 ms, indicating that lexical access had begun by
that point. This suggests that there may be differential effects of string length for prelexical
versus lexical processing.

The influence of length can also be varied by presenting stimuli in non-canonical formats.
An inhibitory length effect occurs when the letters of a word are not horizontally aligned, or
when they are presented in MiXeD cAsE [Lav02c]. A length effect can also be induced by
rotating the stimuli. This phenomenon was examined in a Hebrew lexical-decision experiment
where two- to five-letter strings were centrally presented and rotated as a whole in increments
of 20◦, from 0◦ (normal presentation) to 180◦(upside-down) [Kor85]. For angles of 60◦or less,
RTs did not increase with string length. For 80◦, RTs were similar for two- to four-letter
words, but increased for five-letter words. For 100◦, two- and three-letter words had similar
RTs, with increasing RTs for four- and five-letter words. For angles of 120◦ to 180◦, RT
varied approximately linearly with word length, with each additional letter adding about
200 ms. The non-word data showed a similar pattern with rotation angle, but with larger
length effects.

Due to the size of the per-letter increment at the larger angles, it is likely that this
increment does actually reflect serial processing. However, the data cannot be explained by
supposing that processing switches from parallel to serial at some rotation angle, due to the
intermediate region (80◦ and 100◦) where RTs are neither constant nor linear with rotation
angle. Note that it cannot be supposed that a such a switch occurs at differing angles for
differing lengths. If that were the case, the RT for an n-letter word should either be close to
that of the smaller angles or the larger angles, but not in between2. In fact, the authors state,
“it is difficult to propose an interpretation of the results in terms of one unitary principle”
(p. 504).

For canonical presentation conditions, the best way to investigate the issue of seriality
is to use time directly. Harcum and Nice [Har75] used this approach in a clever experiment
in which pairs of eight-letter compound words were very briefly sequentially presented. The
pairs were selected to allow meaningful blends. For example, the words headache and backrest
could be recombined to give headrest or backache. When fixating on the center of the string,
subjects tended to report the first half of the first word, and the second half of the second
word (e.g. for headache then backrest, headrest was reported). This result unambiguously
shows sequential readout. The first half of the first word was processed first. By the time
that the second half of the stimulus was reached, the stimulus had changed and the second
half of the second word was processed.

They also included trials where fixation fell within the first half or the second half of

2This assumes a unimodal distribution of RTs; if RTs were bimodally distributed between these two
extremes, their average would fall in between the two values. Although the authors do not explicitly state
that RTs were unimodal for 80◦ and 100◦, the nature of their discussion implies that they were.
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the stimulus. For fixation within the second half, the same response pattern was observed
as for central presentation. However, for fixation within the first half, the pattern reversed
(e.g., backache tended to be reported instead of headrest). The authors took these results as
evidence for left-to-right processing for central fixation, and peripheral-to-central processing
for non-central fixation. However, there is a more parsimonious explanation, based entirely
on left-to-right processing. As we discuss in more detail in section 8.1, fixation within the
first half of a word provides the Optimal Viewing Position (OVP) and the fastest processing,
as compared to other fixation locations [Ore84]. When fixation was at the OVP, there may
have been time to process the first word in its entirety. Then the second word would have
been processed starting at the beginning, overwriting the representation of the first word.
The second word was presented more quickly than the first, so there may only have been
enough time to process the its first half. Therefore, the response was comprised of the first
half of the second word, and the second half of the first word.

Thus RT patterns cannot faithfully inform us whether lexical access occurs serially or
in parallel. In contrast, the Harcum and Nice experiment provides direct evidence of serial
processing.

4.1.4 Summary

These studies indicate that the highest prelexical representation encodes relationships
between letters, rather than the absolute position of individual letters. Priming showed an
advantage for external letters, but error patterns showed monotonically decreasing letter
retention from left to right (for strings of six or fewer letters).

By using a stimulus that varied over time, it was directly shown that read out of the visual
image occurred in a left-to-right manner for central presentation. Conflicting results for non-
central fixation can be explained by faster processing at the OVP, allowing the spatial extent
of the stimulus to be processed 1 1/2 times. In contrast, length effects are not suitable for
diagnosing serial versus parallel processing, as the effect of length varies with length, while
it is unlikely that the type of processing varies with length.

4.2 Letter-Level Experiments

Next I consider results from experiments which involved letter identification in briefly
presented strings that were not orthographically legal. Such experiments should reflect
bottom-up processing to the letter level in the absence of top-down lexical and phonologi-
cal influences. Although some have argued that patterns evoked by processing of non-word
strings are not relevant to word recognition (Grainger, pers. comm.), I argue in the fol-
lowing review that observed patterns must be a result of processing specific to visual word
recognition.

First I focus on studies in which the target string was fixated in the center, and move to
studies in which the target appeared in a single visual field. I will use the following notation
to specify retinal location. A location is specified in units of letter widths (with fixation at
0), where the LVF has negative values. The absolute value of a location gives the eccentricity
(distance from fixation). A string’s location will be given by the locations of the first letter
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and the last letter, separated by a double colon. For example, if fixation falls on the final
letter of a five-letter string, the string is at -4::0. If fixation falls on the first letter, the string
is at 0::4.

4.2.1 Fixation at String Center

In a priming study [Per95], Peressotti and Grainger investigated whether letter units
are position-specific or position-independent by testing whether there was priming for the
same letter across different string positions. Subjects were asked to perform an alphabetic
decision task, where they determined whether or not strings of three characters consisted
solely of letters (e.g., “TBR” versus “TB$”). Critical primes were also trigrams, consisting
of characters from the target string, either in the same order (same-position primes) or
in a different order where no letter stayed in the same position (scrambled primes). The
dependent variable was RT. In order to assure that facilitation did not result from physical
overlap, prime strings and test strings where presented in fonts of different sizes.

To examine temporal effects, prime exposure duration was varied. The results varied
with this duration. For durations of 33 ms, scrambled primes yielded no facilitation, while
same-position primes sped RTs by 22 ms. For exposures of 50 ms and 67 ms, cross-position
priming did occur, with facilitations of 9 ms and 14 ms, respectively, for the scrambled
primes, while the level of same-position priming stayed roughly the same.

Thus priming was observed for the scrambled primes at the longer durations. This is in
contrast to word targets, where no priming is observed for completely scrambled primes. Thus
it seems that priming can occur at the letter level when relative position is not respected, but
not at the word level. Because priming occurred at the shortest duration for same-position
but not scrambled primes, the authors took this as evidence for activation of position-specific
letter detectors followed by position-independent letter units. However, the assumption of
position-specific letter units may not be warranted. I have shown that these position-specific
results could be accounted for by location-specific units with overlapping receptive fields
[Whi01b]. Alternatively, the results might reflect an advantage for maintaining the relative,
not absolute, position of the letters. In contrast, the cross-position priming results provide
strong evidence for position-independent letter units; it is difficult to see how such priming
could occur in the absence of such units.

Next I consider error patterns in tasks where letters in briefly presented strings are to
be identified. Studies have generally shown that letter perceptibility decreases as string
position increases, with the exception of the final letter (and possibly the fixated letter)
[Wol74, Lef78, Ham82, Mas82].

The observed final-letter advantage is often taken as arising from reduced lateral inhibi-
tion at a low level of processing. That is, because the final letter is not masked by a letter
to its left, it is more easily perceived. However, this account is in conflict with data from
studies of non-letter symbols [Lef78, Mas82]. When a string of such symbols is fixated at
its center, perceptibility is lowest at the first and last symbols, as would be expected from
the effect of acuity. Thus, there is no advantage from reduced lateral masking. Therefore,
reduced lateral masking cannot account for the final-letter advantage. Strings of numbers
also show an advantage for the external numbers [Mas82]. Thus, characters that commonly
occur in strings display an external character advantage, but other symbols do not. This
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indicates that the advantage arises from the way that strings are processed and encoded.
However, this pattern differs from the error patterns observed for degraded word identifi-

cation (from aphasics and very brief presentations to normals), where there is no final-letter
advantage [Hum90, Mon98, Whi99]. One potential source of this difference is exposure du-
ration. The letter identification tasks have used durations of 80 ms or more, while the word
tasks for normals have employed durations of around 40 ms. (This difference reflects the
fact that letter identification in non-words is more difficult than word recognition.) It may
be the case that a final letter advantage only emerges at the longer durations. Alternatively,
it may be the case that the nature of the stimuli themselves (words versus letters) underlies
the difference.

Letter-level experiments have also given evidence for serial, left-to-right processing. Us-
ing the same paradigm as [Har75] (discussed in section 4.1.3), Nice and Harcum [Nic76]
performed a letter-based experiment, where two six-letter strings were very briefly sequen-
tially presented. Subjects tended to report the first letter of the first string, and the second
to sixth letters of the second string. (The position of this cross-over point varied with sub-
ject.) This provides unequivocal evidence of serial processing; there was only time time to
process the initial letters of the first string before the stimulus changed to the second string.

4.2.2 Non-central Fixation within a String

For unilateral presentation, it is well known that there is an RVF advantage in visual
word recognition. Thus, the advantage for early string positions (those falling in the LVF)
over the later string positions (those falling in the RVF) under central fixation contrasts with
the generally poorer performance observed for words presented entirely within the LVF. This
pattern is also in evidence at the letter level. One study used strings consisting of a target
letter embedded in a string of X’s, where the task was to identify the non-X letter [Naz04a].
For five-letter strings at -4::0 versus 0::4, there was an RVF advantage. However a nine-letter
string at -4::4 produced a LVF advantage; the letters were in the same locations as in the
two five-letter conditions, yet the VF advantage reversed. This suggests that the first half of
the string affects the second half under central presentation, perhaps reflecting integration
of the two halves. If so, there should be an RVF advantage for central presentation (-4::4)
in a right-to-left language. A similar experiment in Hebrew confirmed this [Naz04a]. Also in
contrast to English, performance did not differ for the two locations of the five-letter strings.
The task used in these experiments did not require encoding of letter position; the single
target letter could pop out from among the background letters. Despite this, differences did
emerge across languages, which therefore probably reflect highly automatic processing. This
processing must be related to word recognition because it is sensitive to reading direction.

Stevens and Grainger performed an experiment that used the target-letter-in-X’s task
for five- and seven-letter strings, where fixation location was systematically varied across all
string positions [Ste03]. Although the average recognition probability across the string was
symmetric with respect to visual field, the Position x Location curves showed an asymmetry.
An external letter in the LVF (which was necessarily an initial letter) was better perceived
than an external letter in the RVF (which was necessarily an final letter). Internal letters
were better perceived at -1 and -2 than at 1 and 2, respectively. Thus like [Naz04a], there
was an LVF advantage when the string straddled both visual fields.

19



0

20

40

60

80

100

1 2 3 4 5 6 7

P
er

ce
nt

 C
or

re
ct

String Position

R=  -2
R=  -3
R=  -4
R=  -5

0

20

40

60

80

100

1 2 3 4 5 6 7

P
er

ce
nt

 C
or

re
ct

String Position

R=  +2
R=  +3
R=  +4
R=  +5

Figure 4.1: Results from [Wol74], with LVF/RH on left and RVF/LH on right. Each line
represents a fixed retinal location. As string position is increased (i.e., more letters occur to
the left), performance decreases. The pattern of decrease varies with visual field.

An earlier study investigated the interaction of retinal location and string position for
a wider range of locations and positions [Wol74]. The stimuli were nine-letter consonant
strings presented for 200 ms, and the task was to report as many letters as possible in a
left-to-right report order. The location of the first letter of the string was systematically
varied from -12 to 5. This yielded separate retinal location curves for all string positions,
and separate string position curves for retinal locations -4 to 4.

An analysis of the data showed a significant interaction of string position with visual
field. That is, for a given string position and distance from fixation, the result varied with
visual field. These experimental data are displayed in Figure 4.1, in terms of perceptibility at
a given retinal location as position varies. To summarize, in the LVF, perceptibility initially
drops off quickly with increasing string position, and then levels off. However, in the RVF,
perceptibility is more slowly and smoothly decreasing. For example, when a letter at -3 is
in the first position, accuracy is 100%, but accuracy is only 35% when that letter is in the
third position. Perceptibility decreases to 20% for position 4, but stays roughly constant as
position increases from 4 to 7. In contrast, at the analogous location in the RVF/LH (3),
perceptibility drops from 95% for position 1 to 55% for position 3; a smaller drop than in
the LVF/RH. Perceptibility drops to 30% for position 4, and continues to decrease to 5%
for position 7 (rather than stabilizing as in the LVF/RH). Thus the effect of increasing the
number of letters to the left of a given eccentricity varies with VF.

4.2.3 Unilateral Presentation

This positional interaction with visual field is also in evidence for short strings presented
within a single VF. In one study, four-letter strings were embedded in a masking array
[Est76]. The array was comprised of 9 $’s, an x, and 9 more $’s, and was presented so the
x appeared at fixation. A consonant string replaced the $’s in one of four locations: -8::-5,
-5::-2, 2::5, or 5::8. Thus a letter at -5 or 5 could be either an initial or final letter. Exposure
duration was either 150 ms or 2400 ms. In the longer duration, eye position was monitored,
and the trial was terminated if fixation strayed more than 0.33◦ from the central fixation
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Figure 4.2: Results from [Est76], for the 2400 ms exposure duration.

marker. For both durations, the data displayed similar patterns (see Figure 4.2). For -5::-2
and 2::5, performance on the external letters was better than the internal letters. This could
not have been a result of a lack of lateral masking because the external letters were always
surrounded by $’s. For -8::-5, accuracy decreased with string position. For 5::8, accuracy
was flat across the first three positions, and rose for the final position. Thus, for the larger
eccentricity, the letters farthest from fixation were the best perceived in both VFs. This
striking pattern has also been observed in studies in which strings were not presented within
a masking array [Bou73, Leg01].

This asymmetry between position and VF was also apparent within a single location. At
-5, accuracy was much higher when it was an initial letter. At 5, accuracy was much higher
when it was a final letter. There seems to be a general advantage for initial letters in the
LVF and final letters in the RVF. These patterns must result from how a letter string is
encoded; they are considerably different from what would be expected on the basis of acuity.
It cannot be the case that this occurs simply because initial letters fall in the LVF and final
letters in the RVF for fixated words, because short words are often processed without being
directly fixated, in which case the first letter falls in the RVF.

However, Jordan and colleagues have claimed that there is no such asymmetry [Jor03].
Using stringent fixation control, they got the same deep, U-shaped patterns (i.e., better
accuracy at the external letters) for various locations in both visual fields. Without fixation
control, they got a pattern in line with the above experiment: decreasing accuracy with
increasing position in the LVF, and shallow U-shaped patterns in the RVF. Therefore, they
claim that any observed asymmetry is an artifact of erroneous fixations falling outside the
required fixation point. However, this does not explain the observed asymmetry. If there is
no asymmetry, the same pattern should emerge no matter where fixation falls. Note that the
above study [Est76] controlled fixation, and yet yielded strong positional asymmetry with VF
even when the subjects had 2.4 seconds to examine the stimulus. However, the tolerance in
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the Jordan experiments was much smaller. In order for the stimulus to be initially displayed,
fixation could not deviate from center by more than 0.125◦ for 1 second. Movements this
small are on the order of microsaccades, which occur reflexively at intervals of less than a
second in order to keep an object stabilized on the retinas. As Nazir [Naz03] points out,
maintaining fixation under this constraint is a demanding task, requiring focused attention
prior to presentation of the stimuli. Therefore, performance of this additional fixation task
is likely the source of the differing results, rather than uncontrolled fixation errors.

In other studies, consonant-vowel-consonant trigrams were presented vertically [Hel95,
Hle97]. For LVF presentation, subjects made many more errors involving the last letter
than the first letter of the string. For RVF presentation, this finding was greatly attenuated:
there were more errors on the first letter, and fewer errors on the last letter (relative to
LVF presentation), resulting in a more even distribution of errors across the string. Correct
recognition of the entire string was better in the RVF/LH than the LVF/RH. These patterns
were taken to be additional evidence of parallel processing of strings by specialized linguistic
modules in the LH, and less efficient, serial processing in the RH.

However, a counterintuitive result arose when the input was directed to both hemi-
spheres simultaneously. Under bilateral presentation, the error pattern is more similar to the
LVF/RH than the RVF/LH pattern [Hle97]. Thus, even though the LH was more effective
than the RH at performing the task, the RH’s mode of processing (i.e., error pattern) dom-
inated when the stimuli were presented to both hemispheres simultaneously. Under a dual
processing modes account, it is unclear why this should be the case.

Similar experiments in languages read in other directions have also cast doubt on a dual
modes account of these data. For Hebrew readers, the pattern reversed [Evi99]. Final letter
errors were more likely in the RVF/LH than the LVF/RH, and the bilateral pattern was
the same as the RVF/LH. A study of Japanese kana, for which the vertical orientation
is normal, showed no differences between LVF/RH, RVF/LH, and bilateral presentation
patterns [Hell99]. Thus, the patterns vary with reading direction, indicating that they are
not a result of hemispheric dominance.

4.2.4 Summary

Priming experiments have shown that facilitation at the letter level can occur across
string positions. By using a temporally varying stimulus, it was demonstrated that letters
are processed from left to right (in English speakers).

We have seen the letter perceptibility varies in a way that is contrary to acuity. Under
central fixation, there is a external letter advantage, where perceptibility decreases from
left to right, and rises for the final letter. (This rise at the final latter contrasts with the
lack of a final-letter advantage observed in perceptual word-recognition tasks.) Under LVF
presentation, the initial letter is perceived the best. Under RVF presentation, the final letter
is perceived the best. Letter perceptibility patterns are also sensitive to reading direction.
These factors indicate that letter tasks are influenced by processing specific to visual word
recognition. Thus a comprehensive model of letter-position encoding should explain these
effects.
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Chapter 5

Models of LPE

In this chapter, I first summarize the desired properties of an LPE model, as constrained
by the neurobiological and behavioral data reviewed in the previous two chapters. I then
give a brief overview of how artificial neural networks are usually implemented. In the next
section, I present other researchers’ models, which are all implemented models. These models
are evaluated with respect to how well they fulfill the desired properties.

5.1 Desiderata for an LPE Model

• Neurobiological plausibility. The lowest level of the model should represent V1, while
the highest level should represent the lexical level. The lowest level should be charac-
terized by a retinotopic mapping, where activation levels correspond to visual acuity.
At the lexical level, the word representation corresponding to the input should be-
come the most active. Transformations within and between levels should be involve
functionality that could be carried out by real groups of neurons.

• Lowest level is split across hemispheres. Available evidence indicates that the fovea is
not bilaterally represented. Therefore the lowest level of the model should incorporate
a split representation of the input, and the model should integrate this information
into a unified LPE.

• Convert a retinotopic encoding to location-invariant encoding. The model should solve
the problem of how a location-specific representation at the lowest level is transformed
into a location-invariant LPE.

• Incorporate position-independent letter units. The observed cross-position priming for
non-word strings indicates that letter units exist which can encode a letter in any
position. This is consistent with the behavior of letter-position dyslexics, who get the
identities of letters correct, but not their positions. The model should explain how a
positional information is dynamically bound to such units.

• Explain basic positional patterns. Under central presentation, letter perceptibility gen-
erally decreases from the beginning of the string to the end of the string, but rises for
the final letter. The model should explain why this pattern differs from the acuity pat-
tern, and why the final-letter advantage is not evident for degraded word recognition.
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• Explain relative-position and transposition priming. The highest prelexical representa-
tion should be consistent with the fact that word-level priming only occurs when the
target’s letter order is preserved for the most part in the prime. This priming does not
depend on absolute string position.

• Explain evidence for serial processing. Tasks in which two strings are briefly sequen-
tially presented show that the beginning of the first string and the end of the second
string are processed. This shows a serial read out of the visual image.

• Explain visual field differences. Positional patterns vary with VF, reading direction,
and hemispheric dominance. In particular, there is an initial-letter primacy in the LVF,
and a final-letter primacy in the RVF.

5.2 Review of Modeling Basics

A neuron (or group of neurons) is modeled as a node which receives activation on incoming
connections from other nodes, and sends activation on its outgoing connections to other
nodes. Activation is integer-valued or real-valued. Nodes are usually grouped into layers.
Each node in a layer has the same pattern of connections to nodes within that layer (lateral
connections), and nodes in other layers.

Activations at the lowest layer of the model (input layer) are set by the modeler. Oth-
erwise, the activation is a (often non-linear) function of the input reaching the node on its
incoming connections. Associated with each connection is a weight, which models the ef-
ficacy of the synaptic transmission between the two nodes. The amount of input arriving
along a connection is usually taken as the product of the activation of the sending node and
the connection weight. Thus a lower connection weight allows less transfer of activation. The
input to a node is the sum of these individual inputs. Weights can be set by the modeler,
or developed via a learning algorithm. A node only carries out local computations, limited
to functions of its internal state and the incoming activations. Such functions operate on
numbers, not abstract symbols. See Figure 5.1.

The connection weights into a node can be considered a vector; the activations of sending
nodes can also be considered a vector. The input to a node is then the dot-product of the
weight vector and the activation vector. For activation vectors of fixed Euclidean length, the
dot-product is maximized when the activation vector is parallel to the weight vector (i.e.,
the angle between the two vectors is 0). Thus activation level generally reflects how closely
the incoming activation vector is aligned with the node’s weight vector.

Activation level can model different aspects of neural function. One possibility is for the
activation value to represent membrane potential. In this cause, outgoing connections carry
information about individual neural spikes (or sets of spikes if the node represents a set of
neurons with the same dynamics). This requires simulation at millisecond time scale. The
alternative is that the activation value represents firing rate, or the total number of spikes
over some time period. This is a more abstract level of modeling.

There are three basic types of learning algorithms used to modify connection weights: su-
pervised, reinforcement, and unsupervised learning. In all cases, the input units are clamped,
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Figure 5.1: Basic components of an implemented model. Each node has an activation value
(shown in the center of the node). At the lowest level of the model, activation values are
clamped to particular values. Each connection has an associated weight. The input to a
node
is the dot-product of the activation vector and the weight vector. The activation of a node
is a function of this input. A node sends its activation along outgoing connections.
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and activation flows through network to the output layer. In supervised learning, the acti-
vations on the output layer are compared to the target activations desired by the modeler
(for that particular input). The differences between the actual and target activations (the
errors) are used to modify connection weights so that the errors decrease in magnitude. The
most well-known algorithm of this type is back-propagation. In this way, the network learns
to perform a particular task (i.e. an input-output mapping).

In reinforcement learning, the modeler provides feedback that is limited to a reward
signal; this is essentially trial-and-error learning. Thus there is some randomness associated
with the activation functions. When an output pattern receives a positive reward, connection
weights are modified to increase the probability of repeating that output pattern. When a
negative reward is generated, connection weights are changed to decrease the probability of
repeating that output pattern, and to increase the probability of creating a different output
pattern (which could potentially generate a good response).

In unsupervised learning, there is no feedback from the modeler. Rather, the goal is for
the network to self-organize to reflect regularities in the input. One example of this approach
is Hebbian learning, where connection weights are strengthened between two nodes that are
both activated at the same time (or at successive time steps).

5.3 Models of LPE

5.3.1 Interactive Activation Model

The most well-known model of visual word recognition, the Interactive Activation (IA)
model [McC81], used a position-specific encoding. That is, there was a separate node repre-
senting each letter in each position. Letter nodes connected forward to nodes representing
individual words, and these word nodes connected back to letter nodes. Connection weights
were binary, with a weight of 1 if the letter was in that position in the word, and 0 other-
wise. The model was based on four-letter words, so differing lengths were not an issue. The
primary goal of this model was to illustrate the effects of top-down activation from the word
level back to the letter level. The position-specific encoding was likely implemented as an
expediency, rather than as an instantiation of a theoretical model of LPE. As we have seen,
such a position-specific encoding is not compatible with behavioral studies.

5.3.2 Print-to-Sound Models Trained by Back-Propagation.

In a model of learning to read aloud [Sei89], orthographic input was represented by letter
trigrams. (An example of a trigram encoding is given in section 2.1). Orthographic units
were fully interconnected with a hidden layer, which was fully interconnected with the output
layer representing phonemes. The connection weights were learned via the back propagation
algorithm. The goal of the modeling was to show that a single network could learn to
pronounce both regular and exception words. (An exception word is a word that does not
follow the usual rules of pronunciation, such as pint.) However, this model produced poor
generalization on reading pseudowords (pronounceable letter strings that are not words).
This was likely due the choice of input representation; representations of the same letter in
different contexts bore no relationship to each other, making generalization difficult. This
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is known as the dispersion problem. Changing the input encoding to a slot-based one which
encoded letters and graphemes in onset, vowel and coda positions allowed better performance
on pseudoword reading [Plsa93]. Again, the focus of these models was not LPE, and the
choice of orthographic encoding was merely a means to an end.

Nevertheless, it is instructive to evaluate trigrams as a potential prelexical encoding. They
do not rely on absolute-position encoding, consistent with experimental evidence. However,
they do not offer sufficient flexibility to account for the relative-position results. Consider
the prime 1346 and the target word 123456. The only trigrams it shares with the target are
**1 and 6**, so there is no basis for an influence of the order of the interior letters.

The difficulties in achieving good pseudoword performance using trigrams points to an
important issue. LPE not only serves a direct, orthographic route to lexical semantics, it
also provides input to a process which learns to map orthography to phonology. These
results demonstrate that context units, such as trigrams, make that task difficult due to the
dispersion problem. This suggests that an encoding based on position-independent letter
units should exist at some level of processing, in order to provide dispersion-free input to
the phonological system. This is consistent with the above experimental evidence for such
representational units [Per95, Fri01]. However, such an encoding cannot readily explain the
relative-position priming data [Hum90, Per99, Per03], suggesting that position-independent
letter units may not directly contact the lexical level.

5.3.3 BLIRNET

Unlike the preceding models, BLIRNET [Moz91] specifically focused on the issue of how
a retinotopic representation of a letter string could be transformed into a location-invariant
LPE. At layer 1, the retina was represented as a 6 x 36 array of nodes, with each location
comprised of 5 nodes which represented different features (corresponding to four different
line orientations, and a node encoding whether the line terminated in that location). Each
letter was represented by these features over a 3 x 3 region. Above this layer were 5 more
layers in which the size of the array progressively decreased, but the number of features
at each location increased. For example, at layer 2, the array was 3 x 12, with 45 different
types of feature nodes at each location. Each node in layer 2 received inputs in a topographic
manner from a 4 x 6 region of layer 1. By layer 6, the array was reduced to 1 x 1, with 720
different features; thus, this layer did not encode any information about stimulus location.

The features detected by these higher layers were hard-coded in the connection weights.
Weights were equal to each other on all connections joining a given feature type at layer
n − 1 to a given feature type at layer n. This provided a degree of location invariance. The
connection weight between two feature types was randomly chosen (under some distributional
constraints). Thus the detected “features” did not correspond to psychologically motivated
units.

The resulting pattern in layer 6 was mapped to a trigram representation via supervised
learning. Trigrams also included units of the form A BC, meaning that a single letter oc-
curred between A and BC. Because the total number of possible trigrams is huge, the 540
most common were chosen. Thus there was a trigram layer of 540 units above layer 6, with
initially random connection weights. The network was trained by encoding various words at
various locations in layer 1. For each trial, the resulting trigram activation pattern was com-
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pared to the desired trigram activation pattern for that word, and the weights were modified
to bring the actual activation pattern closer to the desired pattern.

At the end of training, the trigram layer produced a noisy, somewhat location-invariant
representation of the letters encoded on layer 1. This representation was cleaned up via
lateral excitation between consistent trigrams (e.g., BON and B ND) and lateral inhibition
between inconsistent trigrams (e.g., BON and OBN), while unrelated trigrams (e.g., BON
and DER) did not affect each other. The trigram layer was connected to a lexical layer with
top-down connections back to the trigram layer. This feedback also helped to clean up the
trigram representations. This allowed translation-invariant recognition of words encoded in
layer 1. Thus, at layer 6, there was sufficient information to reliably extract trigram identities
when additional consistency and lexical information were added.

While this model addresses the difficult problem of location-invariance, there are some
difficulties with the proposed solution. The only way to represent letter position in this
model is via a contextual encoding, since all spatial information is factored out. Thus a model
that achieves location invariance in this way fundamentally rules out a position-independent,
letter-based representation. It could learn to detect individual letters, but could not represent
their positions independent of their context in a general way. The model did include some
trigrams corresponding to positional letter detectors, of the forms **A, ** A, A **, and
A** (encoding first, second, next-to-last, and last letters). However, this representation
cannot be extended to the interior positions. This is in conflict with the above arguments
for the existence of a letter-based representation and for position-independent letter units.
Furthermore, this location invariance is achieved via an unrealistic jump in receptive-field
size; the representation at the first layer corresponds to features, while the representation at
the second layer corresponds to adjacent letter pairs.

Nevertheless, it is instructive to evaluate the proposed trigram encoding. It includes “ ”
and therefore offers a more flexible encoding than one that only includes contiguous trigrams.
Under this scheme, 1346 shares trigrams *1 3, 1 34, 34 6, and 4 6* with the target 123456,
while 1436 does not share these trigrams. This is consistent with relative-position priming
results. However, the representation is still not flexible enough. Consider the stimuli 12dd56
and 124356 for the target 123456. The two stimuli share an equal number of trigrams with
the target, which is inconsistent with transposition-priming results.

5.3.4 A Split Fovea Model Trained by Back-Propagation

The goal of this model is to explain visual field differences based on a split cortical
representation of the fovea [Mon04]. The input was in the form of location-specific letter
units, with four locations in each “visual field”, corresponding to foveal vision. The left four
units connected directly to one bank of hidden units representing the RH, while the right four
units connected directly to a different bank representing the LH. The two banks of hidden
units were fully interconnected with each other. The hidden units connected to an output
layer representing a lexical encoding, which could be phonological or semantic depending on
the simulation. The network was trained on four-letter words. The size of the input layer
allowed a four-letter word to occur in five different locations. The network was trained via
back-propagation by representing each word at all five possible locations on the input layer.
Thus the network learned to produce a location-invariant representation at the output layer.
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Measurements of performance based on mean squared error showed similar patterns to
some human phenomena, such as the location of the Optimal Viewing Position, positional
effects of grapheme-phoneme irregularities, and VF differences in semantic processing. These
results are explained as arising from an interaction between positional letter statistics and
the distribution of positions with a “visual field”. In English, there is more variation in letter
identities at the beginning of words than at the ends of words. However, when contiguous
letter pairs are considered, there is more variation at the ends of words than at the beginnings.
Under the model’s input conditions, initial letters fell more frequently in the “LVF” and
final letters in the “RVF”. For example, of the five input locations, only one yields the first
letter in the “RVF”. Thus the “RH” becomes tuned to the statistics of beginnings of words,
while the “LH” becomes tuned to the ends of words. Because of the differing information
granularities within words, coarseness of representation varies with “hemisphere”. This leads
to the positional and VF effects in the model.

This model has the advantage that it deals with the issue of a split representation of
the fovea. However, I suggest that the underlying assumptions are unrealistic. The model’s
results arise because the hidden-layer representation of a string varies with its location on the
input layer. However, this means that there is no location-invariant prelexical representation.
For example, there is no abstract encoding that the letters cart spells the word CART.
Rather, the relationship between the letters cart and the word CART has to be relearned
for every possible stimulus location.1 This is inefficient and contrary to all other models
and theories of LPE, which assume that an abstract representation of letter order contacts
the lexicon. This is also inconsistent with imaging evidence that processing becomes left-
lateralized at a prelexical level [Coh00, Deh04].

Furthermore, there are also problems with the assumption underlying the positional fre-
quencies. The relationship between letter position and visual fields arose from the use of
symmetric visual fields in the model. However, to achieve normal speed in text reading, 4
LVF letters and 12 RVF letters must be visible [Ray75]. Thus, the visual fields are effectively
highly asymmetric in reading. Short words falling in the right parafovea are frequently pro-
cessed without being directly fixated, about 50% of the time for four-letter words [Ray76].
Thus it is not actually the case that the initial letters of a word are considerably more likely
to fall in the LVF than the RVF.

5.3.5 SOLAR

The SOLAR model was developed to illustrate how a word recognition module could self-
organize to recognize strings of varying lengths [Dav99]. It is based on the SONNET model
[Nig93]. The highest prelexical encoding employed position-independent letter units, where
position was represented by an activation gradient. That is, a letter unit could represent
that letter in any position, and its activation level encoded position. Activation decreased
from left to right. For example, to represent the input CART, letter node C would have the
highest activation, A the next highest, R the next and T the lowest. (Multiple instances of

1This is only strictly true when the output is not predictable from the input, such as for a semantic
encoding. The model could potentially give the correct phonological response for a regular word at untrained
location, based on generalization from other words presented at that location.
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a letter were encoded by different instances of a letter node). This activation pattern was
taken to arise from a serial read out of the visual image, i.e., letter node C is activated,
then A, then R, then T. Earlier letters accumulate higher activation values because they fire
longer. Therefore, the final letter of a string is taken to have a set minimum activation level,
and activation increases as position decreases. The serial read out was taken to correspond
to a covert attentional scan of the visual image.

After learning, connection weights into a word node became equal to the letter activation
pattern resulting from that word. However, a simple activation function based on the dot-
product of the weight and activation vectors causes difficulties. For example, the input car
would activate CART more than CAR, since the activations of C, A, and R are higher
for cart than for car, and these differences are learned on the connection weights. One
approach to solving this problem is to normalize the length of the activation vector to 1.
Thus is accomplished by squaring each activation, summing these squares, and dividing
each activation by the square root of this sum. Thus the activations for C, A, and R
for cart become smaller than for car because the activations for CART are divided by a
larger quantity (because it includes the square of the activation for T). These differences
are reflected on the respective learned connection weights. Therefore the input car activates
CAR more than CART. However, this approach becomes less and less effective for longer
words, because the weights on large positions become quite small, and they do not have much
influence. Therefore this solution is not robust in the presence of noise because differences in
activation values at the word level can be quite small. For example, taking the ratio between
positional activations to be 1.2, an input of the form 1234 activates a word node encoding
12345 to 0.96 (versus 1.0 for word node 1234). Another problem is that this encoding of
position is not robust, especially toward the ends of words where activations and weights are
low. For example, the sequence 12354 would activate word node 12345 to 0.99.

To solve these problems, another component, I, contributed to the bottom-up input in
the SONNET and SOLAR models. I operates on normalized activation and weight vectors,
as follows. For word node W, the ratio of each letter unit’s activation and its connection
weight was taken. This ratio was capped at a maximum of 1.0 for each letter. Each ratio
was multiplied by a constant K, and the result was added to 2 − K. IW was set to the
product of these values, giving a maximum possible value of 2L, where L is the number of
letters having non-zero connection weights into W . IW was multiplied with the dot-product
of the activation and weight vectors to comprise the bottom-up input to word node W .

Thus this new component compared the weight and activation vectors directly to each
other, producing a penalty at letters where the activation value was less than the connection
weight. For example, taking K = 1.5, input of the form 1234 gives I = 16 for word node
1234, and I = 8 for word node 12345, since the ratio of 5’s activation to its weight is 0,
giving a value of 0.5 for that connection. Thus the shorter word has an advantage. Input of
the form 12345 gives I = 32 for word node 12345, while 12354 gives I = 28, which is 87.5%
of the maximal value possible value of I, as opposed to 99% of the maximal possible value
for the dot-product. Thus misorderings are amplified.

This model has the advantages that it is consistent with the evidence for serial read out
and position-independent letter detectors. However, there are difficulties concerning the way
that letter nodes activate the lexical level. While the computation of I does indeed solve the
above problems, it is not biologically plausible. It is unclear how an activation level and a
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weight could be directly compared. A weight reflects properties of synaptic transmission. It
modulates the efficiency of the interaction between nodes. This value cannot be extracted
from synapses and used in other calculations. Thus, I is a computational convenience and
does not illuminate how ordering information is actually compared in the brain. Moreover,
it does not give the correct results in some cases. Consider the inputs 1346 and 1436 for
the word node 123456. For all positions in both of these stimuli, the letter activation is
higher than the weight; thus all the ratios are maxed out at 1.0, giving I = 16 for both
stimuli. Therefore, this measure is insensitive to ordering for a stimulus that is shorter than
the target, contrary to experimental evidence.

Another problem is the proposed activation pattern across the letters. The final letter has
the lowest activation level. This is inconsistent with the broad range of evidence for a final
letter advantage. While it is argued that increased performance could arise at the last letter
due to a recency effect from the serial activation of letters, this implies that activation level
and performance are independent of each other. It is generally assumed that performance
reflects activation level. That is, a recency effect occurs because the activation of the final
letter remains higher than previous letters due to less decay. This is inconsistent with the
assumption that the final letter has the lowest activation level.

5.3.6 LEX

In this model position-independent letter units connected to word units, which included
a phonological encoding of the word [Kwa99a]. Letter order was represented serially. The
first letter fires and activates all words having that first letter. The second letter fires and
further activates only those words matching on that letter in that position, and the more
highly activated words inhibit those words that do not match. This process continues for
each letter until there is only one active word remaining.

After each letter fires, the model generates a phonological output which is a combination
of the pronunciations of all active words. The goal of the model was to demonstrate that this
type of processing could account for naming and lexical-decision phenomena in the absence
of learned grapheme-phoneme mapping rules.

For the present purpose, the serial encoding of letter order is of the most interest. How-
ever, no details are given as to how the serial input is matched to the stored lexical encoding.
That is, how does the nth letter only further activate those words matching that letter in
the nth position, without explicitly encoding letter positions within a word node? It seems
unlikely that this match was implemented in a biologically plausible manner (i.e. based on
numerical computations on weighted connections). However, even if it were, these activation
dynamics are problematic, because they are equivalent to a position-specific encoding. That
is, although the letter units are position-independent and dynamically represent position
by firing order, they activate words in a position-specific way. This is incompatible with
relative-position priming.
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5.4 Summary

I conclude this section by reviewing how the requirements of an LPE model are satisfied
(or not) by the above models.

Neurobiological Plausibility : The LEX model did not specify the activation function
for the word level. The SOLAR model used an unrealistic one in which activations and
weights were directly compared. Other models were plausible in that they relied on standard
activation functions.

Split fovea, and Visual Field Differences: The only model that addressed these issues
was the Split fovea model. However, the split representation was not integrated into an
location-invariant LPE, and the VF differences arose from unrealistic assumptions.

Retinotopic to Location-Invariant Encoding : Only the Split Fovea and BLIRNET models
addressed this problem. Neither model incorporated position-independent letter units, which
is in conflict with the next requirement.

Position-Independent Letter Units and Serial Encoding : The SOLAR and LEX models
included such letter units under a serial readout of the visual image. In the SOLAR model,
position was dynamically represented by activation level, and activation level was driven by
serial processing. However, the word-level activation function was neurobiologically implau-
sible. In the LEX model, order was represented temporally. However, it is unclear exactly
how this encoding activated words, and the proposed activation dynamics were position-
specific. Thus neither model really solves the problem of how the letter-based, temporal
encoding could be decoded at the word level.

Relative and Transposition Priming: The SOLAR model came the closest to fulfilling
these requirements. However, this achievement is based on an implausible word-activation
function, which doesn’t give the proper relative-position results for primes and targets of
differing lengths. As for contextual units, the trigrams used in the present models (print-
to-sound1 and BLIRNET) are not sufficiently flexible. The IA, print-to-sound2, and LEX
models activated words in a position-specific way. It is unlikely that the location-specific
encodings developed by the Split Fovea model could replicate these phenomena.

Serial Processing : The LEX and SOLAR models include a serial readout of letters.
Positional Patterns: SOLAR is the only model producing varying letter activation levels,

which arise from serial activation of letter nodes. The proposed activation gradient is consis-
tent with behavioral evidence for non-final positions, but not with the final-letter advantage.
Furthermore, the activation gradient does not explain the interaction of perceptibility pat-
terns with visual field under unilateral presentation.

In the following chapter, I present the SERIOL model, which satisfies all of these require-
ments.
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Chapter 6

The SERIOL Model of LPE

My theoretical model of LPE is dubbed the SERIOL model (Sequential Encoding Regu-
lated by Inputs to Oscillations within Letter units) [Whi01a]. The model is best motivated
in a top-down manner. I first give an overview, starting at the word level and working down.
I then specify the model in more detail, which is best done in a bottom-up manner.

6.1 Overview

6.1.1 Highest Prelexical Orthographic Representation

The relative-position and transposition priming results [Hum90, Per99, Per03, Gra04a]
place strong constraints on the nature of the highest prelexical representation [Gra04b].
Contextual units are a natural type of unit to represent order in the non-position-specific
manner that seems to be required. As we have seen, trigram units do not offer sufficient
flexibility. Adding a wild-card character (“ ”in BLIRNET [Moz91]) brings the representation
closer to explaining the priming results. Maximum flexibility is achieved by using bigrams
instead of trigrams, and allowing letters to occur between the two letters of the bigram.
Following my original specification of such bigram units [Whi99, Whi01a], Grainger later
also endorsed such units, dubbing them open bigrams [Gra04b, Sch04].

Bigram activation level is a decreasing function of the distance between two letters. Thus,
bigrams triggered by contiguous letters are more highly activated than those representing
separated letters. This leads naturally to a maximal allowable separation. Priming data
suggest 2 is the maximum [Sch04]. A new assumption is that the external letters are anchored
by edge bigrams1. For example, the stimulus chart activates bigrams *C, CH, HA, AR, RT,
T* and CA, HR, AT and CR, HT, where the first group of bigrams has the highest activation
level, the next group has a lower activation level, and the last pair of bigrams has the lowest
activation level. Bigrams contact the word level via weighted connections, where the weights
are proportional to the bigram activation pattern for each word.

6.1.2 Nature of Pre-Bigram representation

So then how are bigrams activated? Consistent with evidence for position-independent
letter units [Per95], I assume that such units comprise the next lowest level. This requires that

1The original specifications of the model [Whi99, Whi01a] did not include edge bigrams.
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position be dynamically represented. Two possibilities are that position is represented by an
activation pattern, or by firing order. As discussed above in section 5.3.5, a monotonically
decreasing activation gradient is inconsistent with the final-letter advantage. Therefore, in
line with evidence for left-to-right string processing [Har75, Nic76], letter order is taken to
be represented serially. Thus in our example, C fires, then A, then R, then T. A bigram is
activated when its constituent letters fire in the correct order, and bigram activation level
falls off as the interval between letters increases.

Because bigram units intervene between the letter and word levels, this solves the problem
of how a temporal letter encoding can activate the word level. (This problem is discussed in
section 5.4.) However, recall that the encoding of letter order also subserves a phonological
route to the lexicon, as discussed in section 5.3.2. While open bigrams are suitable for lexical
access along an orthographic route, they are not suitable for phonological access because they
do not provide phonologically meaningful units, thereby introducing the dispersion problem.
Therefore, I assume that processing branches after the sequential encoding. Along the ortho-
graphic route, letters activate open-bigrams, and then words. Along the phonological route,
letters activate phonemes and then words (perhaps via some intermediate syllable-based en-
coding). The point is that bigrams are not activated along the phonological route. The serial
nature of the letter-based encoding maps well onto the serial nature of phonology.

6.1.3 Induction of Serial Encoding

How is this temporal firing pattern induced at the letter level? Hopfield [Hop95], and
Lisman and Idiart [Lis95] have proposed related mechanisms for precisely controlling timing
of firing. This is accomplished via a node which undergoes sub-threshold oscillations of
excitability. For convenience, I designate the trough of the cycle to be the “start” of the
cycle. Input level then determines how early in the cycle such a node is able to cross
threshold and fire. (See Figure 6.1.) Near the beginning of the cycle, excitability is low, so
only a node receiving a high level of input can cross threshold and fire. Excitability increases
over time, allowing nodes receiving less and less input to progressively fire. Thus serial firing
at the letter level can be accomplished via letter nodes which oscillate in synchrony and take
input in the form of an activation gradient. In our example, C would get the most input, A
the next, R the next, and T the least. So C can fire the earliest, A next, R next, and finally
T. Note that these letter nodes are not tied to location or position. The same letter node
can represent a letter occurring at any position, based on its timing of firing.

Thus there must be an activation gradient across the next lower level of the model, to
provide input to the letter level. Because this gradient decreases from left to right, these
lower-level units must be tuned to retinal location. I have assumed that the input to the
letter level comes from feature units [Whi01a]. However, the assumption of feature units is
not crucial. Input to position-independent letter units could just as well come from location-
specific letter units. The important point is that an activation gradient across units tuned to
retinal location interacts with synchronously oscillating letter nodes which are location- and
position-independent; a retinotopic representation is converted into a serial representation.
The resulting serial representation is a location-invariant encoding. Thus location invariance
is achieved by mapping space onto to time. This location-invariant encoding is presumed to
occur in the LH. For convenience, I assume that this locational gradient occurs across feature
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Figure 6.1: Interaction of input level and timing of firing for a cell with undergoing a sub-
threshold oscillation of excitability. When a relatively high level of input (top curving line)
is added to the base oscillation, the cell crosses threshold at time 1 (action potential not
illustrated). If less input were received, the cell would cross threshold later in the cycle, such
as at time 2.

units.
The induction of serial firing also results in varying activations at the letter level. Letters

that receive more input also fire faster and achieve higher activations. Therefore positional
activations at the letter level are similar to those at the feature level, with the exception of
the final letter. The final letter is not inhibited by the firing of a subsequent letter; thus it
can fire longer than non-final letters. Although the final letter receives a lower level of input
than the other letters, it can reach a higher activation level (where activation is based on
total number of spikes). This is consistent with the final-letter advantage. See Figure 6.2 for
a schematic of the letter through word layers.

6.1.4 Creation of the Locational Gradient

How is the activation gradient induced at the feature level? Recall that at the lowest
level of the model (dubbed the edge layer) there is a different activation pattern, one based
on acuity. For a fixated word, the acuity pattern across the letters in the RVF is the same
as required for the locational gradient (i.e., decreasing from left to right). Thus the acuity
gradient can serve as the locational gradient for those letters. However, in the LVF, the acuity
gradient increases from left to right; its slope is in the opposite direction as required for the
locational gradient. Therefore, when the edge level activates the feature level, the acuity
gradient must be inverted in the LVF/RH, while it can be maintained for the RVF/LH.
Details of this processing are presented below. For now, it is sufficient to note that such
hemisphere-specific processing could potentially be a source of VF differences.
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Figure 6.2: Architecture of the letter, bigram, and word levels of the SERIOL model, with
example of encoding the word CART. At the letter level, simultaneous graded inputs are
converted into serial firing, as indicated by the timing of firing displayed under the letter
nodes. Bigram nodes recognize temporally ordered pairs of letters (connections shown for
a single bigram). Bigram activations (shown above the nodes) decrease with increasing
temporal separation of the constituent letters. Activation of word nodes is based on the
conventional dot-product model.
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6.1.5 Summary

There are five levels of representation: edge, feature, letter, bigram, and word. The acuity
gradient at the edge level is converted via hemisphere-specific processing into a monotonically
decreasing locational gradient at the feature level. This gradient interacts with oscillatory
letter nodes, yielding serial firing and creating a location-invariant representation. A posi-
tional activation pattern also results at the letter level. The letter level feeds into separate
orthographic and phonological routes. Along the orthographic route, open-bigram nodes
respond to letter pairs that fire in a particular order. Bigram activation depends on the time
lag between the firing of the constituent letters. The bigrams contact the lexical level via
weighted connections.

I conclude this overview by briefly specifying how this model satisfies the requirements
for a LPE model.

Split fovea and VF differences: A split fovea is assumed at edge level. Formation of the
locational gradient integrates the two halves of the string. Due to the acuity gradient, this
requires hemisphere-specific processing, potentially accounting for VF differences.

Position-independent letter units and serial processing : Position is dynamically repre-
sented by firing order. Activation of words via a bigram layer provides a mechanism for
decoding the temporal representation.

Retinotopic to Location-Invariant encoding : This is achieved via the interaction of the
locational gradient and oscillatory letter nodes.

Relative-position and transposition priming : These phenomena are explained by the open-
bigram units.

Positional patterns: The locational gradient overrides the acuity pattern. This gradient
creates varying activations at the letter level. Lack of inhibition of the final letter by a
subsequent letter creates a final-letter advantage.

Neurobiological plausibility : Most interactions occur along standard weighted connec-
tions. As for the proposed temporal encoding, Lisman and Idiart discuss empirical support
for the underlying assumptions [Lis95]. In line with the proposed precision of spike timing, re-
cent studies have shown that single spikes encode significant amounts of information [Rie97],
and that spike timing is reproducible at a millisecond time scale [Ber97, Vic96]. In line
with the proposed oscillatory cells, slice preparations have shown sub-threshold, theta-band
oscillations in cortical pyramidal cells [Fel01, Buc04]. Furthermore, a role for theta-band
oscillations has been implicated in visual word recognition [Kli01]. As for the bigram nodes,
others have proposed neural mechanisms of how temporally ordered pairs could be recog-
nized, via transition of receptor conformations [Deh87], or activation decay under specific
connectivity patterns [Pul03].

6.2 SERIOL model

Having given an overview of the model, it is now presented in more detail. As discussed
in the Introduction, this a theoretical framework. The model is specified by describing the
representation and the activation pattern at each layer, and the transformations between
layers.
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In the following, the term activation denotes the total amount of neural activity induced
by a letter (within a given processing layer) over some fixed time period. Thus, activation
increases with the number of cells firing, their firing rate, and the duration of firing (if firing
duration is less than the time period being considered).

6.2.1 Edge Layer to Feature Layer

At the edge level, the activation pattern results from the acuity gradient. That is, the
total amount of neural activity representing a letter decreases as distance from fixation
increases. At the feature level, this pattern must be converted into the locational gradient,
wherein activation decreases from left to right. Obviously, a high level of activation for the
leftmost letter cannot be achieved by increasing the number of cells representing that letter.
Rather, the locational gradient is created via modification of firing rates. It is assumed that
the following transformations are learned during reading acquisition, most likely in response
to a top-down attentional gradient.

Recall that the acuity gradient can serve as the locational gradient in the RVF/LH, but
not the LVF/RH. In the LVF/RH, the acuity gradient is inverted as the feature level is
activated, via a combination of excitation and lateral inhibition. This process is displayed in
Figure 6.3. It is proposed that letter features in the LVF/RH become more highly activated
by edge-level inputs than those in the RVF/LH. This allows the first letter to reach a high
level of activation. This could occur either via higher bottom-up connection weights from
the edge level, or by stronger self-excitatory connections. Within the RH feature level, there
is strong left-to-right lateral inhibition. That is, a feature node inhibits nodes to its right.
As a result, letter features corresponding to the first letter receive no lateral inhibition, and
inhibition increases as letter position increases. Thus, the features comprising the first letter
attain the highest activation level (due to strong excitation and lack of lateral inhibition),
and activation decreases toward fixation (due to sharply increasing lateral inhibition, from
more and more letters).

In the RVF/LH, the acuity gradient serves as the locational gradient. Overall excitation
is weaker than to the LVF/RH. Left-to-right inhibition is not necessary, although some weak
such inhibition may steepen the slope of the gradient.

The two hemispheric gradients are “spliced” together via functional cross-hemispheric
inhibition. The RH features inhibit the LH features, bringing the activation of the RH
features lower than the activation of the least activated LH features. As a result, an activation
gradient that is strictly decreasing from left to right is created. This cross-hemispheric
inhibition explains the LVF advantage for letter perceptibility in strings that straddle both
visual fields [Ste03, Naz04a].

Next I consider the nature of this proposed cross-hemispheric inhibition. One possibil-
ity is that RH features directly inhibit LH features across the corpus callosum. Another
possibility is that the RH feature-layer representation activates a corresponding feature-level
represention in the LH, and that the inhibition occurs within the LH. It is a matter of debate
whether callosal connections are primarily excitatory or inhibitory (see [Reg01] for a discus-
sion). Computational models have shown that inhibitory cross-hemispheric connections are
required to produce strong hemispheric lateralization, while predominately excitatory con-
nections are necessary to model the reduced neural activity observed contralateral to a cor-
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Figure 6.3: Formation of the locational gradient at the feature layer, for the centrally fixated
stimulus CASTLE. The horizontal axis represents retinal location, while the vertical axis
represents activation level. The bold-face letters represent bottom-up input levels, which are
higher in the RH than the LH. In each hemisphere, activation decreases as a eccentricity
increases, due to the acuity gradient. The italicized letters represent the effect left-to-right
inhibition within the RH, and RH-to-LH inhibition. In the RH, C inhibits A, and C and
A inhibition S, creating a decreasing gradient. The RH inhibits each letter in the LH by
the same amount, bringing the activation of T lower than that of S. As a result, activation
monotonically decreases from left to right.
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tical lesion [Lev00, Reg01]. A single model demonstrated that inhibition at the sub-cortical
level and excitation at the cortical level could account for both phenomena, suggesting that
callosal connections may be predominately excitatory [Reg01]. However, even if callosal con-
nections are predominately excitatory, the existence of inhibitory connections is not ruled
out. Indeed, in the cat, stimulation of transcallosal neurons resulted in both excitatory and
inhibitory post-synaptic potentials in contralateral receptive cells [Cis03]. It might possible
to selectively strengthen such inhibitory connections, allowing unidirectional, transcallosal
inhibition.

I do assume that callosal transfer of the RH information to the LH occurs prior to the
letter level, which is taken to correspond to the LH’s VWFA. So the RH features may tran-
scallosally inhibit the LH features and excite the LH letter representations. Alternatively,
RH features may activate feature-level “copies” within the LH, and such inhibition and exci-
tation would then occur entirely within the LH. Thus, I leave as open questions the nature
of callosal transfer and the substrate of the proposed cross-hemispheric inhibition.

6.2.2 Feature Layer to Letter Layer

The locational gradient of the feature level induces a temporal firing pattern across let-
ter nodes wherein position is represented by the precise timing of firing relative to other
letter nodes. All letter nodes are assumed to undergo synchronous, periodic oscillations of
excitability. Following Lisman and Idiart [Lis95], this oscillation is taken to fall in the theta
range (5 - 8 Hz; cycle length = 125 to 200 ms). Due to the locational gradient, letter nodes
fire serially. An activated letter node inhibits other letter nodes. As a letter node continues
to fire, its firing rate slows, reducing lateral inhibition to the other nodes. This allows a
new letter node to start firing. When an active letter node receives lateral inhibition, it
then becomes strongly inhibited, so that it will not refire for the remainder of the oscillatory
cycle.2 Thus the graded input levels and lateral inhibition create serial firing at the letter
level.

This process also creates varying activations at the letter level. I assume that a higher
input level leads to faster firing.3 The activation of a letter node depends on both its firing
rate and duration. Firing duration is determined by when the next letter starts to fire, which
is determined by the input level to that node. Thus the activation of a letter depends both
on its own input level, and the input level to the next letter. Assuming a fairly constant
firing duration across letters, this gives a decreasing activation gradient at the letter level.
The firing duration of each letter is taken to be on the order of 10 - 20 ms. However, the final
letter is not inhibited by a subsequent letter. It can continue fire until the end (down-phase)
of the oscillatory cycle.4 Therefore, the final letter could potentially fire longer than the

2This raises the question of how repeated letters are handled. I assume that there are multiple copies of
each letter node, and a different node becomes activated for each instance.

3This is consistent with experimental results in which a hippocampal CA1 neuron was driven by oscillatory
current injected into the cell body, coupled with stimulation to the dendrites. Increasing the amplitude of
the dendritic current caused the cell to fire earlier with respect to the somatic oscillatory cycle, and to fire
more quickly, generating more action potentials [Mag01].

4This assumes that a single word is being processed, as in experimental studies. Under natural reading
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other letters, and reach a higher level of activation than the internal letters even though it
receives less input.

6.2.3 Letter Layer to Bigram Layer

A bigram node XY becomes activated when letter node X fires, and then letter node Y
fires within a certain time period. Thus letter node X primes or gates node XY, allowing it
to fire when input from letter node Y is received. If the node is not initially primed by input
from letter X, it cannot fire. A bigram node responds with a burst of firing, and then is
quiet. The number of spikes in this burst decreases as the time increases between the firing
of X and Y. Thus, the activation of XY indexes the separation of letters X and Y in the
string.

In previous articles on the SERIOL model, I have assumed that bigram activations were
influenced by letter activations [Whi99, Whi01a, Whi04a, Whi04c]. However, this assump-
tion is inconsistent with emerging evidence on the weak positional effects of priming at the
word level [Gra04a]. Therefore, I now take bigram activation levels to be affected only by
separation of the constituent letters.

Following the evidence for a special role for external letters, the string is anchored to these
endpoints via edge bigrams.5 That is, bigram *X is activated when letter X is preceded by
a space, and bigram Y* is activated when letter Y is followed by a space. In contrast to
other bigrams, an edge bigram cannot become partially activated (i.e., by the second or
next-to-last letter). Thus I assume a special mechanism for the activation of edge bigrams,
which operates somewhat differently than for bigrams detecting a pair of letters. The details
of this edge detection are left for future work.

Because letters are activated sequentially, bigram activations occur sequentially. For
example, the input cart first activates bigram node *C (when letter node C fires), then CA
(when A fires), then AR and CR (when R fires), then RT, AT, and CT (when T fires), and
then T*.

6.2.4 Bigram Layer to Letter Layer

Bigram nodes connect to word nodes via weighted connections. The weight on a bigram-
word connection is proportional to the activation level of that bigram when that word is
presented as input. (As would result from Hebbian learning.) As is usual in neural network
models, the weight vector is normalized, so that bigrams making up shorter words have
higher connection weights than bigrams making up longer words. For example, this allows
the string tee to activate the word node TEE more than TEETHE.6 The input to a word
node is the dot product of the weight vector and input vector. The input vector changes

conditions, multiple short words could be represented in a single oscillatory cycle.

5This is a new assumption. The importance of the external letters was formerly captured via high
activations of bigrams containing those letters. However, now that bigram activation levels do not reflect
letter activation levels, edge bigrams are now assumed.

6Normalization is another new assumption. Information concerning the length of the string was formerly
carried on the activations of bigrams which represented the final letter.
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over time, because bigram activations occur serially, as indicated above. The activation of
a word node at time t is a function of its input at time t and its activation at time t − 1.
Lateral inhibition within the word layer also operates over time.

6.3 Summary

In the following, I summarize the important assumptions in the model.

• Edge Layer

– Retinotopic

– Activation levels based on acuity gradient.

– Representation of fovea split across hemispheres.

• Feature Layer (for a left-to-right language)

– Retinotopic, representation still split across hemispheres

– Locational Gradient - Activation decreases from left to right.

– Locational Gradient formed by hemisphere-specific processing:

∗ Stronger excitation to RH than LH.

∗ Left-to-right lateral inhibition with a hemisphere, much stronger in RH.

∗ RH inhibits LH.

• Letter Layer

– Location- and position-independent letter nodes, located in LH.

– Letter nodes undergo sub-threshold oscillations in synchrony.

– Lateral inhibition between letter nodes.

– Interaction of oscillations, lateral inhibition, and locational-gradient input gives
serial firing.

– Letter node activation depends on:

∗ Firing rate - determined by input level.

∗ Firing duration - determined by when next letter starts to fire, which is de-
termined by the input level to that letter.

• Bigram Layer

– Bigram XY activated when letter X fires and then letter Y fires.

– Activation of bigram XY decreases with the amount of time between the firing of
letter X and letter Y.

– Edge bigrams also activated.
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• Word Layer

– Receives weighted connections from bigram layer.

– Weight vectors are normalized to give advantage to shorter words.

– Lateral inhibition operates as bigrams sequentially activate word nodes.
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Chapter 7

Account and Simulations of LPE Behavioral Results

Having specified the SERIOL model, and motivated the different processing layers, I next
discuss in more detail how the model accounts for the behavioral results, with the use of
implemented models in some cases. The topics are presented in roughly the same order as
the review of the experimental results.

7.1 Word Level

7.1.1 Bigrams

I start with a simulation of the bigram and word layers, based on a database of over 3,500
monosyllabic words. The most fundamental requirement is that the bigram representation
of letter string should activate the corresponding word node more highly than any other
word node. Thus one goal of the simulation is to show that the bigram representation does
indeed allow correct word recognition. In addition to demonstrating the viability of the
bigrams, another goal is to reconcile some conflicting results concerning positional effects
at the word level. Recent priming data on long words has demonstrated that facilitation
is rather insensitive to position of matched letters in the target. That is, when a prime is
4 or 5 letters, and a target is 7 or 9 letters, there is little difference in facilitation between
primes matching on the first letters versus the final letters [Gra04a]. Yet aphasic [Whi99]
and perceptual data [Hum90, Mon98] indicate an advantage for the initial letters over the
final letters. In a previous implementation of the bigram and word levels, I simulated the
aphasic data using bigram activations that were sensitive to letter activations (and therefore
to string position) [Whi99]. However, this assumption that letter position influences bigram
activations is inconsistent with the lack of positional effects in priming. Another problem is
that the original simulation required an additional assumption - that input to the letter level
was reduced in aphasics, thereby pushing the firing of the final letter near the end of the
oscillatory cycle, yielding a low activation level for the final letter (as opposed to the usual
final-letter advantage.) This was necessary to simulate the finding that the final letter is the
least likely to be preserved in an erroneous response.

Therefore, I sought to implement an improved bigram-to-word simulation that demon-
strates both a weak positional priming effect, and the strong positional error pattern in the
aphasic data (ideally without requiring additional assumptions about activation patterns at
the letter level). In the original simulation, the temporal aspect of bigram and word activa-
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tions was not considered, nor was lateral inhibition within the word layer. Rather, a bigram
vector activated the word layer in a single time step in a purely bottom up manner. However,
a more realistic simulation which includes these factors may allow the above goals to be met.
It may be the case that the aphasic error pattern arises from a temporal activation pattern,
rather than a positional one. That is, bigrams that are matched early in the word-activation
process could have an advantage over those that are matched later (due to ongoing lateral
inhibition within the word layer), even though bigram activations do not vary with position.
Based on these ideas, I implemented the following simulation, which met the three goals:
(1) correct recognition of all words in the database; (2) replication of aphasic error pattern
under noise; (3) lack of positional effects in target-node activations. I first give give a brief
overview of the simulation.

The input layer was comprised of bigram nodes, and the output layer consisted of word
nodes representing all words in a database of 3650 single-syllable English words. The input
layer connected directly to the output layer. Bigram-to-word weights were set according to
the principles in section 6.2.4. Bigram activations were clamped sequentially, as discussed in
section 6.2.3. Lateral inhibition within the word layer occurred after each set of bigram acti-
vations. Lateral inhibition was included to show that the temporal development of word-level
activations could account for the aphasic error pattern. It was not used to simulate settling
(reaction) time. Thus the word node having the highest activation following presentation of
the final bigram was simply selected as the response. Aphasic performance was simulated
by adding noise to the word level. Priming was simulated by noting target-node activation
under partial input.

Next the simulation is specified in more detail. The functions implementing normalization
and lateral inhibition were chosen on the basis of convenience and computational efficiency,
rather than biological plausibility. In the following, C denotes a parameter. Let Bxy denote
a bigram node representing the letter x followed by the letter y. Its activation, A, for a
string S is a function of the number of letters separating x and y, denoted Sep. A(Bxy, S)=
1.0 for Sep = 0, CS1 for Sep = 1, CS2 for Sep = 2, and 0 otherwise. Let WdS represent a
word node encoding string S. The weight from a bigram node to a word node is given by:

W (Bxy, WdS) =
Cnrm

Len(S) + Cnrm

∗ A(Bxy, S)

where Len(S) gives the length of the string. This scaling of the bigram’s activation value
provides normalization by decreasing the weights for longer words, via division by Len(S).
The constant Cnrm modulates this normalization; the higher its value, the less the effect. (If
a bigram receives two different activation levels for a word, the larger of A(Bxy, S) is taken.)

A string S is presented over Len(S) + 1 time steps. At each time step t, the bigrams
are clamped to the values that would arise from the activation of the letter in position t.
Word-level activations are then updated in two stages. (1) For each word node, the incoming
activation is simply added to the current activation. The incoming activation is given by
the dot product of the bigram vector and the word node’s weight vector. (2) The effects of
lateral inhibition are simulated by updating each word node’s activation as follows:

A(WdS, t) = Cinh ∗
A(WdS, t)

MaxA(t)
+ (1.0 − Cinh) ∗ A(WdS, t)
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where MaxA(t) is the activation of the word node having the highest activation. The
constant Cinh (which takes values from 0 to 1.0) determines the overall contribution of
inhibition. When Cinh is 0.0, the activation remains unchanged; when Cinh is 1.0, the
activation is weighted by the ratio of the activation to the maximum activation. (Thus, the
lower the activation value is with respect to the maximum activation, the more the activation
is reduced, thereby simulating the effect of lateral inhibition.)

The parameters were hand-tuned to meet the above three goals. These goals are often
at cross purposes. Goal (1) requires normalization of the weight vector. Yet if shorter words
have too much of an advantage, they excessively inhibit longer words, under the inhibition
required for goal (2). Goal (2) requires strong positional effects, while goal (3) requires weak
positional effects.

A range of parameter values near the following values yielded reasonable results; the
results for these particular values are presented.

CS1 = 0.8 CS2 = 0.2 Cnrm = 50 Cinh = 0.5

All words in the database were recognized correctly, under the requirement that difference
between the activation of the target word and the next highest word be at least 0.2. The
most challenging task was to distinguish between TEE, THEE, TEETH, and TEETHE.

Priming was simulated by including the strings CDFGHKLMN, LMNPQRS, and STVWX
in the database, and calculating their activation when a partial match was used as input.
For example, to simulate a prime corresponding to the final five letters of a nine-letter word
(56789), the activation of the CDFGHKLMN node is calculated for the input HKLMN. Table
7.1 gives the results. For seven- and nine-letter targets, there was a very weak advantage (of
about 0.15) for initial versus final primes, which is numerically consistent with the experi-
mental results [Gra04a]. Primes which did not experimentally produce facilitation all yielded
simulated activation levels (< 3.9) that were lower than activations of all primes that did
produce facilitation (> 4.2). There was a strong correlation between amount of facilitation
and simulated score, as shown in Figure 7.1.

The large difference in the values of CS1 and CS2 was required to allow 13459 to give
a considerably lower score than 6789 (for a 9-letter target), in accordance with the finding
that only the latter produced priming. However, CS2 had to remain non-zero in order to
be consistent with the finding that 125436 primes a six-letter target, while 12d4d6 does not
[Per04]. That is, if CS2 is 0, bigrams 25 and 36 have weights of 0, erroneously giving no
difference between these two types of primes.

A lesion was simulated by adding normally distributed noise to each word node at each
time step (prior to the inhibition). Noise with mean 0.3 and standard deviation 0.35 yielded
good results, shown in figure 7.2. As is evident, the probability of retaining a letter decreased
with its position. This is not merely an artifact of the scoring method (in which a retained
letter had to be in the correct absolute position), as scoring from right to left did not yield
this pattern. Furthermore, this decreasing pattern was not present when the simulation was
run without lateral inhibition. (See Figure 7.3). Thus, under inhibition, words that are
highly activated early come to dominate. Therefore, final letters have less influence than the
initial letters even though their bigrams are activated to same level.

The results of the lesioned simulation also showed other similarities to the experimental
data. Aphasic subjects tended to preserve word length in their erroneous responses. Average
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Prime Act Fac (ms)

1234 4.71 36*
2345 4.73 32*
1245 4.50 31*

12345 6.01 45*
34567 5.84 37*
13457 5.58 29*
1234 4.56 36*
4567 4.41 32*
1357 3.71 12
15437 2.69 0
73451 2.30 7

12345 5.75 30*
56789 5.62 26*
1234 4.35 23*
6789 4.22 19*
14569 3.86 12
1469 2.20 8

Table 7.1: Simulated and experimental results for priming conditions from [Gra04a]. Act
denotes the activation of the target node in the simulation for the given prime. Fac denotes
the the facilitation for that prime in the experimental results (difference between reaction
times for the control condition (dddd or ddddd) and the prime condition), where * denotes
facilitation is statistically significant. The top group is five-letter targets; the middle group
is seven-letter targets and the bottom group is nine-letter targets.
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Figure 7.1: Comparison of simulated score and amount of facilitation using data from Table
7.1 (r=.87; p < .0001).

response length to targets of lengths 3-6 were 4.0, 4.2, 4.9, and 5.9, respectively [Whi99]. The
simulated data also showed sensitivity to target length, giving 4.2, 4.8, 5.1, and 5.8. Retention
level at a given position tended to increase with target length for both the aphasics and the
simulation. For example, for position 3, experimental retention rates were 40%, 55%, 65%,
and 55% for target lengths 3-6, respectively. The simulated data exaggerated this effect,
giving 36%, 48%, 81%, and 92%.

Thus the simulation accomplished the stated goals. There was a weak positional effect
for priming, but a strong positional effect in the presence of noise. In the priming simulation,
the target node’s activation was primarily influenced by the number and separation of the
prime’s bigrams, while the temporal nature of the inhibition only had a small effect. In
the lesion simulation, potential erroneous responses that were not highly activated initially
became inhibited and remained at a disadvantage. Therefore, retention level was highest for
early string positions and decreased across the string, giving a strong positional effect.

The principles implemented in this simulation are also consistent with other priming
and perceptual data. The left-to-right activation of bigrams accounts for the initial-letter
advantage when only a single letter is matched in the prime [Hum90], and the perceptual error
pattern, in which letter retention decreases across the string (like the aphasic error pattern)
[Hum90, Mon04]. The anchoring of the external letters (via edge bigrams) accounts for
their positional specificity, wherein priming does not occur when an external letter is moved
to an internal position [Hum90, Per03]. For simplicity in the simulation, internal bigrams
were weighted as highly as edge bigrams. However, edge bigrams may actually be weighted
higher, which would account for the finding that matching the external letters produces
more facilitation than matching any other two letters of a four-letter target [Hum90]. When
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Figure 7.2: Experimental [Whi99] and simulated results for the aphasic error pattern. The
percent retained refers to the percentage of erroneous trials in which the letter in the ith
position in the target occurred in the ith position the response (n = 201 for experiment; n
= 363 for simulation). Data are collapsed over target lengths of three to six. (In the both
the experimental data and the simulation, there was also a decreasing pattern within each
target length.)
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Figure 7.3: Simulation results under backward scoring, and no inhibition. In backward
scoring, the target and response are aligned at the final letter, and scored from right to
left. In this case, position 1 corresponds to the final letter, 2 corresponds to the next-to-last
letter, etc. The backward results are from the same simulation run as Figure 7.2. For the
no-inhibition condition, a new simulation was run with Cinh = 0, and scored in the forward
manner. Because backward scoring yielded a relatively flat pattern, and no inhibition yielded
a V-shaped pattern, this shows that the decreasing pattern in Figure 7.2 was not merely an
artifact of the scoring method.
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Figure 7.4: Experimental reaction times (in milliseconds) for the rotated-string lexical-
decision task. Each line represents one angle of rotation, where the lower lines correspond
to 0◦through 80◦, and the upper lines correspond to 100◦ to 180◦.

three out of four letters are matched in a prime, there is no positional specificity [Hum90],
consistent with the weak positional effects in the priming simulations. Next I discuss a
word-level effect that is explained at the letter level.

7.1.2 Letters

Sequential activation at the letter level explains the observed interaction between word
length and rotation angle in the lexical-decision experiment in which the stimuli were rotated
[Kor85] (as discussed in section 8.1). Recall that length had no effect for small angles, while
each additional letter delayed RTs by about 200 ms for large angles. For intermediate angles,
RTs were neither flat nor linear. These data are redisplayed in Figure 7.4. The authors
concluded that it was not possible to explain this data under a single unitary principle.
However, the SERIOL model does allow such an explanation.
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As discussed in section 8.1, the presence or absence of a length effect does not necessarily
diagnose whether lexical access occurs serially or in parallel. There could be no length
effect under serial access if earlier firing of the final letter for shorter words is offset by
longer settling time at the word level. However, length effects may arise under conditions
of degraded presentation, when input levels to letter nodes are reduced such that it takes
multiple oscillatory cycles to represent a sequence of letters that is normally represented in
a single cycle. I suggest that such a phenomenon underlies the RT results from the rotated
word experiment. This analysis implies that such length effects should depend on the time
scale of the oscillatory cycle. Recall that for the largest rotation angles, each additional
letter increased RTs by approximately 200 ms, which is on the order of the length of the
proposed oscillatory cycle. Thus I propose that a unitary principle can explain this data
- namely, that letter position is encoded temporally via an oscillatory carrier wave. When
the input is degraded (by rotating the letter string), the underlying temporal nature of the
encoding is exposed. The feasibility of explaining this data under the SERIOL model is next
demonstrated via a simulation, which was first presented in [Whi02].

Simulation

I assume that subjects performed the lexical decision task by mentally rotating the string
to the canonical horizontal orientation, and then processing the string as usual. This assump-
tion is consistent with the fact that RTs for two-letter words were smoothly increasing with
rotation angle. It is also assumed that the act of mental rotation decreases the amount
of input reaching the letter nodes, and that this degradation increases with the amount of
rotation. These assumptions, in conjunction with the SERIOL model, provide a natural
explanation for the experimental data. Up to a certain amount of rotation, there is still suf-
ficient input to activate all the letters within a single oscillatory cycle (i.e., up to 60◦). After
that point, there is sufficient input to activate all of the letters in shorter words, while longer
strings require an additional cycle (i.e., for 80◦ and 100◦). This accounts for the intermediate
region where RTs are neither constant nor linear. With further degradation, only two-letter
words can be represented in a single cycle; each additional letter requires an additional cycle
(i.e., 120◦to 180◦).

It is assumed that once the mental image of a letter has activated a letter node, that
image is inhibited. This allows a determination of whether all letters have been processed.
However, bigram activation depends on the ordered firing of letter nodes within a single
oscillatory cycle. If severely degraded input causes each letter node to fire on a separate
cycle, how then could the bigram nodes become activated? It is assumed that letters which
have already fired can refire again on successive cycles. However, this refiring can’t be
triggered by bottom-up input, since the mental image is inhibited once it activates a letter
node. How then could a previously activated letter node refire?

It has been proposed that an after-depolarization (ADP), which has been observed in
cortical pyramidal cells following spiking, can maintain short-term memory across oscillatory
cycles [Lis95]. The ADP is a slow, steady increase in excitability, peaking at approximately
200 ms post-spike. The temporal gradient of the ADP can maintain the firing order of
elements across oscillatory cycles, in the absence of bottom-up input, as demonstrated in a
simulation [Lis95]. Thus, this mechanism could maintain the firing order of letter nodes that
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have been previously activated.
I have implemented a simulation of the RT for the rotated word experiment based on

these ideas. The interaction between the underlying oscillatory cycle, external input levels,
lateral inhibition, and the ADP was modeled in order to arrive at a firing time for the final
letter of the string. This firing time, combined with other quantities, gives the modeled RT.

Next the details of the implemented model are presented. Instantiating the theoretical
framework in a simulation entails the specification of quite a few parameters. Most of these
parameters are related to the neuronal dynamics (ADP, oscillations, and inhibition) and
are set to physiologically plausible values, similar to those used in [Lis95]. In fitting the
computational model to the experimental data, the primary focus of optimization was the
input function. This function was hand tuned.

Reaction-Time Equation

The modeled RT, R, is given by:

R(θ, l) = CBR + H(θ) + W (θ, l)

where θ denotes the angle of rotation (given in degrees) and l denotes the string length.
CBR denotes a base RT, set to 730 ms. H denotes the time required to mentally rotate

the string; it is a linearly increasing function of θ. Fitting to the RTs for two-letter words
gives:

H(θ) = 1.5θ

W denotes the time required to activate all the letter nodes corresponding to the string;
that is, W is the first time at which the final letter node fires. The functions which determine
W are the instantiation of the SERIOL framework. These functions specify the activation
of the letter nodes.

Letter-node Equations

Following Lisman and Idiart [Lis95], letter nodes are modeled as units that undergo a
sub-threshold oscillatory drive, exhibit an increase in excitability after firing (ADP), and
send inhibitory inputs to each other. The membrane potential, V , of a letter node is given
by:

V (θ, i, t, c) = O(t) + A(i, t) − I(t) + E(θ, i, c)

where i denotes the letter node representing the ith letter of the word, t denotes time (ranging
from 0 to length of the oscillatory cycle), and c denotes the number of completed oscillatory
cycles. O gives the oscillatory drive, A gives the ADP, I gives the inhibitory input, and E
gives the excitatory external input (originating from the feature level).

A node fires when V exceeds a threshold, CTH , which is specified relative to resting po-
tential, and set to 10mV. Firing causes the node’s ADP component to be reset and inhibition
to be sent to the other nodes. E is permanently set to 0 the first time that a node fires.

The oscillatory function O has a cycle length of 200 ms, and linearly increases from -5mV
to 5mV during the first half of the cycle, and decreases back to -5mV during the second half.
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The ADP and inhibition are modeled by functions of the form:

F (t; M, T ) = M ∗ (t/T )1.5 ∗ exp(1 − t/T )

which increases to a maximal value (controlled by parameter M) and then decreases (on a
time scale controlled by parameterT ). The ADP is given by:

A(i, t) = F (ti; MA, TA)

where ti denotes the amount of time since node i last fired. (A is 0 if the node has not yet
fired.) The inhibition is the sum of the inhibitory inputs from all letter nodes, given by:

I(i, t) =
l

∑

j=1

F (tj; MI , TI).

These parameters were hand tuned (in conjunction with E) to give the desired firing pattern.
The following values were used: TA = 200 ms, MA = 11 mV, TI = 3 ms, MI = 3 mV.

The external input E is a decreasing function of position i; this corresponds to the
locational gradient at the feature level. In the following, E is specified for a node that has
not yet fired; if node i has already fired, E(θ, i, c) = 0. First we consider the initial oscillatory
cycle, for an unrotated string. The following function was used:

E(0◦, i, 0) = 10.6 − 0.5i

Mental rotation degrades the external input, so E decreases as θ increases:

E(θ + 20◦, i, 0) = E(θ, i, 0) − 0.65 sin(θ + 20◦)

External input builds up over time, with E increasing after each oscillatory cycle:

E(θ, i, c + 1) = E(θ, i, c) + 0.2

Results

A simulation for each combination of l and θ was run, starting at time t = 0 and using
a time step of 1 ms. At each time step, each letter node’s potential was calculated using
the equation for V . For all rotation angles and string lengths, all active letters of the string
fired in the correct sequence on each cycle. The value of W (θ, l) was set to tfinal + 200cfinal

where where tfinaland cfinal are the first t, c at which V (θ, l, t, c) > Cth. For example, for
θ = 0◦ and l = 4, nodes 1, 2, 3, and 4 fired at t =49, 63, 74, and 84, respectively, during
the first cycle, giving W (0◦, 4) = 84. For θ = 180◦ and l = 4, nodes 1 and 2 fired at
t =86 and 100 in the first cycle. In the second cycle, nodes 1, 2, and 3 fired at t =52,
65, and 94. In the third cycle, nodes 1, 2, 3, and 4 fired at t =43, 55, 66, and 97, giving
W (180◦, 4) = 97 + 200 ∗ 2 = 497. Each node refired earlier in successive cycles due to the
ADP. This earlier firing, in conjunction with increasing external input, allowed more letters
to fire on each cycle. The slowly increasing ramp of the ADP, in conjunction with lateral
inhibition, maintained the proper firing sequence across cycles.
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Figure 7.5: Simulated reaction times for the rotated-string, lexical-decision task. Notation
is the same as Figure 7.4.

The RT was then calculated using the equation for R. The results are given in Figure
7.5. The simulation reproduced the experimental pattern of relatively flat RTs for small
angles, and rapidly increasing RTs for large angles, with a mixture of the two patterns for
intermediate angles. In the experimental data, there was also a pervasive disadvantage for
two-letter words, which is not captured by the simulation. 1

While this simulation may seem complex, it is merely an instantiation of the previously
specified dynamics for induction of the serial firing pattern (with the addition of the ADP),
coupled with the assumption that bottom-up input decreases with rotation angle and in-
creases over time. It illustrates the simple idea that the interaction between string length
and rotation angle arose because multiple oscillatory cycles were progressively required to
represent all of the letters of the input string. Applying the SERIOL model to this experi-
mental data yields a natural explanation of these data. It accounts for the finding that there
is an intermediate region of rotation angles where processing seems neither fully parallel nor

1The simulated results can be made to look more like the experimental results by simply adding 100 ms
to all two-letter reaction times. It is unclear what the source of this disadvantage is. It may be related to
the fact that vowels are normally explicitly expressed in Hebrew, leading to ambiguity for very short strings.
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fully serial, which is difficult to explain otherwise. It also predicts the finding that the in-
crease in RT per letter for large rotation angles is on the order of 200 ms (i.e., an oscillatory
cycle in the theta range).

7.2 Letter Perceptibility Patterns

As discussed in section 6.2.2, the induction of the serial encoding leads to differing ac-
tivations at the letter level. These activation patterns depend on the interaction of the
locational gradient and the oscillatory cycle. Such dynamics explain observed patterns of
letter perceptibility, which vary with string position and visual field, as follows.

For a centrally fixated string, the initial-letter advantage and final-letter advantage arise
for different reasons. The initial letter has an advantage because it receives the highest level
of bottom-up input, allowing it to fire the fastest. It receives the most input because it is
not inhibited from the left at the feature level. The final letter has an advantage because it
is not inhibited by a subsequent letter during the induction of serial firing. That is, it is not
inhibited from the right at the letter level. Thus, like others, I also attribute the advantage
for the external letters to a lack of lateral inhibition. But this arises because of string-specific
processing, and not from a lack of masking at a very low level (as is generally assumed).
This proposal is consistent with the finding that there is no external symbol advantage for
strings of symbols that are not letters or numbers [Mas82]. For such centrally fixated symbol
strings, the external symbol is the least well perceived, as would be expected on the basis
of acuity. Strings of letters and numbers show an external symbol advantage because of
string-specific processing.

This predicts that it should possible to differentially affect the initial- and final-letter
advantages. The initial-letter advantage should disappear if the amount of bottom-up input
to the initial letter is not significantly higher than to the other letters. The final-letter
advantage should disappear if the firing of the final letter is pushed late into the oscillatory
cycle. As we shall see, this is exactly what happens for brief, lateralized presentation of short
strings. First however, a more in depth consideration of activation patterns at the feature
level is required.

Recall that locational gradient formation requires different processing across the hemi-
spheres. In the RVF/LH, the acuity gradient serves as the locational gradient. In the
LVF/RH, the acuity gradient is inverted via strong bottom-up excitation and left-to-right
lateral inhibition. Because the locational gradient is formed by different mechanisms in each
hemisphere, the shape of the resulting gradient may vary with hemisphere, especially at
large eccentricities. Recall that acuity falls off fastest near fixation, and falls off more slowly
as eccentricity increases. That is, the slope of the acuity gradient is steepest near fixation,
and becomes shallower as eccentricity increases. Since the RVF/LH locational gradient is
based on the acuity gradient, this implies that the RVF/LH locational gradient becomes
more shallow as eccentricity increases. (See right half of Figure 7.6.)

In the LVF/RH, formation of the locational gradient depends on left-to-right lateral
inhibition. This processing is optimized to create the locational gradient for a small number
of letters near fixation. For long strings at large eccentricities, inhibition may be too strong
at early string positions (due to their relatively low level of activation), but may become too
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Figure 7.6: Schematic of locational gradients for the stimulus CART at three different presen-
tation locations. The vertical axis represents activation, while the horizontal axis represents
retinal location. For central presentation, the gradient is smoothly and rapidly decreasing.
For RVF presentation, the gradient is shallower because the acuity gradient is shallower. For
LVF presentation, the initial letter strongly inhibits nearby letters, but the gradient flattens
out as acuity increases.

weak at later string positions (due to their increasing acuity). (See left half of Figure 7.6).
Thus the prediction is that the locational gradient should vary with visual field. Assuming
that letter perceptibility directly indexes letter activation levels, which depend on feature
activation levels, this suggests that letter perceptibility patterns should vary with visual field.
As discussed in section 4.2, they do indeed. Recall that letter perceptibility uniformly drops
off with increasing string position in the RVF/LH. In contrast, in the LVF/RH, perceptibility
drops off sharply across early string positions, and then flattens out for later string positions
[Wol74]. This data is re-presented in the top panels of Figure 7.7. The proposed hemisphere-
specific shapes of the locational gradient explain this data2, as shown by the results of a
mathematical model (bottom panels of Figure 7.7), described next.

7.2.1 Mathematical Model

The data are modeled by calculating a feature-level activation, which is converted into a
letter-level activation, which determines an accuracy score. At the feature level, the stronger
excitation and left-to-right inhibition in the RH are modeled, as well as the cross-hemispheric
inhibition from the LH to RH. The general form of the equations are presented first, then
the specific instantiations of those equations are specified.

All feature nodes comprising a single letter are assumed to reach a similar level of acti-
vation, which is determined by the retinal location, R, and string position, P , of that letter.

2I’d like to note that the theory of locational gradient formation was not formulated to explain this data.
Rather, the theory was constructed to explain how a monotonically decreasing gradient could be formed,
starting with the assumption of the acuity pattern. Once the theory was formulated, it predicted these
activation patterns. Only then did I actually seek out relevant experimental data. The fact that existing
data showed the predicted pattern convinced me that I was on the right track.
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Figure 7.7: Experimental (top) and modeled (bottom) results of [Wol74], with LVF presen-
tation on the left and RVF on the right. Each graph shows the effect of string position on
perceptibility at a given retinal location (specified in R units of letter width).
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For simplicity, fixation (R = 0) is assigned to a single hemisphere, namely the RVF/LH. The
activation of a feature node is denoted F . I first consider feature activations in the absence
of hemispheric interaction, denoted Fh. Fh is determined by the combination of bottom-up
excitatory input, E, and lateral inhibitory input, I, and is restricted to a maximal value,
cM . That is,

Fh(R, P ) = min(cM , E(R) − I(R, P )).

In the following specification of Fh, “letter” will refer to a letter’s feature nodes.

Bottom-Up Excitation

Excitatory input is a function of acuity, denoted C, and visual field (which is determined
by R):

E(R) =

{

C(R) if R ≥ 0
cE ∗ C(R) if R < 0

where cE � 1, reflecting the assumption of stronger excitatory input to the LVF/RH. E
decreases as |R| increases, reflecting the acuity gradient.

Lateral Inhibition

Lateral inhibitory input is the sum of inhibitory inputs from letters to the left of R. This
quantity increases with the number of such letters, their activation levels, and the strength of
the inhibitory connections. Rather than directly modeling the feedback processes underlying
such lateral inhibition, the amount of inhibitory input is approximated as the activation
of the leftmost letter’s features weighted by a function of the number of letters sending
inhibition.

The leftmost letter refers to the letter which lies farthest to the left within the same visual
field as R. Its retinal location is denoted Rl. To determine the inhibitory input, the leftmost
letter’s activation is multiplied by a weighting function, W . W increases with the number of
letters lying between Rland R. W also depends on hemisphere; inhibitory connections are
stronger in the LVF/RH than in the RVF/LH (as is necessary to invert the acuity gradient).
Thus, we have

I(R, P ) = Fh(Rl, Pl) ∗ W (|Rl − R|, R)

where the first term on the right hand side gives the activation of the leftmost letter, and W
is a non-decreasing function of |R−Rl|, which is larger for R < 0 than for R > 0. If R = Rl,
W = 0 (because the features of the leftmost letter do not receive inhibition).

Cross-hemispheric Lateral Inhibition

The individual hemispheric gradients are“spliced together”via inhibition of the RVF/LH’s
letters by an amount proportional to the number of letters in the LVF/RH. That is,

F (R, P ) =

{

Fh(R, P ) − cF ∗ (P − R − 1) if R ≥ 0
Fh(R, P ) if R < 0

59



where cF is a positive constant. This yields a decreasing gradient such that F (R, P ) >
F (R + 1, P + 1).

Specification of Feature-Level Parameters and Functions

To instantiate the feature level, values for the constants cM , cE, and cF , and definitions
of the functions C and W must be supplied. The following allowed a good fit to the data:

cM = 1.0 cE = 1.8 cF = 0.2

The acuity function is defined recursively:

C(|R| + 1) = C(|R|) − Cdif(|R| + 1)

C(0) = 1.1

Cdif (r) =



















0.1 if 1 ≤ r ≤ 3
0.07 if 3 < r ≤ 6
0.05 if 6 < r ≤ 9
0.04 if 9 < r.

Cdif decreases as r increases, reflecting the decrease in the slope of the acuity gradient
with increasing eccentricity. The definition of the inhibitory weighting function,W , is best
displayed in tabular form:

|R − Rl| R ≥ 0 R < 0
0 0.00 0.00
1 0.15 0.80
2 0.25 1.10
3 0.30 1.25
4 0.50 1.35
5 0.50 1.45
6 0.50 1.65

The Letter Level

For simplicity, feature level activations were directly converted to letter level activations
(rather than modeling the oscillatory cycle), as follows:

L(R, P ) =

{

F (R, P ) + 0.2 if P = 1
F (R, P ) if P > 1

Thus, letter level activations are equivalent to feature level activations, except at the first
position. This was necessary to provide a good fit the data, and corresponds to a non-
linearity in the interaction of the oscillatory function and the locational gradient near the
trough of the cycle for high levels of input. The letter activation was converted to the
modeled accuracy by multiplying by 100 and bounding the result between 0 and 100.
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Figure 7.8: Experimental results from [Est76] for a four-letter string embedded in $’s, occur-
ring at two different retinal locations in each visual field. Exposure duration was 2400 ms.
(Subjects were trained to maintain central fixation, and their gaze was monitored.)

The results are given in Figure 7.7. In the LVF/RH, increasing string position from 1
to 2 or from 2 to 3 has a strong effect because of the high level of inhibition. However, as
string position continues to increase, there is less and less effect because the leftmost letter
becomes less and less activated. Thus the perceptibility function flattens out. This effect
is most pronounced at larger eccentricities where feature-level activations are lower. In the
RVF/LH, increasing string position leads to an increase in the activation of the leftmost
letter or to increased cross-hemispheric inhibition. Coupled with the weak inhibition, this
leads to a slow, steady decrease in perceptibility as string position increases.

7.2.2 Short Strings

Next I consider perceptibility patterns for short strings (three or four letters) at large
eccentricities, as discussed in section 4.2.3. In the following, primacy will signify that a letter
is perceived better than all other letters, whereas advantage will mean that an external letter
is perceived better than the internal letters. Recall that in the LVF/RH, there is an initial-
letter primacy, with little or no advantage for the final letter. In the RVF/LH, there is little
or no advantage for the initial letter, and there is a final-letter primacy. Thus, in each visual
field, the letter farthest from fixation is the best perceived, and the advantage for the other
external letter is reduced. In particular, we will consider the results of [Est76], re-presented
in Figure 7.8.

The proposed hemisphere-specific locational gradients, coupled with their interaction with
the oscillatory cycle explain these patterns. In the LVF/RH, at the feature level, the initial
letter is strongly excited, and strongly inhibits letters to the left. This leads to an initial-letter
primacy, while the firing of the final letter is pushed late into the oscillatory cycle, providing
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little advantage. In the RVF/LH, overall bottom-up excitation is weaker. Therefore, the
activation of the initial letter’s features is not boosted to a high level. Furthermore, there is
weak left-to-right inhibition, while the acuity/locational gradient is quite shallow. Therefore
the activation of the second letter’s features is quite close to that of the first letter. As a
result, at the letter level, the firing of the first letter is rapidly cut off by the second letter.
Each successive letter quickly inhibits the preceding letter (due to the shallow locational
gradient), allowing the final letter to start firing early in the oscillatory cycle. Therefore the
final letter can fire longer that the other letters, creating a final-letter primacy. The proposed
activation patterns are displayed in Figure 7.9. This explains the perceptibility patterns for
locations -8::-5 and 5::8.

This account also explains the initial/final difference at a single retinal location (at -5
and 5 in Figure 7.8). In the LVF/RH, the left-to-right inhibition creates a disadvantage for
a final letter. In the RVF/LH, the shallow locational gradient creates a disadvantage for an
initial letter because its firing is rapidly inhibited by the second letter.

In contrast to asymmetric patterns at the larger eccentricity, the perceptibility function
is U-shaped for both -5::-2 and 2::5. Due to higher acuity, bottom-up input is higher overall.
In the LVF/RH, this allows the final letter to start firing earlier in the cycle, creating a
final-letter advantage. Along with the usual initial-letter advantage, this gives the U-shaped
pattern. In the RVF/LH, the acuity/locational gradient is steeper than for the larger ec-
centricity, so the difference in input to the first and second letters is larger, creating an
initial-letter advantage and giving an overall U-shape.

Next we consider the implications of this account for the effects of exposure duration for
presentation at large eccentricities. Under the assumption that a longer exposure duration
increases the overall level of bottom-up input, the above analysis suggests that the LVF
initial-letter primacy and the RVF final-letter primacy should be differentially by variations
in exposures. In the RVF, we would not expect to see a final-letter primacy at very brief
exposures, because the very low level of input pushes the firing of the final letter late into the
oscillatory cycle. As exposure duration increases, the firing of all the letters is shifted earlier
and earlier into the cycle, allowing the final letter to fire longer and longer. In contrast, the
activation of a non-final letter shouldn’t change much, because its firing is still quickly cut
off by the subsequent letter. Thus, a final-letter primacy should emerge as exposure duration
increases.

However, in the LVF, the initial-letter primacy should be present at very brief durations,
because strong left-to-right inhibition at the feature level does not depend on temporality, so
it is always present. As exposure duration increases, the initial-letter should be the primary
beneficiary, because, at the feature level, the increased bottom-up input to the non-initial
letters is canceled by increased lateral inhibition from the first letter.

To summarize, in the RVF, the final-letter primacy should not be present at very brief
exposures. Increasing exposure duration should primarily benefit the final letter, creating
a final-letter primacy. In the LVF, the initial-letter primacy should be present a very brief
exposures. Increasing exposure duration should primarily benefit the initial letter, increasing
its primacy.

A search of the literature revealed that a relevant experiment had already been performed,
in which retinal location and exposure duration were varied in a trigram identification task
[Leg01]. However, the published data were not presented in a way that would allow evaluation
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Figure 7.9: Locational gradient and resulting firing pattern for LVF/RH presentation (normal
font) and RVF/LH presentation (bold italics). Top: Comparison of locational gradient for
string CDFG under RVF/LH presentation and LVF/RH presentation. Bottom: Cartoon of
resulting firing pattern at the letter level. The point in the oscillatory cycle at which the
down phase prevents further firing is marked *. In the LVF/RH, the first letter fires faster
and longer than the other letters, because it receives a much higher level of input. The
variations in the amount of bottom-up input create decreasing activation across the string.
The final letter starts firing late in the cycle, and is soon cut off by the end of the oscillatory
cycle, giving no final-letter advantage. In the RVF/LH, each letter rapidly cuts off firing
of the previous letter, allowing the final letter to fire a long time. As a result, activation
is flat across the string and rises for the final letter. These firing patterns account for the
perceptibility patterns at the larger eccentricities in Figure 7.8.
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Figure 7.10: Results from Experiment 2 of [Leg01] for the two largest eccentricities, grouped
by exposure duration, with 95% confidence intervals.

of the above predictions. So I requested the raw data from the authors, who kindly provided
it. The data were analyzed for the largest two eccentricities (-12::-10 and -11::-9 versus 9::11
and 10::12) for very brief exposures (50 ms and 80 ms) versus longer exposures (125 ms and
200 ms). This analysis did indeed reveal the predicted patterns, as shown in Figure 7.10.

This account also explains the error patterns observed for unilaterally presented vertical
strings in a left-to-right language ([Hel95, Hle97], discussed in 4.2.3), under the assumption
that the string is first mentally projected to the horizontal and then the locational gradi-
ent is formed as usual. The preponderance of the LVF pattern under bilateral presentation
may reflect the cross-hemispheric inhibition necessary for locational gradient formation. For
right-to-left languages, acuity gradient inversion would occur in the RVF/LH and cross-
hemispheric inhibition would apply from the LH to the RH. This explains the observed
reversal of the error patterns for Hebrew [Evi99]. For a vertical language, locational gra-
dient formation would not occur along the horizontal axis, so there should be no left/right
asymmetry. This explains the observed error patterns for vertical Japanese kana [Hell99].

7.3 Summary and Discussion

We have seen that bigrams allow correct word identification, and that the proposed
mechanism of bigram activation (i.e., formation of the locational gradient; interaction of
the locational gradient with the oscillatory cycle) has allowed a cohesive explanation of
aphasic error patterns, priming data, perceptibility patterns, and the reaction-time pattern
for rotated strings.

The central (and most controversial) proposal of the SERIOL model is the temporal
encoding of letter order. While the above accounts do not directly prove a serial encoding,
these phenomena are otherwise difficult to explain. The fact that the letters farthest from
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fixation are the best perceived is in complete contradiction to their acuity, and a possible
underlying mechanism has heretofore never been proposed. However, this counterintuitive
pattern arises naturally from the serial-encoding mechanisms (based on the principles of
feature-level left-to-right inhibition and word-level right-to-left inhibition). Furthermore,
the temporal development of this pattern (as exposure duration is increased) is exactly as
predicted. The reaction-time pattern for rotated strings also defied explanation prior to
the SERIOL model. Again, the model allows a natural explanation of this data (based on
the number of oscillatory cycles required to represent the string). I note that the model
was not designed to explain these phenomena. Rather, these explanations fell out of the
already-formulated model.

Normals shown very briefly presented strings and aphasics both show a strong positional
error pattern, with retention rate falling off with position. However, there is little or no
effect of position when primes possess more than two of the target’s letters. The temporal
nature of word activation explains the strong positional effect in the error patterns. In the
presence of noise, small differences that occur early are exaggerated by lateral inhibition.
Therefore, the initial letters have more influence than the final letters on the relative levels
of word activations, even in the absence of position-specific activation patterns at the bigram
level. In contrast, priming reveals activation of the target word in particular. In this case, the
temporal development of competition is not very important; the size of the effect is dominated
by the number of bigrams shared by the prime and target. Thus the serial encoding allows
an explanation of the contrast between the error data and the priming data.

The model was originally designed to explain aphasic error pattern. However, the ex-
planation of this pattern has evolved, while the model has remained basically the same.
Originally, the positional error pattern was explained by varying letter activations (induced
by the serial firing) that were passed on to the bigram level. However, this error pattern is
now explained by directly considering the temporal aspect of bigram- and word-level activa-
tions. This required only a minor revision to the model - bigram activations are no longer
sensitive to the positions of the constituent letters.

Thus, a temporal encoding allows these disparate phenomena to be explained, and pro-
vides a answer to the question of how a position-independent letter node could be dynami-
cally bound to a string position. Furthermore, experiments in which two strings were briefly
sequentially presented have provided direct evidence of a serial read out [Har75, Nic76].

The serial encoding depends on the formation of the locational gradient, which requires
hemisphere-specific processing, leading to hemisphere-specific activation patterns. Such ac-
tivation patterns could also potentially explain the visual-field asymmetries at the lexical
level, as discussed in the following two chapters.
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Chapter 8

Asymmetry of the Length Effect

We have seen how the SERIOL model explains VF-specific letter perceptibility patterns.
Word-level VF asymmetries have also been observed. Such asymmetries have generally been
taken to reflect hemisphere-specific modes of lexical access. However, such an assumption
conflicts with brain imaging evidence for a left-lateralized lexical access [Coh00, Deh04] (and
with the SERIOL model, which assumes a single mode of lexical access). Yet, how could
asymmetries at the lexical level arise under a single mode of lexical access? This chapter
and the next provides an answer to this question.

One of the most studied asymmetries involves the effect of string length. I will concentrate
on this asymmetry in this chapter. I first review the relevant experimental data. I then
present the SERIOL account of the asymmetry, and an experiment testing this account.

8.1 Experimental Data

It has long been recognized that string length has differing effects across the visual fields
[Mel57, Bou73]. Ellis and Young performed an extensive series of experiments elucidating
this interesting phenomenon. For lexical decision on words of three to six letters, presentation
to the RVF yields no length effect, while presentation to the LVF causes RTs to increase by
approximately 20 ms for each additional letter [You85, Ell88]. This pattern is present even if
the location of the initial letter is held fixed as string length is increased [You85], indicating
that the asymmetry is not related to the acuity of the initial letter. For short stimuli, there
is a small RVF advantage, and this advantage increases with word length, because RVF RTs
do not increase, while LVF RTs do. These results have been taken as evidence for dual
modes of lexical access, where the LH uses an efficient, parallel method of access, while the
RH uses a less efficient, non-parallel mode of access [You85, Ell88].

However, there are difficulties with this proposal. As discussed in section 3.3, imaging
evidence indicates that processing becomes left-lateralized at a prelexical level. Thus there
can be only one mode of lexical access because lexical access is always routed through the
LH. Furthermore, a split representation of the fovea means that the left half a centrally
fixated word is projected to the RH, and the right half to the LH. Dual modes of lexical
access would then lead to the unlikely scenario that each half of a word is accessed by a
separate mechanism.

Indeed, the processing of fixated words is influenced by the number of letters in the LVF,
but not the RVF, as would be expected under a split fovea [Bry96, Lav01a]. This is related
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to the phenomenon of the Optimal Viewing Position (OVP) [Ore84]. Word recognition is
optimal when fixation falls between the first and middle letters of a word. The cost of moving
away from this OVP varies with direction. When fixation falls at the first letter, there is
a small decrement in performance that varies little with the length of the word (i.e. the
number of letters falling in the RVF). However, when fixation falls at the final letter, there is
a larger decrement in performance that increases with word length (i.e., the number of letters
in the LVF). Brysbaert and colleagues [Bry96] investigated this phenomenon by varying the
location of words of different lengths. Locations ranged from entirely within the LVF, to
various fixation points within the word, to entirely within the RVF. There was a smooth
pattern of performance as location was systematically changed. This indicates that the OVP
and the LVF length effect arise from the same underlying factors.

What factors are involved has been a subject of some debate. One possibility is that the
initial letters of a word are more informative, so there is an advantage for fixating near them
[Ore84]. While it was demonstrated that informational content does affect the OVP, this
cannot be the whole story. The advantage for fixating near the end of words in which the
final letters are the most informative is much reduced compared to the advantage to fixating
near the beginning of words in which the initial letters are the most informative [Ore84].

Therefore, the OVP probably also depends on hemispheric specificity. The more efficient
processing in the RVF may arise from more direct access to the dominant hemisphere [Bry94,
Bry96]. Alternatively, it could be due to effects of reading direction. In a left-to-right
language, the to-be-processed text occurs in the RVF. Thus the LH may become specialized
through perceptual learning to process upcoming text, giving a RVF advantage [Naz03,
Naz04a].

One way of evaluating these possibilities is to investigate right-to-left languages. A study
of Arabic showed that the OVP falls in the center of the word; it is not shifted to the left
as in left-to-right languages [Far96]. Hemifield studies of the length effect in Hebrew have
shown a length effect in both VFs [Lav01b, Lav02c, Naz04b]. Thus right-to-left languages
show a different pattern than left-to-right languages, although not an exact reversal. These
results suggest that hemispheric specialization provides a constant RVF/LH advantage, while
reading direction provides a RVF/LH advantage for left-to-right languages versus a LVF/RH
advantage for right-to-left languages. The sum of these two factors provides a strong RVF/LH
advantage for left-to-right languages, and more balanced performance across the VFs for
right-to-left languages.

Another way of investigating these issues is to vary hemispheric specialization. Brysbaert
[Bry94] identified a group of subjects who did not display the usual LH dominance for
language. LH-dominant and non-LH-dominant readers read words of varying lengths, where
fixation could fall either on the first or last letter of the word. For the LH-dominant readers,
there was a strong RVF (initial letter) advantage, and a strong LVF (final letter) length
effect. For the non-LH-dominant readers, the RVF advantage and the LVF length effect were
reduced. This indicates that the cost of callosal transfer contributes to the RVF advantage.
However, reading direction probably also plays a role, as the results did not completely
reverse for the non-LH-dominant readers.

In summary, in left-to-right languages there is a strong asymmetry in the length effect. It
is likely that reading direction and hemispheric dominance both play a part in this asymme-
try. It is unlikely that differing modes of lexical access contribute to this asymmetry, because
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we have seen that length effects are not indicative of serial versus parallel processing [New04],
the asymmetry is present for fixated words [Ore84, Bry96], and brain imaging indicates that
lexical access is left-lateralized independently of presentation location [Coh00, Deh04]. Next
I discuss how the SERIOL model explains the asymmetry of the length effect.

8.2 SERIOL Account of the Length Effect

Recall that there is an asymmetry of activation patterns across the feature level. For
RVF/LH presentation, the locational gradient is smoothly decreasing. For LVF/RH presen-
tation, the second and third letters are strongly inhibited, while letters closer to fixation
may not be inhibited enough. Thus the locational gradient is initially steeply decreasing,
and then flattens out. For longer words, the locational gradient may not even be monotoni-
cally decreasing. (See bold-faced characters in Figure 8.1.) A smoothly decreasing locational
gradient is necessary for the optimal encoding of letter order. The LVF/RH locational gra-
dient becomes more and more non-smooth (non-optimal) as string length increases. This
increasingly degraded LVF/RH activation pattern then provides an increasingly degraded
representation of letter order. A degraded representation of letter order would increase set-
tling time at the lexical level, as activation would be less focused on the target word. Thus
an LVF/RH length effect may emerge because letter-position encoding becomes less and less
accurate, and settling time increases more and more.

This analysis describes the hypothesized contribution of reading direction to the length
effect. In a right-to-left language, acuity gradient inversion would occur in the opposite
hemisphere, and thus there would be a non-optimal gradient for the RVF/LH. What then is
the contribution of hemispheric dominance? It may be the case that a non-optimal locational
gradient in a left-to-right language is further degraded by callosal transfer, increasing its
effect. For right-to-left languages, the effect of a non-optimal RVF/LH locational gradient
may be reduced. This issue is further discussed in section 8.4. In the following, we will
concentrate on left-to-right languages.

This above analysis implies that the length effect should disappear if a smoothly decreas-
ing locational gradient could be created in the LVF. It should be possible to create a smooth
gradient via an increase of bottom-up input to the second and third letters (to compensate
for lateral inhibition from the first letter). Increasing bottom-up input to those letters should
also decrease the activations of the features of the fourth and fifth letters, due to increased
left-to-right lateral inhibition. Additionally, for words of more than five letters, a reduction
of bottom-up input is probably required at the final letters in order to compensate for their
increasing acuity (i.e., to bring their activation levels low enough to make a smooth gradient).
(See italic characters in Figure 8.1.)

These adjustments could be accomplished under experimental conditions by increasing
contrast at the second and third positions, and reducing contrast at the sixth and higher
positions. This leads to the prediction that such a manipulation should cancel the length
effect in the LVF/RH via facilitation for the longer strings. That is, for four- to six-letter
strings, mean RTs to five- and six-letter strings under this contrast manipulation should
be as fast as the mean RT to four-letter strings under normal presentation. Conversely,
application of the same pattern in the RVF/LH should create a length effect due to disruption
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Figure 8.1: Example of proposed LVF/RH locational gradient for normal presentation (bold
face) and under contrast manipulation (italics, shifted to the right for clarity) for a six-letter
word. Horizontal axis represents retinal location, while vertical axis represents activation
level at the feature layer. For normal presentation, the locational gradient is not smooth,
becoming quite flat near fixation. Increasing the contrast of the second and third letters
raises their activation levels, and decreases the activation levels of the fourth and fifth letters
due to increased left-to-right inhibition. Decreasing the contrast of the sixth letter decreases
its activation level. As a result, the locational gradient is more smoothly decreasing.
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of a previously smooth locational gradient. We tested these predictions in the following
experiment [Whi04c].

8.3 Length Investigation

This experiment was designed by me, but run by my colleague Michal Lavidor at the
University of Hull, U.K. I specified the overall contrast pattern, while she developed the
particular presentation conditions (i.e. background color and letter colors).

Participants

Twenty-three right-handed, native English speakers served as subjects for a lexical de-
cision experiment (mean age 19.7). Ten were males, and 13 were females. All gave their
informed consent to participate in the study.

Stimuli

Ninety-six English content words and 96 nonwords were used, with equal numbers of
4-, 5-, and 6-letter words (32 of each). These three word sets were matched for written
word frequency, orthographic neighborhood size, and imageability. Ninety-six nonwords
were generated from another word pool by changing one letter, such that the nonwords were
legal and pronounceable. Nonwords were also made of 4, 5 and 6 letters in equal proportion.
All stimuli were presented in 14-point Helvetica lower-case font on a dark gray background
of 3 cd/m2. Letters were displayed at three contrast levels: high contrast (c=0.64) white
letters, medium contrast light-gray letters (high contrast reduced by 40%), and low contrast
darker-gray letters (high contrast reduced by 60%). In the control condition, letters at all
positions were presented in medium contrast. In the adjust condition, for all string lengths,
the first and fourth positions were presented in medium contrast, and the second and third
positions in high contrast. For 5- and 6-letter targets, the fifth position was presented in
medium contrast. For 6-letter targets, the sixth position was presented in low contrast.
Thus, relative to the control condition, the second and third letters were brightened, and the
sixth letter (if present) was darkened, while the other positions were presented at the same
contrast level.

Design

Each subject was assigned to one of the 2 versions of the experiment. The different ver-
sions rotated the word sets across the presentation conditions (control and adjust conditions
in a Latin square design). Each session began with 70 practice trials to introduce the task.
Every target stimulus was presented twice, once in each visual field, giving 384 trials for
each subject. Stimuli were presented in a random order with the restriction that no more
than 3 successive words or nonwords, or 3 successive LVF or RVF trials occurred together.
The within-subject factors were lexical status (word or nonword), length (4, 5, or 6 letters),
visual field (RVF, LVF), and presentation condition (control or adjust).
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LVF con. LVF Adj. RVF con. RVF adj.

Four
Mean RT 527 536 487 474

S.D. 71 69 68 66
% error 15 18 12 7

Five
Mean RT 563 518 477 536

S.D. 70 67 70 72
% error 13 10 12 7

Six
Mean RT 594 535 490 548

S.D. 80 71 77 71
% error 14 14 10 11

Table 8.1: Results for word targets.

Procedure

Each trial began with + appearing in the center of the screen for 400 ms, which then
disappeared when the target string was presented. Targets were briefly presented for 180 ms
at a displacement of 2.5◦ from the fixation point to the center of the string. The subject’s
task was to decide, as quickly and as accurately as possible, whether the stimulus was a legal
English word or a nonword. Participants were informed that central fixation was important,
and a chinrest together with a head strap were used to ensure stable head position at a
distance of 50 cm from screen center. Participants’ eye movements were monitored by an
infra-red eye tracker, and were recorded for the first 700 ms of each trial.

Results

Trials in which gaze did not remain stable on the fixation cross were discarded (3% of
word trials; 5.1% of nonword trials). RTs of less than 200 ms and more than 1100 ms
were also discarded either as anticipatory or excessively lengthy (discarded trials occurred
infrequently, less than 3% of the total). Mean RTs and error rates are given in Tables 8.1 and
8.2. Repeated measures ANOVAs on RTs (separated for words and nonwords) revealed that
visual field had a significant effect (F(1,22)=47.3, p<0.00001 for words, ns for nonwords),
with RVF words (mean RT = 502 ms) responded to faster than LVF words (mean RT = 545
ms). String length was significant (words: F(2,44)=19.8, p<0.001; nonwords: F(2,44)=3.53,
p<0.05), with longer latencies to longer strings. The main effect of presentation condition
was not significant.

Presentation condition and visual field interacted (F(1,22)=22.7, p<0.001 for words;
F(1,22)=8.0, p<0.05 for nonwords). This interaction was analyzed using a simple main
effects analysis. For LVF stimuli, the adjust condition was faster than the control condition
(F(1,22)=6.76, p<0.05); For RVF stimuli, the opposite pattern was found (F(1,22)=5.33,
p<0.05). No interaction was found for presentation condition and length, nor for visual field
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LVF Con. LVF Adj. RVF Con. RVF Adj.

Four
Mean RT 561 560 573 587

S.D. 88 82 82 89
% error 11 11 11 21

Five
Mean RT 613 582 572 617

S.D. 100 87 83 79
% error 13 11 10 14

Six
Mean RT 653 561 596 630

S.D. 88 93 84 89
% error 9 10 18 14

Table 8.2: Results for non-word targets.

and length. The interaction between presentation condition, visual field, and word length
was significant for word stimuli (F(2,44)=16.84, p<0.001; ns for nonwords). The triple in-
teraction was analyzed using a simple main effects analysis. For LVF words, a length effect
occurred only under the control condition (F(2,44)=7.91, p<0.01). For RVF words, a length
effect occurred only under the adjust condition (F(2,44)=8.14, p<0.01). This pattern is
clearly shown in Figure 8.2.

The pattern for nonwords was similar, but the three-way interaction did not reach sig-
nificance. Average error rate was 12%, and no significant effects of visual field, length, or
presentation condition were found.

8.4 Discussion

As predicted, the LVF/RH length effect was eliminated under the adjust condition. It
cannot be argued that the effect was still present, though masked. Five- and six-letter words
under the adjust condition were processed as quickly as four-letter words under the control
condition, demonstrating that the length effect was completely neutralized. This conclusively
demonstrates that a length effect is not inherent feature of RH processing, for if it were, it
would not be possible to eliminate it via a visual manipulation. Therefore, the LVF length
effect does not arise from an RH-specific mode of lexical access, disproving the dual-modes
theory [Ell88].

Since we were able to abolish the length effect via an activation-pattern correction, this
indicates that the LVF activation pattern is a contributing factor to the length effect. The
appropriate contrast manipulations to neutralize the length effect were precisely predicted
from the theory of locational-gradient formation, providing strong support for this aspect of
the SERIOL model. We suggest that locational gradient formation provides a mechanistic
account of the perceptual learning espoused by Nazir [Naz03, Naz04a].

Also in line with our predictions, a length effect was created in the RVF/LH. While it
may not be surprising that increased RTs were associated with the degradation of the sixth
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Figure 8.2: Results for word targets.

letter in the RVF adjust condition (since it was far from fixation), we note that most of
this increase was present for five-letter strings. For these strings, the only change from the
control condition was positional contrast enhancement at the second and third letters. Yet,
this enhancement was inhibitory in the RVF. It is unlikely that the inhibition arose solely
because this enhancement reduced the visibility of nearby letters, because this manipulation
had no effect on error rates or on RT to four-letter words, although the possibility that the
low-acuity fourth letter was affected only when it was not the last letter cannot be ruled
out. Nevertheless, the RVF adjust-condition results are consistent with our predictions.
The adjust condition had no effect on four-letter words, relative to their respective control
conditions. However, it might be expected that RVF RT should increase due to a degraded
locational gradient, and LVF RT should decrease due to an improved locational gradient.
So why did the contrast manipulation have no effect on four-letter words? It may be the
case that settling time is relatively insensitive to small differences in activation patterns for
shorter words, due to the large number of competitors.

Further investigations into the length effect will involve languages read from right to left,
such as Hebrew. For such languages, the locational gradient should decrease from right to
left. Thus, the consistency of the acuity gradient with respect to the locational gradient is
reversed. That is, the acuity gradient matches the locational gradient in the LVF/RH, not the
RVF/LH. This suggests that the length effect should reverse. However, experimental studies
have given conflicting results. One has shown a length effect for both visual fields [Lav01b].
One has shown the predicted reversal [Naz04b], while another has shown the same pattern
as left-to-right languages [Lav02c]. Overall, these results suggest that the robust asymmetry
observed for left-to-right languages is not present for Hebrew, where a length effect seems to

73



occur in both visual fields. Based on these findings, I proposed that callosal transfer to the
dominant hemisphere also contributes to the length effect by preferentially degrading more
lowly activated letter features [Whi04a]. In the case of a left-to-right language, this further
reduces the feature-level activations of the second and third letters. In the case of a right-
to-left language, this reduces feature-level activations of the final letters, thereby delaying
their firing at the letter layer, creating a length effect. Thus, it should be possible to cancel
the Hebrew LVF/RH length effect by using a different experimental manipulation than in
a left-to-right language - namely, by increasing bottom-up input in proportion to distance
from fixation. In contrast, the same type of manipulation as in English should cancel the
Hebrew RVF/LH length effect.

74



Chapter 9

Asymmetry of the N effect

The effect of another lexical property, orthographic neighborhood size (N), also interacts
with VF. N is the number words which can be formed by replacing one letter of the target
word [Col77]. For example, CARE has a large neighborhood - BARE, DARE, CORE, CURE,
CAME, CAGE, CART, CARD, etc. First I present experimental data on the N effect. Then
I discuss the SERIOL account of the N effect, and present two experiments testing this
account.

9.1 The N effect

Under central presentation in a lexical-decision task, low-frequency words with large
neighborhoods are responded to more quickly than those with small neighborhoods [And89,
And97]. It is surprising that the N effect manifests as facilitation, because lateral inhibition
within the word level is commonly assumed. Therefore, increased similarity to other words
should increase inhibition to the target and slow down RTs, rather than speed them. Thus,
there must be some facilitatory effect that arises in spite of lateral inhibition.

Several explanations for the locus of this unexpected facilitation have been proposed.
It could arise at the letter level, as in the Interactive Activation model [McC81]. In this
scenario, excitation from the word level feeds back to the letter level, and then forward to
the word level. Thus increased similarity to words increases the amount excitatory feedback
to the letter level, which then allows the target word to reach response criterion more quickly.
Alternatively, the facilitation could arise solely within the word level. In their multiple read-
out model [Gra96], Grainger and Jacobs have proposed that increased activation across the
word-level speeds a task that does not require the unique identification of a single word, such
as lexical decision.

Another possible locus is the phonological level, either through general feedback to the
target word or specifically via word bodies [Zie98]. The word-body hypothesis was tested in a
series of lexical-decision experiments [Zie98]. In one set of words, N was held constant while
the number of words matching the target’s body (body neighbors, denoted BN) was varied.
(A body neighbor does not have to be of the same length as the target.) In another set of
words, BN was held constant while N was varied. In the BN manipulation, high BN was
facilitatory (as compared to low BN). However, in the N manipulation, high N had no effect.
Thus facilitation depended on a large number of body neighbors, not N-metric neighbors.
Since BN and N are usually highly correlated, these results suggest that the standard N
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effect arises from body neighbors.
The same manipulations were also performed for non-words. For such targets, high N

has an inhibitory effect, as increased similarity to real words makes it more difficult to reject
a target. However, the BN manipulation did not produce an inhibitory effect for high BN
targets. In contrast, the N manipulation did produce the standard inhibitory N effect. These
results cast doubt on the phonological interpretation of the facilitatory effect of BN on word
targets, because increased phonological similarity of non-words to real words (for high-BN
targets) should have slowed RTs.

Investigation into the N effect has recently been extended to lateralized presentation.
These experiments demonstrated that the N effect is present for LVF, but not RVF, pre-
sentation [Lav02a, Lav02b]. Thus, for the N effect, central presentation patterns with the
LVF, not the RVF. Therefore, it cannot be the case that the LVF/RVF difference occurs
simply because LVF stimuli are less efficiently processed than RVF stimuli, because the N
effect occurs for central presentation, where stimuli are the most efficiently processed. (This
pattern has been shown within a single set of stimuli [Lav02b].)

9.2 The SERIOL Account of the N effect

This asymmetry makes it unlikely that the facilitatory N effect is due to phonological
influences or to total word-level activation, as it is unclear why those factors would vary with
visual field. A more likely candidate is word-to-letter feedback, as we have already discussed
that letter-level activation patterns vary with VF. Although the SERIOL model focuses on
the bottom-up processing stream, I do not mean to rule out top-down activation from the
word level back to lower levels. The oscillatory cycle driving the letter level is taken to fall
in the theta band (5 - 8 Hz) [Lis95, Kli96, Kli01]. Thus, an individual cycle would take 125
to 200 ms, allowing more than one cycle to occur during lexical decision. Input to the letter
level is necessarily bottom-up during the first oscillatory cycle. On subsequent cycles, input
to letter nodes could arise from both bottom-up and top-down sources. It is assumed that
top-down input from the word to the letter level is also in the form of a gradient, where the
first letter receives the most input, the second letter the next most, etc. Such a gradient
would be instrumental in serial output of letters when spelling.

I propose that the hemispheric asymmetry of the N effect arises from the formation of the
locational gradient, coupled with the processing which converts the locational gradient into
a serial firing pattern. Due to these dynamics, top-down input to the letter level (from high
N) has a facilitatory effect for LVF/RH presentation, but not for RVF/LH presentation.

First I focus on the dynamics of the conversion of the spatial gradient to serial firing at
the letter level. The point at which a non-initial letter node can start to fire is limited both
by lateral inhibition from the prior letter, and by its own level of excitatory input. When
the firing rate of the currently active letter node exceeds a certain level, no other letter node
can fire, due to the constant lateral inhibition. At some point, the current letter’s firing rate
and the resulting lateral inhibition will decrease to a level which would allow the next letter
to fire. If the next letter currently receives enough excitatory input to cross threshold at
this point, it can fire. In this case, lateral inhibition from the active letter was the limiting
factor on when the next letter could start to fire. However, if the next letter does not receive
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enough excitatory input to fire immediately, its activation is delayed until its excitability
increases enough (via the oscillatory cycle) for it to cross firing threshold. In this case, the
limiting factor was the amount of excitatory input.

In the following, I will focus on four-letter stimuli, as most N experiments are performed
on stimuli of that length. Recall that in the feature level of the LVF/RH, the second and
third letters receive strong lateral inhibition, whereas the second and third letters in the
RVF/LH do not. For central presentation, the second letter receives strong inhibition in the
LVF/RH, and the third letter receives strong cross-hemispheric inhibition. Based on this
difference in activation patterns and the above dynamics, I propose that the lower level of
bottom-up input (to the letter level) to the second and third letters is the primary locus
of the N effect, as follows. For LVF and central presentation, the activations of the second
and third letters are limited by their level of excitatory input. Therefore, a slight increase
in excitation (due to feedback from the word level from high N) allows those letter nodes to
cross threshold and fire sooner. In contrast, for RVF presentation, those letter nodes receive
a relatively higher level of bottom-up input. Their firing is limited by lateral inhibition,
rather than excitatory input. Thus, the second and third letter nodes already fire as early
as possible, and a slight increase in excitatory input has no effect. So top-down excitation
allows the internal letter nodes to fire earlier for LVF/RH and central presentation, but not
RVF/LH presentation.

When the second and third letter nodes fire earlier, the corresponding bigrams are acti-
vated earlier. This then allows activation to begin to be focused on the target word node
earlier, reducing lateral inhibition from other word nodes. For example, consider the stimulus
bore. When *B fires, two-letter words starting with B are the most highly activated (due to
the higher connection weights for shorter words). These word nodes inhibit less highly acti-
vated word nodes (including the target BORE). When BO fires, three-letter words starting
with BO are the most highly activated, and inhibit the other word nodes. When OR and BR
fire, four-letter word nodes starting with BOR are the most highly activated. Finally, the
target BORE is no longer inhibited by other more highly activated word nodes (although
if BOR were itself a word, there would still be a more active word node). Thus the sooner
that the activation becomes focused on the target, the less lateral inhibition there is from
other word nodes. This decreased lateral inhibition over the course of the oscillatory cycle
will allow the target word node to reach response criterion sooner, decreasing RT. 1 Thus
top-down excitation from high N decreases RTs for LVF and central presentation. For RVF
presentation, the second and third letter nodes already fire as early as possible, so there is
no N effect.

For LVF presentation, another factor may also be at work. Recall that the activation
level of non-contiguous bigrams is determined by the amount of time between the firing of
the first constituent letter and the firing of the second constituent letter. This time lag
is determined by the relative levels of feature-layer inputs to those letter nodes, which are

1This account is revised from the original account, which focused on increased activation levels for the
second and third letters, which were passed onto the bigram and word levels. Given the new assumption
that bigram activations do not reflect letter activations, this account has been modified to focus on timing
of firing. However, the underlying idea remains the same. There is an N effect for central and LVF/RH
presentation because the locational gradient is steeper than for RVF/LH presentation.
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determined by the locational gradient. Bigram-to-word connection weights are based on the
bigram activation pattern resulting from a smoothly decreasing locational gradient. When
the locational gradient is not smoothly decreasing (as in the LVF/RH), a somewhat different
bigram activation pattern results. Thus, there is a mismatch between the bigram activation
vector and the learned weight vector, making activation less focused on the target word.
Top-down input from high N may compensate for the lack of smoothness of the locational
gradient, bringing the bigram activation vector nearer the learned weight vector. This could
also contribute to the N effect for LVF presentation.

9.3 Predictions

In this experiment, we concentrated on the asymmetry of the N effect under lateralized
presentation. Because the proposal is that differences in bottom-up activation patterns
underlie this asymmetry, changes to these activation patterns should modulate the N effect.
If the LVF/RH activation pattern could be created in the RVF/LH, the N effect should
appear in the RVF/LH. Conversely, if the RVF/LH activation pattern could be created
in the LVF/RH, the N effect should disappear in the LVF/RH. It should be possible to
adjust activation patterns by manipulating contrast levels at specific string positions. The
RVF/LH’s feature-level activation pattern could be replicated in the LVF/RH by slightly
dimming the external letters. Dimming the first letter should decrease lateral inhibition
from that letter, mimicking the weaker left-to-right inhibition in the LH. Dimming the final
letter should compensate for the increasing acuity, creating a more smoothly decreasing
gradient. As a result, the locational gradient should be smoother and shallower, mimicking
the usual activation pattern in the RVF/LH. (See Figure 9.1.) This should negate the N
effect. Conversely, the LVF/RH’s activation pattern could be mimicked in the RVF/LH by
slightly dimming the internal letters. This should induce the N effect in the RVF.

To test these predictions, we performed a lateralized lexical-decision experiment of low-N
versus high-N words, with two different patterns of dimmed input, in addition to the control
(undimmed) condition [Whi04b]. All stimuli were four-letter words. In the inner-dimmed
condition, the contrast of the second and third letters was reduced. In the outer-dimmed
condition, the contrast of the first and fourth letters was reduced. The analysis of the N
effect allows precise predictions concerning the expected effects of these manipulations.

Let R be the RT for the control / RVF / low-N condition, L be the additional time cost of
presentation to the non-dominant hemisphere, and Z be the cost of low input to the second
and third letters. Thus, the expected RTs for the other control conditions are:

control/RVF/high-N= R control/LVF/high-N = R + L control/LVF/low-N = R+L+Z

First outer dimming is considered. There is little direct cost for reducing input to the
external letters, because their activations remain relatively high. Therefore, in the RVF,
outer dimming should have little effect, giving:

outer/RVF/high-N= R outer/RVF/low-N = R

In the LVF, outer dimming should compensate for the normal cost of low input to the second
and third letters. Therefore:

outer/LVF/high-N= R + L outer/LVF/low-N = R + L
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BB
A

RR
DD

A

Figure 9.1: Outer dimming in the LVF/RH. The normal locational gradient is shown in
bold-face. The results of outer dimming are shown in italics (shifted to the right for clarity.)
Reducing the contrast of the first letter reduces its activation level, and decreases inhibition
to the second and third letters, increasing their activation levels. As a result, the locational
gradient is shallower across the first three letters. Reducing the contrast of the fourth letter
reduces its activation level. As a result, the locational gradient is smoother across the last
three letters.
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Figure 9.2: Predicted pattern for Experiment 2.

Note the counterintuitive prediction that such stimulus degradation should produce facil-
itation for low-N (relative to the undimmed control). As a result, there should be no N
effect.

Next inner dimming is considered. In the RVF, this should induce a cost at the internal
letters for low-N. However, top-down activation from high-N should compensate for this
decreased bottom-up input. Thus:

inner/RVF/high-N= R inner/RVF/low-N = R + L

Therefore, an N effect should be created. In the LVF, inner dimming should not change the
overall bottom-up activation pattern, although it could potentially increase the cost of low
activation at the internal letters. We would expect the size of the N effect to stay the same
or get larger.

In summary, the predictions are that outer dimming should decrease RTs for the LVF
/ low-N condition (giving no N effect), and that inner dimming should increase RTs for
the RVF / high-N condition (giving an N effect). Inner dimming might also increase RTs
for the LVF conditions. Other manipulations should have little effect. See Figure 9.2 for
a graphical presentation of these predictions, under the simplest assumptions - that inner
dimming incurs no additional cost in the LVF, and that L and Z are of the same magnitude.
The latter assumption is consistent with the results of [Lav02a], in which both were on the
order of 30 ms.
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Low 1 Low 2 Low 3 High 1 High 2 High 3

beau arch babe bush beam bite
cube aunt coal cage bolt boot
earl chop crab cone deer cake
germ disc gasp dent duck cart
gulf duel grip dusk dump dock
heap fork jerk hank gang hail
howl lamb lens herd gore hint
newt menu liar hind hose hush
oath omen oven hump lime joke
palm plug raid mall maze leak
shed prey riot mule pump mist
soap roar sand nail rent port
swim suds sigh rust rope rake

Table 9.1: Stimuli for N-effect investigations.

9.4 N-effect Investigation 1

This experiment was designed by me, but run by my colleague Michal Lavidor at the
University of Hull, U.K. I specified the overall contrast patterns, while she developed the
particular presentation conditions (i.e. background color and letter colors).

Participants

Nineteen native English speakers participated in the experiment. All had normal or
corrected-to-normal vision and were aged 18-26 (mean age 19.4, s.d. 1.6). Each participant
received either a course credit or £2. All participants were right-handed and scored at least
80 on the Edinburgh test. Nine were males, 10 females.

Design and materials

Stimuli. The word stimuli were 78 4-letter, English content words (nouns and verbs).
Half of the words had fewer than 10 orthographic neighbors (mean no. of neighbors 6.2).
These words formed the low-N group. The remaining words all had more than 12 neighbors
(mean 17.0). These formed the high-N group. The low-N and high-N groups were matched
on written frequency, imageability, and age of acquisition. Each group was divided into 3
sets, to allow rotation through the 3 different presentation conditions (control, inner-dimmed,
or outer-dimmed). These 6 sets were also matched for written word frequency, imageability,
and age of acquisition. The stimuli are given in Table 9.1.

Since the model we tested focuses on words, the non-words were created such that they
would amplify the N effect for words (based on [Sik02]). The non-words were generated from
a different pool of 4-letter words by altering one or two letters, usually replacing the vowels
with consonants (however bigrams were always orthographically legal). There was no special
effort to match N size of the non-words as they served mainly as the context for the words;
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however to keep chance performance at 50% level we presented the non-words at the same
illumination conditions as the real words.

All stimuli were presented in 14-point Helvetica lower-case font, appearing as high con-
trast (c=0.72) white letters on a gray background of 4 cd/m2. In the inner-dimmed condition,
light-gray patches were projected on the 2nd and 3rd letters of the presented target, so the
contrast between the letter and the background color was decreased by 33%; thus these let-
ters were dimmer than the rest of the word. Similarly, two light-gray patches dimmed the
1st and 4th letters in the outer-dimmed condition. In the control condition, no letters were
dimmed. The stimuli were presented for 180 ms, at a displacement of 2.5◦ from the fixation
point to the center of the stimulus. The displacement was to the left or to the right of a
central focus point (LVF and RVF, respectively).

Design. Each subject was assigned to one of the 3 versions of the experiment. The
different versions rotated the word sets across the experimental conditions (high- and low-N
words in control, inner-dimmed, and outer-dimmed conditions). Each target stimuli was
presented once to each visual field. The within-subject factors for words were N size (high,
low), visual field (RVF, LVF) and presentation condition (control, inner-dimmed or outer-
dimmed). Each combination of the within-subject variables was repeated 13 times.

Procedure

Stimulus presentation was controlled by an IBM Pentium computer on 17”SVGA display.
The participants sat at a viewing distance of 50 cm, with the head positioned in a chin rest.
The experiment was designed using Super-Lab version 2.

Each session began with 10 practice trials to introduce the task, followed by 24 additional
practice trials of centrally presented letter strings, where the task was to perform lexical
decision. Thirty-six additional practice trials presented words and non-words either to the
left or to the right of the fixation point. Each trial began with + appearing in the center
of the screen for 400 ms. For the first trial, the + remained for 2000 ms, and disappeared
when the target word was presented. The + would again reappear to allow projection of the
next target word. Targets were briefly presented for 180 ms (either a word or a non-word),
to the left or to the right of the focus point. The participant’s task was to decide, as quickly
and as accurately as possible, whether the stimulus was a legal English word or a non-word.
Participants responded by pressing one of two available response keys, labeled ’word’ and
’non-word’ on a standard ’QWERTY’ keyboard. For half of the participants, the response
’word’ was made by pressing the ’N’ key, and ’non-word’ by pressing the ’V’ key. For the
other half, the response keys were reversed. The participants were randomly assigned to one
of the two response options.

Results

Since the main manipulation of orthographic neighborhood was designed for the word
stimuli, the repeated measures analysis with N (high, low), visual field (right, left) and
presentation condition (control, inner-dimmed or outer-dimmed) as the within-subjects vari-
ables were conducted only for words. RTs of less than 150ms and more than 1400ms were
discarded either as anticipatory or excessively lengthy (discarded trials occurred infrequently,
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L-low L-high R-low R-high

control
mean RT 620 595 569 566

S.D. 72 70 67 66
% error 19 15 18 18

inner-dim
mean RT 611 590 590 569

S.D. 72 69 73 69
% error 20 17 18 15

outer-dim
mean RT 592 598 555 558

S.D. 70 84 80 75
% error 14 20 11 15

Table 9.2: Results for N-effect investigation 1.

less than 2% of the total). Mean RTs for correct responses are summarized in Table 9.2, and
presented graphically in Figure 9.3.

Reaction times. Visual field had a significant effect [F1(1,18)=7.2, p<0.05; F2(1,24)=6.4,
p<0.05], with RVF words (mean RT = 567 ms) responded to faster than LVF words (mean
RT = 601 ms). Presentation type and neighborhood size interacted [F1(2,36)=4.18, p<0.05;
F2 not significant]. We examined the simple effects of N for each visual condition sepa-
rately and found that the N effect was significant both in the control condition [F(1,18)=5.9,
p<0.05] and the inner-dimmed condition [F(1,18)=8.2, p<0.05], but not the outer-dimmed
condition.

The interaction between presentation type, visual field, and orthographic neighborhood
size was also significant [F1(2,36)=6.3, p<0.01; F2(2,48)=6.0, p<0.01]. Post hoc Bonferroni
(p<0.05) comparisons yielded that for LVF words, the N effect occurred under both the
control and inner-dimmed conditions, but not the outer-dimmed condition. For RVF words,
the N effect emerged only under the inner-dimmed condition.

Error rates. Average error rate was 16%, and the patterns were similar to the RT data.
However, no significant effects of visual field, N size, or presentation condition were found
(see mean error rates in Table 9.2).

Discussion

The hemispheric specificity of the N effect was replicated for the control conditions,
with faster RTs to high-N than low-N words in the LVF/RH, but not the RVF/LH. In the
LVF/RH, dimming the outer letters negated the N-effect, via facilitation (relative to the
control condition) for low-N, but not high-N. In the RVF/LH, outer dimming had no effect.
In the RVF/LH, dimming the inner letters created the N effect via inhibition for low-N, but
not high-N. In the LVF/RH, inner dimming had no effect. A comparison of Figures 9.2 and
9.3 shows that the experimental results closely match the predicted pattern.
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Figure 9.3: Results for N-effect investigation 1.

9.5 Further Predictions

The previous experiment showed the predicted patterns for lateralized presentation. It
should be possible to also negate the N effect for central (CVF) presentation via a contrast
manipulation. However, a different manipulation may be required, due to the differing shapes
of the locational gradient in the CVF and the LVF. In the LVF, input to the fourth letter may
too high with respect to the third letter (due to incomplete inversion of the acuity gradient).
However, this would not be the case for the CVF, where the locational gradient across the
third and fourth letters is determined by the steeply decreasing RVF/LH acuity gradient.
In the CVF, input to the fourth letter would not be too high, and dimming that letter may
not be beneficial. Therefore, we initially ran a pilot study to determine what manipulation
would negate the CVF N effect. This study indicated that dimming both outer letters did
not remove the effect, while dimming only the first letter did. This is consistent with the
proposal that input to the fourth letter is relatively too high for the LVF, but not the CVF.

In the following experiment, we sought to negate the N effect for both LVF and CVF pre-
sentation within a single study. In the dimmed condition, the outer two letters were dimmed
for LVF and RVF presentation, while only the first letter was dimmed for CVF presentation.
The respective control conditions remained the same as in the previous experiment. For
the dimmed condition, we expected to negate the CVF N effect (by facilitating responses to
low-N words), and to replicate the results from the outer-dimmed conditions in the previous
experiment.
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9.6 N-effect Investigation 2

This experiment was designed by me, but run by my colleague Michal Lavidor at the
University of Hull, U.K. It used the particular presentation conditions (i.e. background color
and letter colors) that she developed for the previous experiment.

Participants

Twenty-five native English speakers participated in the experiment. All had normal or
corrected-to-normal vision and were aged 18-28 (mean age 19.6, s.d. 1.9). Each participant
received either a course credit or £2. All participants were right-handed and scored at least
80 on the Edinburgh test. Eleven were males, 14 females.

Design and Materials

Stimuli. The same stimuli as in the previous experiment were used (see Table 9.1).
Design. Each subject was assigned to one of the 3 versions of the experiment. The dif-

ferent versions rotated the word sets across the experimental conditions. The within-subject
factors for words were N size (high, low), visual field (RVF, LVF or center) and presenta-
tion condition (control or dimmed). Each combination of the within-subject variables was
repeated 13 times. The dimmed condition included dimming of the two external letters for
the RVF and LVF presentations, and dimming of the first letter for the centrally-presented
stimuli.

Procedure. The procedure was similar to the procedure of the previous experiment.

Results

Since the main manipulation of orthographic neighborhood was designed for the word
stimuli, the repeated measures analysis with N (high, low), visual field (right, left, center)
and presentation condition (control or outer-dimmed) as the within-subjects variables were
conducted only for words. The results of one participant were not included in the analysis
due to low-accuracy performance (below chance level). RTs of less than 150 ms and more
than 1400 ms were discarded either as anticipatory or excessively lengthy (discarded trials
occurred infrequently, about 2% of the total). Mean RTs for correct responses are presented
in Table 9.3and Figure 9.4.

Reaction times. Visual field had a significant effect [F1(2,46)=10.3, p<0.01; F2(2,24)=8.1,
p<0.01. Centrally presented words (mean RT = 478 ms) yielded fastest responses, followed
by RVF words (mean RT = 536 ms), then LVF words (mean RT = 567 ms). Post-hoc
differences were analyzed employing Bonferroni comparisons (p<0.05).

The interaction between presentation type, visual field, and orthographic neighborhood
size was also significant [F1(2,46)=5.8, p<0.01; F2(2,48)=4.9, p<0.05]. Post hoc Bonferroni
(p<0.05) comparisons yielded that for LVF and CVF words, the N effect occurred for the
control condition, but not the dimmed condition. For RVF words, there was no N effect in
either condition.
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L-few L-many C-few C-many R-few R-many

control
mean RT 582 560 495 472 537 540

S.D. 59 65 57 60 71 66
% error 16 12 10 8 13 11

dimmed
mean RT 558 570 471 479 536 533

S.D. 63 52 58 55 59 60
% error 14 15 9 10 13 11

Table 9.3: Results for N-effect investigation 2. In the dimmed condition, the outer two letters
were dimmed for RVF and LVF presentation, while only the first letter was dimmed for CVF
presentation.
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Figure 9.4: Results for N-effect investigation 2.
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Error rates. Average error rate was 11%, and the patterns were similar to the RT data.
However, no significant effects of visual field, N size, or presentation condition were found.

Discussion

In the control condition, N effects for the CVF and LVF, but not the RVF, were replicated.
The dimmed condition for the LVF and RVF (wherein the outer letters were adjusted)
replicated the results from the previous experiment - the LVF N effect was negated via
facilitation for low-N, while dimming had no effect in the RVF. Crucially, the CVF dimmed
condition (wherein only the first letter was adjusted) negated the N effect, via facilitation
for low-N, but not high-N. Thus the predicted results were achieved.

9.7 Implications

Experiments 2 and 3 showed that it is possible to create or negate the N effect by alter-
ing bottom-up activation patterns via contrast manipulations, as predicted by the SERIOL
account. Note that a simpler explanation of these results does not suffice. It cannot be the
case that dimming the outer letters was facilitatory for LVF / low-N words simply because
the internal letters were unmasked at a very low level. In that case, there should have been a
similar effect in the RVF, yet none was found. It could not be the case that such RVF facili-
tation did not occur simply because the stimuli were less degraded than in the LVF, since we
demonstrated a facilitation in the least degraded location, the CVF. Moreover, the creation
of an RVF N-effect by dimming the internal letters indicates that the reason that such an
effect does not usually occur is that those letters are usually more highly activated. This
places the locus of the VF x N-effect interaction squarely at the level of hemisphere-specific,
orthographic activation patterns. The SERIOL model explains the source and nature of
these patterns.

Locus of the N effect in Lexical Decision

The fact that manipulations of contrast modulated the N effect indicates that its primary
locus is the letter level. Other accounts of the N-effect based on word-level activations
[Gra96] or phonological representations [Zie98] cannot explain the demonstrated effects of
manipulating the visual properties of letters.

Andrews [And97] noted that the N effect appears less strong in French and Spanish. The
conclusion that feedback excitation to the letter level is the primary source of the N effect can
potentially account for such a linguistic difference. Under the assumption that the reading
lexicon also provides the spelling lexicon [Bur02], spelling could be represented by connections
from a word node back to the letter nodes. In languages with shallower orthographies than
English, such as Spanish and French, it is less necessary to encode spelling via word-to-
letter connections, since spelling is predictable from phonology. Therefore, word-to-letter
connections may be weaker in such languages. These weaker top-down connections would
then account for the reduced influence of N in these languages.
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However, others have argued against such a letter-level locus [Bro93, Rey04], based on
the absence of an interaction between stimulus quality and word frequency in lexical deci-
sion [Sta75, Bro93, Bal95]. That is, when letter contrast is uniformly low, the cost of this
degradation does not vary with the frequency of the target word. If there were feedback
from the word level to the letter level, this should cause an interaction between stimulus
quality and a lexical attribute, such as frequency. The lack of such an interaction has been
taken as indicating that processing is staged, rather than interactive. That is, computations
are completed at the letter level before being passed on to the word level, as opposed to a
continuous interaction between levels.

However, this finding is not inconsistent with the model, or experimental results. Note
that the SERIOL model is not a fully interactive; letter activations only occur at specific
time intervals. Although I have not fully specified all the timing relationships between levels,
the implicit assumption is that there is gating between the feature and letter levels. The
induction of the correct firing order at the letter level depends on the proper activation
pattern at the feature level. Thus, the feature level must settle into this pattern before
it activates the letter level. If the letter nodes were activated while the feature level were
still settling, the wrong firing pattern would result. Moreover, feature-level input must be
passed to the letter level at the start of an oscillatory cycle. Therefore there has to be some
co-ordination between the feature and letter levels, so that feature level activation affects
the letter level at the right time. Thus we assume a staged activation. So, the effects of
uniformly low stimulus quality may be resolved before the feature level is allowed to activate
the letter level, consistent with the lack of interaction between overall stimulus quality and
frequency.

However, this does not rule out the possibility of feedback from the word level affecting
the letter level at a later point in processing. For example, such feedback might occur during
the down-phase of the oscillatory cycle. Under this scenario, word-level activation would not
affect the letter level until the end of the oscillatory cycle. This feedback would then have
an effect on letter activations during the next oscillatory cycle. Such feedback would not
interact with overall effects of stimulus quality, which have been resolved prior to activation
of the letter level. However, this feedback would interact with the resulting activation pattern
passed forward from the feature level. That is, overall low stimulus quality may have a large
inhibitory effect the first time that the feature level activates the letter level, and this effect
may dominate as compared to any later top-down effects.

We have demonstrated an interaction between the N effect and positional manipulations
of letter contrast. Thus we have demonstrated an interaction between a lexical attribute and
stimulus quality, indicating that feedback from the word to letter level does occur, and is
the primary source of the N effect in lexical decision.

Orthographic Similarity

The proposal that the internal letters are the primary source of the N effect implies
that the position of difference between a target and its neighbor should matter. A neighbor
should be most facilitatory when it matches on the internal letters. This explains the finding
that the usual N effect comes from body neighbors [Zie98]. A word node corresponding to
body neighbor would not become highly activated, because it likely would not match on the
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important first letter. Thus, I propose that the N effect occurs as a result of top-down input
to letter nodes via the summed excitation of a large number of moderately active word nodes.
This also explains why non-word targets were not affected by the body-neighbor manipulation
[Zie98]. Increasing the number of body neighbors does not increase the number of highly
activated word nodes. Under the assumption that only highly active word nodes slow RTs
to non-words, body neighbors would not affect RTs to non-words. In contrast, increasing
the number of N-metric neighbors makes a highly activated word node more likely.

The proposal that facilitation results from a moderately active non-target word nodes
leaves open the possibility of an inhibitory effect for a highly activated non-target word node,
as would be expected from lateral inhibition within the word level. This proposal explains
observed influences of a single higher frequency neighbor. For five-letter French targets, the
existence of a higher frequency neighbor mismatching at the fourth letter had an inhibitory
effect in lexical decision, while the existence of one mismatching at the second letter did not
[Gra89]. Perea investigated this phenomenon in English using a perceptual identification
task for a briefly presented target (67 ms) which was followed by a mask [Per98]. The target
was preceded by a 500-ms prime that was a higher frequency neighbor. When the prime
mismatched the target on the third or fourth letters, there was an inhibitory effect on target
identification (compared to an unrelated prime). In contrast, a prime mismatching on the
first, second, or fifth letter had no effect.

The lack of effect for a mismatch at an external letter (first or fifth letter) [Per98] is
explained by the edge bigrams. If an edge bigram is not matched, the neighbor does not
become highly activated and does not have an inhibitory effect on the target. The effect of
internal-letter position [Gra89, Per98] is explained by the sequential activation of bigrams.
If a neighbor mismatches on the second letter, it is inhibited early and cannot accrue a high
enough activation level to interfere with the target. However, a mismatch occurring later (at
the third or fourth letter) has less of an effect, leading to high activation of the neighbor,
and an inhibitory effect on the target. A non-target formed by transposing two letters of the
target, such as SALT and SLAT, is also highly activated under the bigram metric, because
most of the bigrams are shared [Gra04b]. This accounts for the finding that having such a
transposed-letter neighbor can be inhibitory [And96].

In summary, I propose that the facilitatory N effect occurs via moderately active word
nodes. Such non-target nodes do not strongly inhibit the target, while their summed top-
down input to the letter level provides facilitation. Increased RTs occur when a single
neighbor is highly activated, strongly inhibiting the target.

Locus of Visual Field Asymmetries

The fact that the normal visual-field x N-effect interaction was overridden by our manip-
ulations demonstrates that it cannot be a result inherent hemispheric differences at the level
of lexical access, because if it were, it would not affected by such manipulations. Rather, an
asymmetric word-level effect can result from differences in processing near the visual level.
This casts doubt on the widely held assumption that hemifield effects reflect differential
processing at the lexical level.
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Letter-Position Encoding

The highly specific, counterintuitive predictions were based on the details of locational
gradient formation. The confirmation of these predictions provides strong support for the
idea that letter-position encoding employs a spatial activation gradient, the formation of
which requires hemisphere-specific processing, giving differing activation patterns across the
visual fields. Although these experimental results do not directly confirm the claim that
the locational gradient induces a serial encoding of letter order, the proposed dynamics do
explain why top-down feedback has no effect when the internal letters already receive a
relatively high level of excitatory bottom-up input.

9.8 General Discussion

The SERIOL model has elucidated the source of a phenomenon that has remained mys-
terious for decades, the asymmetry of the length effect [Mel57, Bou73, Ell88, Naz03, Jor03].
It has also explained the recently discovered asymmetry of the N effect, at the same time
revealing the source of facilitation for high N. The model explains why the CVF patterns
with the LVF for the N effect, but with the RVF for the length effect. For an N effect to
occur, the slope of the locational gradient must be sufficiently steep that top-down input
can assist the firing of the internal letters. The locational gradient is steeper in the LVF and
CVF than in the RVF across early string positions, explaining the pattern of the N effect.
In contrast, the length effect occurs when the locational gradient is not smoothly decreasing.
This only occurs in the LVF (as a result of acuity-gradient inversion across a large number
of letters), explaining the pattern of the length effect.

This analysis implies that it may also be possible for high N to compensate for a non-
smooth, LVF gradient in longer words. Indeed, [Lav02a] showed that there was no length
effect for LVF high-N words of three to five letters, while there was a length effect for low-N
words. This lack of a length effect for high-N words was the first time that an absence of a
length effect was demonstrated for LVF. In contrast, in the present work, we have shown for
the first time how to abolish a length effect in a set of words that normally shows such an
effect [Whi04c].

These results demonstrate that these hemispheric asymmetries do not entail different
modes of lexical access. Rather, hemisphere-specific activation patterns are the cause. Thus,
the locus of visual-field effects is lower in the processing stream than is commonly assumed.
These results suggest that it is not appropriate to use visual half-field studies to investi-
gate linguistic-level hemispheric specificity. As such experiments are currently widely used,
this is an important finding. To further buttress this claim, we are currently applying our
contrast-manipulation methodology to a semantic asymmetry related to primes that have
two different meanings [Bur88]. Logically, if there is one mode of lexical access, as our results
and brain-imaging evidence indicate, semantic asymmetries must also originate prelexically.
Therefore, we expect to be able to reverse this asymmetry also. Mechanistically, degraded
letter-position encoding in the LVF/RH may create more diffuse lexical activation (than
RVF/LH presentation), causing more diffuse semantic activation, leading to an asymmetry
in semantic priming. Extension of our results to the semantic level would conclusively demon-
strate that VF asymmetries arise at a prelexical level, which would indicate that hemifield
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experiments should no longer be used to make claims about hemisphere-specific processing
at the lexical level and above.

The fact that the SERIOL model has lead to these experimental results illustrates the
utility of the overall approach. The predictions and experimental designs were generated by
reasoning about a theoretical model, not by running a simulation. The theoretical model was
formulated by considering a wide range of behavioral data and neurobiological constraints.
This allowed a theory of how letter-position is encoded in a mature brain, and has led to novel,
counterintuitive predictions that have been experimentally verified, and have elucidated long
standing questions in area of visual word recognition.

I believe that this general approach allows one to get at what the brain is doing in a
way that is not achievable by training an artificial neural network. It forces consideration
of what a brain is actually doing, and how it is doing it. More realistic and complex tasks
can modeled when the work is not limited by implementational issues. Rather, computation
is considered at a more abstract level, but is still heavily constrained - by neurobiological
plausibility, and behavioral patterns. Thus although the model is specified on the functional
level, the specification is still highly specific, much more so than box-and-arrow models.
This specificity is in evidence in the range of accurate predictions generated by the SERIOL
model. Once neural mechanisms in a mature brain have been established, we are then in a
better position to consider how learning occurs, because we know what the end point should
be, and what computational mechanisms must be available.

In the following chapter, I consider the implications of the SERIOL model for the more
general arena of visual object recognition and for dyslexia. In the subsequent chapters, I
then apply the overall approach to the problem of parsing.
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Chapter 10

SERIOL Speculations

In section 2.2, I claimed that understanding how the brain handles LPE should shed light
on fundamental processing mechanisms. In this chapter, I address this issue. I start with
a consideration of which aspects of the SERIOL model are learned, and which are innate.
Based on this analysis, I discuss how the presumably innate aspects could apply to object
recognition in general. I then consider how disruption to the learned aspects could contribute
to dyslexia. This discussion will be sketchy and speculative. To treat these subjects in detail
would require several more dissertations!

10.1 Innate versus Learned Aspects of the SERIOL Model

Starting at the highest level of the model, I now consider how the proposed processing
could be learned during reading acquisition. The word level of the model corresponds to
the orthographic lexicon. Obviously, people must learn to associate a word’s spelling and
its meaning. While I have used a localist encoding of the word level in the simulations, this
assumption is not central to the theoretical model. I leave the nature of the encoding of the
lexicon as an open question.

The lexical level is activated by bigram nodes, which represent the ordering between two
letters. Thus, all relationships between the letters in a stimulus are encoded by a set of
pairs. The general capacity to represent relationships in this way in the visual system may
be innate (such as above/below relationships, as discussed in the following section).

The bigram level is activated by the serial firing of letter nodes. This serial encoding
depends on the oscillatory nature of letter nodes. Obviously, the brain does not learn to use
oscillations to encode information. Rather oscillatory dynamics must present as an innate
encoding mechanism.

Serial firing also depends on a feature-level activation gradient. The left-to-right nature of
this locational gradient is obviously learned, as it is based on reading direction. Furthermore,
distinguishing objects by horizontal relationships is unnatural. The identity of an natural
object does not change as it is rotated around the vertical axis; a lion is still a lion regardless
of whether it is facing to the left or to the right. Thus the visual system must learn to
distinguish horizontal order for the purpose of processing words, and it must learn to impose
a monotonically decreasing activation gradient. However, the general mechanism of creating
a location-invariant representation via the conversion of space into time is taken to be innate.

The edge level of the model is based on known properties of the primary visual areas,

92



and these properties are therefore innate. The transformations between the edge and feature
level constitute the learned nature of the locational gradient.

Thus these general representational mechanisms are taken to be innate: the pairwise
representation of relationships, the existence of oscillatory cells, and the capacity to use
these oscillatory cells to convert a spatial representation into a temporal representation via
differences in activation levels. In the following section, I discuss how these capacities could
be employed in general object recognition.

Processing that is specific to visual word recognition occurs primarily at the feature
level. The visual system must learn to encode letter order via a monotonically decreasing
activation gradient across a retinotopic representation. I assume that this learned in response
to a top-down attentional gradient. In section 10.3, I present a simple simulation showing
the feasibility of such learning. I also discuss how failure to create the locational gradient
may be a causal factor in dyslexia.

10.2 Object Recognition

There has been an ongoing debate as to whether objects are recognized via interpolation of
view-dependent templates[Pog90], or by matching abstract structural representations [Bie87].
However, recent work has indicated that the visual system may use both approaches [Fos02,
Hay03]. Both types of recognition entail similar problems of representing the relationship
between sub-parts in a location-invariant way, so that a stimulus can be matched against a
stored representation. In the view-dependent approach, this would involve two-dimensional
relationships between features, while in the compositional approach this would involve three-
dimensional relationships between volume primitives, known as geons [Bie87].

In an implemented model of the geon approach [Hum92], spatial relationships were en-
coded using the above, below and beside predicates. Thus ordering along the vertical axis
was differentiated, but not along the horizontal access. This is in line with the above obser-
vation that left-right relationships are not invariant for natural objects. In contrast, vertical
relationships usually do not vary, because natural objects are not usually upside-down. Thus
it is most important to represent vertical relationships. To represent the structure of the
constituent geons, each geon was temporally bound to a one-place relationship. For example,
if a cone appeared above a brick, cone and above would fire simultaneously (encoding that
the cone is above something), while brick and below would fire simultaneously in a different
time slot. However, this encoding leads to ambiguity if there are four or more geons above
one another. The middle geons are both above and below another geon, so there is ambiguity
about their relationships to one another.

The relationships between geons were established by an exhaustive comparison between
locations. A coarse coding of ten units was used to encode the vertical spatial location of
the center of mass of each geon. For example, using 1 to represent the topmost location, the
above unit is activated if 1 and 2 are active, or 2 and 3, or 1 and 3, etc. This requires an and
gate for each pair of locations that satisfies the relationship, and an or gate joining all of the
and gates. While it is feasible to use this approach for a small number of possible locations,
the wiring necessary for a more realistic network becomes prohibitively expensive.

How could the proposed representational mechanisms overcome these difficulties? In the
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SERIOL model, a relational unit (i.e. a bigram) represents a two-place relationship, rather
than a one-place relationship. Such units would reduce ambiguity. Thus vertical relationships
could be represented by units representing above/below. For example, when a cone appears
above a brick, it activates a cone-above-brick unit. The number of required units is the
square of the number of geons (24) [Bie87], which is not prohibitively large.

In the SERIOL model, the left-right relationship is identified not by exhaustive compar-
ison of locations, but rather by order of firing. The same principle could be used to identify
above-below relationships. In the SERIOL model, the sequential firing is achieved via a
monotonically decreasing activation gradient. However, there is no evidence for a mono-
tonically decreasing gradient from the top to the bottom (or bottom to top) of the visual
field. Instead, the visual system may use the acuity gradient directly, but differentially, in
the upper visual field (UpVF) and the lower visual field (LoVF). if geon1 is above geon2
in the UpVF, geon1 would have a lower acuity than geon1. If the UpVF acuity gradient
is converted into sequential firing of geons, the geon1-above-geon2 unit should be activated
when geon1 fires after geon2. In contrast, if geon1 is above geon2 in the LoVF, geon1 will
have a higher acuity than geon2. If the LoVF acuity gradient is separately converted in a
sequential firing pattern, the geon1-above-geon2 unit should be activated if geon1 fires be-
fore geon2. So the wiring between geon and bi-geon units would vary with visual field. This
wiring would be part of the visual system’s innate capacity to represent spatial relationships.
Relationships could also be hardwired across the visual fields. That is, if geon1 appears in
the UpVF and geon2 in the LoVF, the geon1-above-geon2 unit is activated.

In contrast to the UpVF and LoVF, there would be no visual-field-specific wiring for the
left and right visual fields, because left-right relationships are not usually invariant. In both
visual fields, if geon1 fires after geon2, the geon1-beside-geon2 unit would become activated.
In order to read, this mechanism would have to be overridden via a monotonically decreasing
gradient which induces first-to-last sequential firing.1

Thus, for general object recognition, separate temporal encodings may be induced along
the vertical axes in the UpVF and LoVF, and along the horizontal axes in the LVF and
RVF. This would lead to the activation of bi-geon units encoding above, and bi-geon units
encoding beside. This location-invariant representation could then be matched against a
stored representation based on bi-geon units.2 A similar encoding mechanism could be based
on features, rather than geons, for matching view-dependent templates.

This sketch has suggests that the basic principles of encoding in the SERIOL model could
plausibly be extended to the domain of object recognition in general. Of course, many details

1If there is an innate mechanism for encoding above-below relationships, but not left-right relationships,
why then are most scripts read horizontally? The visual field is more extensive along the horizontal axis
than along the vertical axis, and acuity decreases more quickly along the vertical axis than the horizontal
axis. It may be the case that the increased acuity along the horizontal axis outweighs the cost of special
processing. Also, although above-below relationships may be directly computed, this would not be a result
of sequential firing across the letters. For example, for the vertical word GLEN fixated in the center, L and
E would fire, and then G and N. Thus there is no letter-based invariant representation of order. Recall that
the phonological route requires such a representation. Therefore, acuity gradient inversion (in the UpVF)
may be necessary for languages read from top to bottom, giving no advantage over horizontal scripts.

2Inside and/or in-front-of relationships would also be required. These principles are less applicable for
determining such relationships. Rather, a mechanism to compare spatial extents would necessary.
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remain to be worked out.

10.3 Feature-Level Processing and Dyslexia

According to the above discussion, the task of learning to encode letter order primarily
consists of learning to create the locational gradient. What could drive this learning? I
assume that it is attention based. Because print-to-sound translation proceeds from left-to-
right (in a left-to-right language, of course), attention is first focused on the first letter, then
on second, etc. This may create a top-down attentional gradient across the letters. This
top-down gradient may then drive learning on bottom-up connections (between the edge
and feature levels) and lateral connections (within the feature level). Over time, the visual
system learns to automatically create an activation gradient, without top-down support.

10.3.1 Simulation of Learning to Form the Locational Gradient

To test the feasibility of this scenario, I ran a simulation with one layer of feature nodes
that were fully interconnected. A self connection was excitatory, whereas connections to other
nodes were inhibitory. Bottom-up input was in the form of an acuity gradient, whereas top-
down input was in the form of the locational gradient. Following the reception of bottom-up
input, the network iterated for three cycles. The resulting activations were compared to
locational gradient. If a node’s activation was too low, the strength of the self-connection
was increased. It the activation was too high, the strengths of the inhibitory connections
were increased. Then all weights decayed slightly.

The simulation was performed on set of 10 nodes, where nodes 1::5 represented the
LVF/RH and 6::10 represented the RVF/LH. Bottom-up activations BUi increased for i =1
to 5 (from 3.0 to 5.0), and decreased for i = 6 to 10 (from 5.0 to 3.0). The network was trained
for stimuli at start ::10, where start was varied from 1 to 6. BUi was set to 0.0 for i < start.
The top-down activation TDi was set to 0.0 for i < start, and to 5.0 − (i − start) ∗ 0.5
for i ≥ start. Thus the network had to learn a single set of weights that would generate a
gradient of the same shape for all stimulus locations.

Excitatory and inhibitory connection weights were initially set to 0.005 and -0.005, re-
spectively. On each iteration, a node’s activation Ai was increased by the dot-product of the
feature activation vector and the weight vector. After 2 iterations, if Ai < TDi (within a
tolerance of 0.05), the self-connection weight was increased as follows:

wii = wii + LR ∗ TDi

where LR is the learning rate. If AI > TDi:

wij = wij − LR ∗ Aj for i 6= j

Then all weights were reduced:
wij = D ∗ wij

where D < 1.
LR =0.0006 and D = 0.999 produced good performance. After 10000 learning cycles,

the desired monotonically decreasing gradient was created for all values of start. Although
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connection weights were initially symmetric, this training induced an asymmetry, such that
weights on inhibitory connections from i to j were more negative for i < j than i > j,
and were more negative for i < 6 than i > 5. This is in line with the proposed left-to-
right inhibition that is stronger for the LVF/RH. Weights on self-connections were higher for
i < 6 than for i > 5. This is in line with increased excitation for the LVF/RH. Thus simple
learning rules yielded connection weights with the proposed characteristics, demonstrating
the plausibility of learning to form a locational gradient.

10.3.2 Dyslexia

If the visual system fails to learn to create the locational gradient, letter order will not
be quickly and automatically represented. A deficit in visual processing is consistent with
evidence showing that normal readers show an early (<150 ms post-stimulus) increased ac-
tivation in the the left posterior fusiform gyrus in response to letter strings, while dyslexic
readers do not [Hle97, Tar99]. This early left-lateralization in normal readers may correspond
to the initiation and performance of string-specific processing (i.e. locational gradient for-
mation). Lack of locational-gradient formation in dyslexics is also consistent with a study of
the OVP in young readers who were normal or dyslexic [Duc03]. For normal readers, initially
fixating on the first letter of a word yielded much better reading performance than fixating
on the last letter. This is in line with the usual bias in OVP experiments, which I take to
result from the necessity of acuity-gradient inversion in the LVF. If dyslexics do not create a
locational gradient, this asymmetry should not be present because acuity gradient inversion
would not be performed. Indeed, the dyslexic readers showed a symmetric viewing-position
function.

If a rapid sequential representation of letter order cannot be induced, the visual system
may compensate by performing an overt scan of the string. That is, instead of creating a
sequential encoding in a single fixation, multiple fixations are carried out across the string.
Thus a sequential encoding is created, but on a much longer time scale. This proposal
explains fixation data for normal versus dyslexic children. Children read words varying in
length from 2 to 14 letters while their eye movements were monitored [Mac04]. (The study
was in German, so long words were common in the test language.) Normal and dyslexic
children showed similar patterns for words of 2-4 letters. As string length increased, the
patterns diverged sharply. (The following results are the medians for each group.) For the
longest words, normal subjects initially fixated 4.4 letter-widths from the beginning of the
word, performed saccades of 3.5 letter-widths, and finally fixated 4.3 letter widths from the
end of the word. In contrast, dyslexic children initially fixated 2 letter-widths from the
beginning of the word, performed saccades of 2 letter-widths, and finally fixated 1.8 letter
widths from the end of the word. Thus, on a single pass over a long word, dyslexic readers
made twice as many saccades as normal subjects. In addition, holding duration per fixation
was longer in the dyslexic children.

The dyslexic pattern is consistent with a strategy in which one to three letters are pro-
cessed per fixation, where a slow, top-down attentional mechanism used to scan letters within
a fixation. Because it takes so long to process all the letters of the string, information about
the initial letters may be lost by the time that the end of the string is reached. Thus multiple
passes across the string may be required to read the string. Indeed, the number of backward
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saccades increased with word length for the dyslexic, but not the normal, subjects.
Such a deficit in encoding letter order could have ramifications for learning grapheme-

to-phoneme correspondences. Perhaps a rapid sequential representation of letter order is
necessary for learning an effortless mapping to phonology. That is, it may be necessary
to temporally align sequential orthographic and phonological representations in order to
learn to effectively translate between the two types of encodings. When a suitable, robust
orthographic encoding is not available, this may interfere with such learning. Thus the well-
known phonological deficits observed in dyslexics may actually have their source in a visual
deficit, at least in some cases.

10.3.3 Magnocellular Deficit

What underlying deficit could prevent formation of the locational gradient? As discussed
in section 3.3, recent research has revealed a magnocellular deficit in some dyslexics. The
dorsal route of the visual system, which processes motion, location, and attention, primarily
receives inputs from the magnocellular pathway [Mau90]. Therefore, the underlying problem
may be attentional, in that the proper top-down attentional gradient is not available to
drive learning of the locational gradient. This proposal is consistent with evidence of LVF
mini-neglect and RVF over-distractibility in dyslexics [Fac01, Har01], indicating abnormal
attentional gradients. Vidyasagar has made a similar proposal, suggesting that dyslexics
are unable to sequentially deploy attention across the string in a rapid, top-down manner
[Vid01, Vid04]. In contrast, I propose that attentional problems prevent learning of the
normal automatic, bottom-up processing that drives a sequential representation of letter
order.

The ventral route of the visual system, which processes form and color, receives inputs
from both the parvocellular and magnocellular pathways [Fer92]. Little is known about
the role the magnocellular pathway along the ventral route. Because magnocells are larger
and process information more quickly than parvocells, magnocells may rapidly set up a low
spatial-frequency representation of the visual scene, onto which the parvocells fill in detail
[Car87, Del00, Van02]. In line with this fast processing, another role of the magnocellu-
lar system in locational gradient formation may be to rapidly drive the inhibition that is
necessary to invert the acuity gradient and create the locational gradient. If magnocells
are functioning too slowly, it may not be possible to set up the locational gradient quickly
enough to subserve the bottom-up induction of a serial encoding.

Some dyslexics do not show magnocellular problems. They may fail to develop the
locational gradient for other reasons. Perhaps an auditory deficit directly prevents the de-
velopment of a phonological representation that is based on individual phonemes. In the
absence of such a representation, there may be less pressure to develop an orthographic
representation that aligns with the phonemic representation.

Another potential role of the magnocellular system lies at a higher level of processing.
Recall that a bigram node is activated by letters that fire in a particular temporal sequence.
This response profile is similar to cells which only fire for a stimulus moving in a certain di-
rection. Such directional sensitivity is characteristic of motion-detection cells in V5 [Mau83].
Due to this functional similarity, bigram nodes may be located in V5. Because problems
with formation of bigram nodes would result in impaired ability to form and store repre-
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sentations of letter order, this proposal is consistent with evidence showing a correlation
between motion-detection ability and both letter-position encoding ability [Cor98], and the
ability to distinguish real words from pseudohomophones (e.g. rain versus rane) [Tal00]. It
is also consistent with the phenomenon of letter-position dyslexia in some subjects suffering
from occipitoparietal lesions, whose error responses are anagrams of the target word [Fri01].
Such subjects may have an intact serial encoding of letter order, but may lack reliable bi-
gram representations. Similarly, some developmental dyslexics with magnocellular problems
may fail to develop bigram nodes, leading to difficulty in developing an orthographic lexicon.
An impairment at the bigram level may be directly due to a processing deficit in V5, or
may originate earlier in the processing stream, perhaps due to a lack of a rapid sequential
letter-based representation, which may be necessary to drive formation of bigram nodes.

10.3.4 Possible Experimental Tests of these Proposals

While highly speculative, the above analyses do suggest some avenues of experimental
investigation. The proposal that dyslexics fail to learn to form a locational gradient could
be tested by investigating letter perceptibility patterns for lateralized presentation of three-
letter consonant strings. For normals, the best-perceived letter in each visual field is the
letter farthest from fixation, as discussed in section 4.2.3. In the LVF, this is due to the
feature-level, left-to-right inhibition necessary to invert the acuity gradient. I would expect
a different pattern in dyslexics, with perceptibility more in proportion to acuity. In the
RVF, the final letter is the best perceived because it is not inhibited by a subsequent letter
at the letter level. If dyslexics rely on a top-down attentional scan, this pattern should not
be present. Thus for dyslexics, I would expect positional symmetry across the visual fields
(resulting from a top-down scan), somewhat modulated by acuity, giving a V-shaped LVF
pattern and an initial-letter primacy in the RVF.

If the predicted pattern is found for dyslexics, this would suggest that it may be possible
to treat dyslexia via the external imposition of a locational gradient, in order to jump-start
its automatic formation. This could be accomplished by creating a contrast gradient across
words presented on a computer screen. That is, the first letter has the highest contrast,
the second letter has somewhat lower contrast, the third somewhat lower than the second,
etc. Each word should be centrally presented for 200 ms, to force processing within a single
fixation. A previous study has shown that treatment utilizing brief presentation (100 to 300
ms) of words, either centrally or randomly lateralized, improved spelling ability in dyslexics,
whereas longer central presentation (1500 ms) or presentation to a single visual field did
not [Lor04]. This increased spelling ability may reflect a more reliable orthographic lexicon,
stemming from more robust letter-position encoding. Perhaps brief presentation by itself
forced formation of the locational gradient, because visual scanning was not an option. It
would be interesting to see if imposition of a contrast gradient on such stimuli would generate
a greater improvement in reading ability than standard stimuli.

The proposal that V5 houses bigram units could be tested via transcranial magnetic
stimulation (TMS), which temporally disrupts neural activity in a small area of the cor-
tex. Under TMS to V5, a task that requires encoding of relative letter order should be
disrupted. A previous experiment has yielded suggestive results. TMS to V5 impaired
ability to read pseudowords [Lis95]. Pseudoword reading requires precise encoding of letter
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order because top-down, lexical information is not available. Interestingly, the number of
transposition errors preferentially increased, consistent with an induced deficit in positional
coding ability. There were 75% more transposition errors (21/29) versus 33% more replace-
ments (33/100) and additions (6/18) under TMS as compared to no stimulation. Further
investigations could be carried out on Hebrew subjects performing the reading task, to see
if letter-position dyslexia [Fri01] can be induced. (As discussed in section 3.3, Hebrew is
an ideal language for revealing letter-position dyslexia because vowels are not explicitly rep-
resented.) Alternatively, the lexical-decision task used by [Cor98], wherein nonwords were
formed by transposing letters of real words, could be employed in any language. As a control,
nonwords formed by replacing a letter of a word should also be included. If false positives
to anagrammatic non-words were selectively increased under TMS to left V5, this would
indicate that letter-position encoding in particular was disrupted.

10.3.5 Summary

The primary locus of learning in the SERIOL model is at the feature level, where the
locational gradient is formed. Failure to learn to produce a locational gradient may contribute
to dyslexia. Such failure may stem from a magnocellular deficit, or from the lack of a robust
phonemic encoding.

The general mechanisms of encoding relationships with a set of pairs, and of using a
spatial activation gradient to induce a temporal, location-invariant encoding could be used
by the visual system for object recognition in general. To represent vertical relationships,
the visual system would likely directly use the acuity gradients in the upper and lower
visual fields. This would require each visual field to interpret the order-of-firing information
differently.

This concludes the discussion of LPE. In the remaining chapters, I begin to tackle the
problem of how the brain creates the representation of sentence structure.
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Chapter 11

The Parsing Problem

11.1 Specification of the Problem

A sentence is interpreted to ascertain “who did what to whom”. A verb specifies the
“what”. The participants in the actions undertake different thematic roles; the “who” is
termed the Agent, and the “whom” the Theme. For example, consider the sentence:

1. The dog that Mary adopted bit Tim.

The main idea of the sentence is (Agent=dog, action=bit, Theme=Tim), where the additional
information (Agent=Mary, action=adopted, Theme=dog) modifies (Agent = dog).

The job of the human parser is to take a sequence of words and convert it into such a
representation of meaning. This task involves computational and representational problems
that are much more difficult than those of letter-position encoding! The most important
differences are as follows.

• There must be unlimited productivity. Any word can appear in an instance of the
corresponding syntactic or thematic category. In letter position encoding, there are a
small number of elements (letters); relationships between elements can be represented
via (bigram) units encoding every possible pair of elements. This type of conjunctive
representation is not feasible in parsing due to the large number of words.

• The resulting representation must be hierarchical. It must be possible to represent
multiple clauses and the relationships between those clauses. For example, a relative
clause is embedded within the main clause in (1). In contrast, letter-position encoding
only requires a linear representation of the relationships between elements.

• It must be possible to associate particular non-contiguous items in particular ways. In
the above example, dog must be associated with bit, while the intervening material
must not affect this association. This problem is especially difficult in the case of
a center-embedding, as in the above example, where a new clause is started in the
middle of a higher level clause. This leads to multiple unattached Agents (e.g., dog
and Mary), and each one must be associated with the proper verb. In contrast, in
letter-position encoding, all elements bear the same type of relationship to each other
and this problem does not arise.
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Thus, the overall problem is “What representations, and transformations on these represen-
tations does the brain use to convert a sequence of words into a hierarchical representation
of meaning?” This does not include the question of how a word’s meaning is actually repre-
sented in the brain. Rather, the focus is on how words could be represented that would allow
them to combined into hierarchical structures. The resulting hierarchical representation of
thematic roles is dubbed the thematic tree.

Due to the difficulty of the above question, I initially attack this problem by focusing on
the neural basis of the underlying representations, while considering the operations on those
representations at the algorithmic level. That is, the nature of the thematic tree and of the
intermediate representations supporting its construction are considered at the neural level.
The parsing algorithm that operates over these representations is considered at the symbolic
level, for now.

To satisfy first two requirements discussed above (productive and hierarchical represen-
tations), two types of operations must be available. It must be possible to bind together an
arbitrary word with a thematic role, giving productivity. It also must be possible to merge
multiple such associations into a single unit so that the entire unit can enter into a binding
relationship, thereby allowing hierarchical structure. To understand what third requirement
above entails, a discussion of the Chomsky hierarchy of formal languages is in order.

11.2 Computational Constraints

Chomsky [Cho59] identified a relationship between the complexity of formal languages
and the computational machinery required to accept or reject a string as being a well-formed
string of a language . The simplest class of language, a regular expression, is recognized by
a finite-state machine, which consists of a set of states, and state transitions triggered by
input tokens. See Figure 11.1. A finite-state machine can recognize strings of the form anbm.
Grammars of this type correspond to phrases in natural language. For example, a definite
noun phrase is recognized by a finite-state machine that expects the, followed by any number
of adjectives, followed by a noun. A finite-state machine can also recognize strings of the
form (ab)n. This grammar corresponds to right-branching clauses, where a’s are nouns and
b’s are verbs. For example:

2. John knows Sue thinks Bill lied.

In contrast, a finite-state machine cannot recognize strings of the form anbn (where n is
unbounded), because there is no way to ensure that the number of a’s and b′s match up
when all the a’s are processed first. Note that anbncorresponds to center-embedding, for
example (noun (noun verb) verb). Thus, a finite-state machine cannot handle the general
case of center-embedded clauses. It is often pointed out that humans cannot either, as more
than one center-embedding leads to an uninterpretable sentence, such as:

3. The man that the dog that Mary adopted bit screamed.

However, the human parser can handle certain double center-embeddings, as in the following:

4. The fact that the dog that Mary adopted bit Tim upset her.
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Figure 11.1: Examples of finite state machines (FSMs). Each recognizer consists of a start
state, S, and an accept state, A, and intermediate (numbered) states. Transitions occur
between states for specific input tokens, where e represents the end-of-string token. The
top FSM accepts strings of the form anbm, for n ≥ 1 and m ≥ 1. For example, the string
a1b1b2b3would activate the following sequence of states: S,1,2,2,2,A. The bottom FSM accepts
strings of the form of (ab)n, for n ≥ 1. For example, the string a1b1a2b2 would activate the
following sequence of states: S,1,2,1,2,A.
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a1: push(a1) a3: push(a3)a2: push(a2)

a1
a2

a1

e & empty(): Accept

b2: pop() b1: pop()b3: pop()
y = a3 y = a2 y=a1

Figure 11.2: Example of using a stack to recognize strings of the form anbn . A stack S
provides the push(S,x) operation, which puts x on the top of the S, the pop(S) operation,
which removes the top item from S and returns it, and the empty(S) operation, which is
true only if there are no items on S. The string anbn can be recognized using the following
algorithm for token x :

if x = a then push(S,x)
else if x = b and not empty(S) then y=pop(S)
else if x = e and empty(S) then Accept
else Reject

The operation of this algorithm is illustrated for the string a1a2a3b3b2b1, where the boxed
items represent the items on the stack and a line represents an empty stack. In natural lan-
guage, such a string would correspond to multiple center-embeddings, where a’s are subjects
and b’s are verbs. The recognition algorithm could be augmented to create a representation
of the structure of the input by adding appropriate structure-building operations. For ex-
ample, when an item is popped, a structure could be created that represents the integration
of y (a subject) with x (the current verb). This structure could be saved and attached to
the structure created by the next pop operation, and so on.
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Thus humans can indeed parse multiple center-embeddings. Recent research has sug-
gested that the ability to process center-embeddings may be uniquely human [Fit04]. Both
humans and tamarins (a type of primate) rapidly learned to recognize sequences of syllables
of the form (ab)n, where a’s were in a female voice, and b’s were in a male voice, for n = 2
or 3. However, only humans learned to recognize sequences of syllables of the form anbn, for
n = 2 or 3. This ability to recognize center-embeddings may reflect a neural adaptation that
is specific to language ability [Fit04].

What computational machinery is necessary for recognizing center-embedded structures?
Such processing requires the functionality of a stack. A stack is characterized by the push
and pop operations. Push adds an item to the top of a stack, while pop removes the topmost
item. Thus, items are popped in the reverse of the order that they were pushed. See Figure
11.2.

Of course, in processing natural language, it is insufficient to merely accept or reject a
string of words as being a well-formed sentence. Rather, a representation of meaning must
be created as the words are processed. A recognizer can be augmented to construct a such
representation. For example, when a pop operation is triggered, the result of the pop could
be taken to be the Agent of the current verb (assuming that a’s correspond to nouns and
b’s to verbs in our example).

Natural language contains other structures, called crossed-serial dependencies, that can-
not be parsed using a finite-state machine or a stack, as in:

5. John, Bill, and Tom were wearing green, blue, and purple, respectively.

Here, respectively indicates that the following associations should be formed: (John, green)
(Bill, blue) (Tom, purple). However, stack-based processing would yield (Tom, green) (Bill,
blue) (John, purple). In this case, the functionality of a queue is required, which is charac-
terized by the append and remove operations. Append adds an item to the end of a queue,
while remove takes an item from the front of a queue. Thus items are removed in the same
order that they are appended. To parse the above sentence, John, Bill, and Tom would be
successively appended to a queue. Then green would trigger a remove, giving John; blue
would trigger a remove, giving Bill, etc.

Thus, in order to process center-embeddings and crossed-serial dependencies, the human
parser must be able to perform stack-like and queue-like operations in working memory.
Therefore, such operations are an important component of the intermediate representations
that allow construction of the thematic tree. In the following two chapters, I consider
constraints that narrow the possibilities for how the thematic tree and the intermediate
encodings are represented in the brain.

11.3 Neurobiological Constraints

For the problem of letter-position encoding, the architecture of the visual system con-
strained the lowest level of representation. Due to the high-level nature of the parsing prob-
lem, such explicit constraints are not available. Rather, there are more general constraints
of neurobiological plausibility as follows.
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• There are a finite number of neurons of fixed connectivity. A node representing an
association between particular words cannot magically appear.

• Connection weights cannot be quickly altered and then returned to their original val-
ues. While there is evidence for rapidly occurring changes in synaptic strength in the
hippocampal system, these changes are enduring [Bli73]. (This phenomenon is called
long-term potentiation.) Due to the large numbers of sentences parsed, it is unlikely
that the human parser relies on such semi-permanent changes to connection weights.

• However, it should be possible to store the thematic tree in the hippocampal system,
if desired. Therefore, it should be possible to encode the information in the thematic
tree into long-term storage, based on changes to connection weights.

A wide range of imaging studies have revealed brain areas and activation components asso-
ciated language processing. Such studies provide little information about the nature of the
underlying neural representations, and will not be reviewed here. However, imaging studies
in which frequency-band power is analyzed could potentially be informative. If power in a
certain band increases during a task, this may indicate that performance of the task relies
on oscillatory activity in that frequency band.

A range of studies have shown an increase in theta-band power in tasks that employ verbal
working memory [Kli99]. A study using intracranial electrodes (in epileptic patients) allowed
a particularly precise measurement of the temporal aspect of theta-band synchronization
[Rag01]. These subjects performed the Sternberg task, in which 1 - 4 digits were memorized,
followed by a delay interval, and then a probe. The subject then indicated whether the probe
appeared in the memorized list. Spectral analysis showed a sharp increase in theta power at
the start of the memorization phase. Theta power was maintained during the delay phase,
and returned to baseline levels after the probe. This pattern occurred only in the theta band.
In an MEG of the Sternberg task, theta power systematically increased in frontal areas as
the number of digits to be remembered increased from 1 to 3 to 5 to 7 [Jen02]. Together,
these studies suggest that items in verbal working memory are stored on an oscillatory carrier
wave, as in the Lisman and Idiart model [Lis95] (discussed in section 6.1.2). This view is
further supported by a clever experiment in which auditory clicks were presented at varying
rates during performance of the Sternberg task [Bur00]. When the frequency of clicks fell
just below 21 Hz, RTs were slowed and when the frequency fell just above 21 Hz, RTs were
speeded. The largest changes occurred on those trials in which the largest number of items
had to be remembered. These results suggest that the clicks affected the duration of gamma
cycles on which items were stored in working memory, (As gamma cycles fall in the range of
40 Hz, the 21 Hz stimuli would correspond to a harmonic of that frequency.)

An EEG study has linked these phenomena to sentence processing, showing that theta
power in particular increased as a sentence was read [Bas02]. Another study has shown effects
of grammatical class (noun vs verb) on theta power [Kha04]. However, semantic processing
seems to have no effect on theta power. A comparison of two tasks (reading a sentence versus
reading a sentence and giving the superordinate category of one of the words) showed no
difference in the theta range between the reading-only and semantic task, while alpha power
increased for the semantic task [Roh01]. In sum, these results suggest that theta oscillations
may play a role in syntactic encoding in working memory during sentence processing.
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Chapter 12

Behavioral Results on Parsing

Of course, it is also more difficult to investigate parsing behaviorally than letter position
encoding. The most informative data come from when the parser breaks down. Such break-
down is generally measured by off-line difficulty ratings, or by the on-line measure of reading
times in a self-paced reading study. In such a study, the words or phrases are sequentially
revealed, and the timing is controlled by the subject. This allows a record of how long the
subject spends on processing each word or phrase.

The human parser experiences difficulty in two situations: complexity and reanalysis. If
the structure of a sentence is too complex, it becomes too difficult to process, as for the
doubly center-embedded relative clauses in (3). Alternatively, difficulty can arise when the
structure of the sentence is ambiguous, and the wrong analysis is initially chosen. In some
cases, an initial incorrect analysis can be easily reanalyzed to give the correct structure, while
in other cases, it cannot. For example, the following sentence is very difficult to understand.

6. The doctor told the patient that he was seeing that it was time to leave.

Here that he was seeing is initially taken as the Theme (what the doctor told the patient),
and it is difficult to reinterpret it as relative clause modifying the patient when the actual
Theme (that it was time to leave) is encountered.

It is possible that both types of phenomena arise from the way that intermediate represen-
tations in working memory are used to construct the thematic tree. In the complexity case,
intermediate representations may become unable to support the generation of the thematic
tree. For reanalysis, the nature of these representations may determine why some reanalyses
are easy, and some are not. In the following, I will concentrate on complexity phenomena. I
first review the experimental results, and then discuss psycholinguistic models and metrics
that have been proposed to account for these results.

12.1 Complexity Phenomena

12.1.1 Center-Embedding versus Crossed-Serial Dependencies

In English, center-embedding occurs when an embedded clause follows the subject. In
languages with other word orders, center-embedding can occur under different circumstances.
In German, nested infinitival clauses result in center-embedding. For example, the sentence:

7. Joanna helped the men teach Hans to feed the horses.
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is expressed as follows in German:

8. Johanna hat den Mannern Hans die Pferde futtern lehen helfen.

Joanna has the men Hans the horses to-feed to-teach helped.

In Dutch, the same sentence would be expressed using crossed-serial dependencies, where
the first subject is associated with the first verb, the second with the second verb, etc. :

9. Jeanine heeft de mannen Hans de paarden helpen leren voeren.

Joanna has the men Hans the horses helped to-teach to-feed.

A study of the relative ease comprehension for the Dutch versus German constructions
showed that the Dutch version is easier [Bac86]. Despite the fact that center-embeddings
are generally more common across natural and artificial (computer) languages, and are more
complex according the Chomsky hierarchy [Cho59], crossed-serial dependencies are easier to
process.

12.1.2 Different types of English doubly center-embedded clauses

A center-embedded clause in English could either be a relative clause (RC) or a noun
complement (NC). In a relative clause, there is “gap” corresponding to the the noun phrase
being modified. For example, in the sentence:

10. The dog that Mary adopted bit Tim.

that Mary adopted is a relative clause with a gap following adopted. This gap corresponds
to the dog (i.e. Mary adopted the dog). In contrast, there is no gap in a noun complement,
which can only follow a word whose meaning is related to a proposition. For example,

11. The fact that the dog bit Tom caused him to scream.

Here that the dog bit Tom is a noun complement. It is a complete clause, elaborating on the
fact.

As mentioned in section 11.2, some doubly center-embedded clauses are very difficult to
understand, while some are not. A sentence in which both are relative clauses (RC/RC)
belongs to the former category, for example:

12. The man that the dog that Mary adopted bit screamed.

Yet, if the outer embedded clause is an NC (NC/RC), such a construction seems much easier
[Gib98]:

13. The fact that the dog that Mary adopted bit Tom upset her.

However, the opposite ordering, an RC/NC, seems at least as difficult as an RC/RC [Gib98]:

14. The woman who the fact that Rover bit Tim upset yelled at the dog.

Next I present some phenomena related to embedded clauses.
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12.1.3 Interference in Working Memory

One possible source of difficulty in center embeddings is that multiple similar items (i.e.,
unattached subjects) must be maintained in working memory. Across a range of domains, it
has been shown that similarity among items in working memory interferes with the ability
to remember and differentiate those items. Thus, this general difficulty may also apply to
syntactic working memory [Lew96].

Lewis and Nakayama [Lew02] investigated the effects of similarity in Japanese using
off-line complexity ratings. In Japanese, objects precede verbs. Thus, a sentence with a
sentential complement like:

15. John knows that Bill likes Sue.

would be expressed with the following word order, giving a center-embedding:

16. John [Bill Sue likes] that knows.

Noun phrases are case-marked with suffixes, indicating their role in the sentence, where -
ga indicates a subject (nominative case), -o indicates an object (accusative case), and -ni
indicates an indirect object (dative case). Thus the above sentence would have the following
form:

17. NP-ga NP-ga NP-o V that V.

Due to these factors, many unattached NPs can be accumulated in working memory, and
the effects of similarity can be easily investigated. In a pilot study, twenty different syntactic
structures were used in which the following factors were manipulated: level of embedding (0
or 1 embedded clause), number of NPs (1 to 5), similarity - maximal number of NPs with the
same case (1 to 3), and adjacency - maximal number of adjacent NPs with the same case (0,
2, or 3). Ease of understanding was rated on a scale from 1 (easy) to 7 (difficult). Regression
analyses showed that a combination of similarity and adjacency was the best predictor of
difficulty ratings, accounting for 73% of the variance. That is, perceived complexity increased
as the number of NPs with the same case marking increased, and as their proximity to each
other increased.

This phenomenon was investigated further in a study in which the number of nominative
NPs was held constant at 2, and the total number of NPs (3 or 4) and number of adjacent
nominative NPs (0 or 2) were manipulated. With 0 adjacent nominative NPs, the total
number of NPs affected perceived difficulty (ratings of 3.0 vs 4.2 for 3 vs 4 NPs). With 2
adjacent NPs, difficulty was higher, and was unaffected by the total number of NPs (ratings
of 5.07 vs 5.22 for 3 vs 4 NPs). Thus, the proximity of nominative NPs had the largest
impact on difficulty ratings.

However, these findings do not reveal whether it is the syntactic category (i.e., nomina-
tive) or the surface form (i.e. both -ga marked) that matters in determining similarity. To
get at this question, Lee and Nakayama [Lee03] performed a similar investigation in Korean,
which is structurally similar to Japanese. However, Korean has two different nominative
case markings (-ka or -i), depending on whether the noun ends in a vowel. Syntactic class
was varied by topicalizing the main subject. A topicalized NP indicates the focus of the
sentence. It carries a different case marking (-nun), and is not necessarily a subject.
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In a self-paced reading study of sentences with sentential complements, the first NP
had either the -ka, -i, or -nun case-marking and the second NP had either the -ka or -i
marking. The results showed that topicalized sentences were easier than the nominative
sentences. Within the nominative sentences, those with dissimilar sequences (-ka,-i or -i,-ka)
were easier than those with similar sequences (-i,-i or -ka,-ka). Thus both syntactic class and
surface form influenced difficulty.

12.1.4 NP-type effects

Experiments in English and Dutch have shown that the syntactic type of subject NPs
influences difficulty. In the following, I will refer to the first NP as N1, the second NP as N2,
etc.

English

Off-line complexity ratings have shown that the difficulty of an RC/RC is influenced by
the type of the innermost subject [Gib98, War02a]. If N3 is an indexical (first- or second-
person) pronoun, an RC/RC seems easier than if N3 is a name or a full noun phrase (FNP,
e.g., the woman), for example:

18. The man that the dog that I adopted bit screamed.

If N3 is a third-person pronoun with or without a referent, it seems somewhat more difficult
than indexical pronoun, but easier than a name or FNP [War02a]:

19. Acording to Sue, the man that the dog that she adopted bit screamed.

The man that the dog that she adopted bit screamed.

One possible explanation for these effects is that a pronoun reduces interference in working
memory, because the subjects are less similar to each other. However, if N3 is an quantified
pronoun (such as everyone), an RC/RC seems easier than if N1 or N2 is a quantified pronoun
[War02a]. There are two consecutive non-pronouns when either N1 or N3 is a pronoun, yet
ease of processing differs. This effect of position suggests that the influence of N3-type is not
merely a result of reducing the number of similar adjacent items in working memory.

Dutch

Next we consider effects in crossed-serial dependencies, based on self-paced reading stud-
ies [Kaa04]. In each experiment, three subjects (N1-N3) and an object (N4) preceded three
verbs, and the syntactic types of N2 and N3 were varied. In Exp. 1, N2 and N3 were either
both pronouns or names, while N1 and N4 were both FNPs. In this case, NP type (of N2
and N3) had no effect on reading times at any of the verbs. In Exp. 2, N2 and N3 were either
both pronouns or FNPs, while N1 was a name and N4 was an FNP. In this case, reading
times increased at V1 under the FNP condition.

Why did the results differ across experiments? In Exp. 1, NP-type did not affect the
maximal number of similar adjacent items. (2 pronouns vs 2 FNPs). In Exp. 2, NP-type
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did affect similarity (2 pronouns vs. 3 FNPs - because N4 was a FNP). Thus an effect of
NP-type only arose when similarity increased, suggesting that the effect of NP-type in Exp.
2 was due to interference in working memory. In line with this analysis, the disadvantage
in the FNP condition was numerically twice as large when all three FNPs shared the same
determiner as when they did not (114 ms vs 60 ms), suggesting a sensitivity to surface form.

Summary

In English, but not in Dutch, making the innermost subject a pronoun affects processing
difficulty. The dependence on position and contrast with Dutch suggest that this effect
involves factors other than interference in working memory. In contrast, the effect of N2-
and N3-type observed in Exp. 2 of the Dutch study can be accounted for by interference in
working memory.

12.1.5 The RC/RC V2-drop effect

In the following, I will refer to the verbs of the inner RC, the outer RC, and the main
clause as V1, V2, and V3, respectively. If V2 is omitted, an RC/RC seems as, or more,
acceptable than the grammatical version [Gib99]:

20. The man that the dog that Mary adopted screamed.

This effect is specific to V2; if V1 or V3 is dropped, the sentence is not acceptable. However,
if V2 is part of a right-branching RC, V2 cannot be acceptably dropped [Gib99]:

21. I know the man that the dog that Mary adopted bit.

I know the man that the dog that Mary adopted.

12.1.6 V2-drop x N3-type Interaction

I was curious whether the V2-drop and N3-type effects for English RC/RCs would in-
teract. It may not felicitous to drop V2 when N3 is a pronoun. To test this, I performed a
self-paced reading study in which N3-type (first-person pronoun, third-person pronoun with
a referent, or name) was crossed with grammaticality (V2 present or not) [Whi04d]. Thus
stimuli were of the form:

22. [According to Sue], The/the trophy that the athlete that I/Sue/she admired greatly
[won at the track meet] was stolen from the display case.

The preamble, According to Sue, was only present for the third-person pronoun conditions.
An statistically significant interaction between N3-type and grammaticality was found in

the region of the final verb phase. For the grammatical sentences, there was a slow-down for
the name condition relative to the two pronoun conditions. In contrast, for ungrammatical
sentences, the name condition was numerically faster than the pronoun conditions. This
reversal indicates that V2-drop was felicitous when N3 was a name, but not when it was a
pronoun. Thus, these results show a non-local effect of N3-type. That is, the nature of the
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subject of the inner RC affects the processing of higher-level clauses (outer RC and main
clause.)

In contrast to off-line complexity ratings [War02b], there was no difference in perfor-
mance in the verbal regions for the first-person versus the third-person pronouns. Thus the
increased off-line complexity ratings for third person pronouns may reflect an overall increase
in difficulty related to binding the pronoun to its referent or to not having a referent. The
present results indicate that the integration of subjects and verbs is unaffected by the type
of pronoun.

12.1.7 Summary

Studies of consecutive NPs have indicated that processing difficulty increases as the num-
ber of similar NPs increases, and as the proximity between those items increases [Lew02,
Lee03, Kaa04]. Similarity seems to depend on both syntactic and surface features of the
NPs [Lee03, Kaa04].

Cross-linguistic comparisons have shown that crossed-serial dependencies are easier to
process than center-embeddings [Bac86]. In English, an NC/RC is easier to process than
an RC/RC or an RC/NC [Gib98]. The processing of an RC/RC is facilitated when N3
is pronoun, and this effect seems to go above and beyond interference in working memory
[War02a]. A similar effect does not arise for crossed-serial dependencies in Dutch [Kaa04].
In English, when N3 is a FNP, it is felicitous to drop V2 [Gib99], but when N3 is a pronoun,
it is not [Whi04d].

12.2 Accounts

Next I review some proposals as to the source of these complexity phenomena. The first
is a psycholinguistic model, while the following two are complexity metrics. Thus, none of
these proposals are couched in terms of a neurobiologically plausible model. However, it is
of interest to examine the ability of these approaches to account for the above data.

12.2.1 Vosse & Kempen [Vos00]

This is an implemented, localist model, which is based on a lexicalist grammar. Each
word is associated with a lexical frame, which is a predefined, elementary syntactic tree. The
model creates and operates over a network of nodes which represent connections between
lexical frames. A lexical frame A can attach to a lexical frame B when there is an empty slot
in B that is of the same phrasal type as A. Thus there is no grammar per se. Rather lexical
frames compete with one another for attachment sites. This allows potential attachments
that grammar-based parsing systems would never consider.

The implemented model specifies the lexical frames and the dynamics of the attachment
competitions. The issue of how attachments could actually be represented in neural tissue
is not considered; rather the modeling is at a higher level. A sentence is parsed correctly
if all the proper attachments are made, and no improper attachments are formed. Like
humans, the system could not parse RC/RCs or RC/NCs. This failure arose because the
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verbs engendered competitions that could not be resolved, due to the number of potential
attachment sites (arising from three subjects). In contrast, the system could parse NC/RCs.
However, the given explanation of why an NC/RC is successfully processed (p. 124) is
unclear, and further discussion with the authors has not clarified the matter [pers. comm.].

Unlike humans, the system was not sensitive to N3-type; a pronoun N3 in an RC/RC
still led to parsing failure. Also, the system cannot explain the V2-drop phenomenon. If V2
cannot be attached, replacing V2 with the final verb would simply result in that verb not
being attached. In contrast, humans appear to not expect V2, but to attach the final verb
properly.

12.2.2 Interference in Working Memory

Lewis [Lew96] notes that similarity of between items stored in working memory causes
interference in a range of different modalities. He suggests that such interference may also
apply to syntactic representations in working memory. Such an approach could account for
the effects of similarity-based interference for NPs held in working memory [Lew02, Lee03,
Kaa04].

However, this approach cannot fully capture other aspects of complexity phenomena. In
particular, Lewis suggests that it may not be possible to maintain three unattached subjects
in working memory, due to their syntactic similarity. This would account for the difficulty
of an RC/RC or an RC/NC. However, it does not explain the relative ease of an NC/RC or
of crossed-serial dependencies in Dutch.

12.2.3 Dependency Locality Theory

Gibson and colleagues were responsible for elucidating many of the above complexity
phenomena. Their extensive work in this area has lead to the Dependency Locality Theory
(DLT) [Gib00], which provides a distance-based complexity metric. It is based on the idea
that complexity increases as the distance increases between two items that must be integrated
together in the syntactic tree. Distance is measured as the number of new discourse referents
that intervene between these items, where a new discourse referent is a tensed verb, or an
NP that is not an indexical (first- or second- person) pronoun.1 Integration cost is taken to
increase with distance because the activation of the first item is taken to decrease as activation
is redirected to new discourse referents; thus more energy is required to reactivate the first
item during integration. A cost of 1 Energy Unit (EU) is generated for each intervening
discourse element, and for generating the new discourse referent itself. Perceived complexity
corresponds to maximal integration cost. For example, for an RC/RC construction such as :

23. The vase that the man who Jen dated bought fell.

the highest cost occurs at the verb bought, which has a cost of 7 EUs: 1 EU for the construc-
tion of bought + 2 EUs for attachment to man (across Jen and dated) + 4EUs for co-indexing

1The discourse is presumed to always include a speaker and a listener, so pronouns referring to either do
not introduce a new referent.
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the gap following bought with the relativizer that (across man, Jen, dated, and bought). It
is proposed that this high cost corresponds to the unacceptability of such a structure.

For an NC with a transitive verb, an RC/NC has a larger maximal cost than an RC/RC
(due to integrating across an explicit object in the NC). However an NC/RC has a lower cost
than an RC/RC because a long-distance integration of a gap across an embedded clause is
not required. This accounts for the difference in difficulty between an RC/NC and NC/RC
[Gib98, Gib00].

While the DLT can explain a range of complexity phenomena, it has difficulty in fully
accounting for some aspects of the phenomena associated with double center-embeddings.
Under the DLT’s assumption that an indexical pronoun does not introduce a new discourse
referent, integrating across such an entity does not generate any cost, accounting for the
N3-type effect. This would imply that there should also be an effect of N3-type in crossed-
serial dependencies. However, as we have seen, making N2 and N3 pronouns had no effect,
contrary to the DLT prediction [Kaa04]. Furthermore, Warren and Gibson [War02b] tested
the discourse-referent hypothesis, and did not get the predicted results. In this study, sub-
jects read critical sentences in which an object-extracted RC modified the main subject. The
subject of the RC was a definite NP. Whether or not this NP had a referent was manipulated
in a contextual sentence presented just before a critical sentence. The presence or absence
of a previous referent affected reading times at the RC’s verb, but not at the main verb.
That is, an NP that added a new discourse referent incurred a local cost (at its own verb),
but did not affect processing in the higher clause (at the main verb), contrary to the DLT’s
prediction. A local effect of discourse-referent processing could still potentially explain the
N3-type effect in off-line complexity ratings. However, it can’t account for the interaction of
N3-type with the felicity of V2-drop [Whi04d], because this is a non-local effect concerning
higher level clauses (the outer RC and the main clause).

The DLT has difficulty in accounting for the V2-drop effect itself. An earlier version
of the DLT, the SPLT [Gib98], posited that complexity corresponds to the storage cost of
syntactic predictions, not integrations. Under that metric, it was proposed that the parser
drops the prediction for the outer RC’s verb due to high memory costs [Gib99]. However, an
assumption underlying the SPLT was contradicted by experimental evidence [Gib00, Gib04];
the SPLT was transformed into the DLT, where prediction cost is constant, and integration
cost increases with distance. Hence, under the DLT, prediction cost cannot explain V2-
drop, since the prediction cost for the outer RC and the inner RC are the same. While
it’s true that V2 induces the highest integration cost, this cost is incurred after the verb
is encountered, and thus cannot account for dropping the prediction of that verb before
it occurs. Furthermore, integration cost at V2 is independent of whether the outer RC is
center-embedded or right-branching, but V2-drop is felicitous only when the outer RC is
center-embedded [Gib99]. Thus, integration cost cannot account for the V2-drop effect.

The DLT also makes the wrong prediction about complexity in some important cases.
The RC/RC’s high cost results from the summation of the integration costs for the second
verb and the first RC’s gap. However, if these costs are decoupled, as in the following
sentence:

24. The woman who the man who Sue dates flirted with hit him.
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complexity is still very high, while the maximal integration cost is lower. Here the intransitive
verb flirted signals that the gap for the first who is not in the object position. So the
integration cost of flirted is only 3EUs. The integration cost of the gap following with is
4EUs, and the integration cost is of hit is 5 EUs. Thus the maximal cost is only 5EUs.
However a much easier sentence like:

25. The fact that the man who Sue is dating rides a motorcycle scares her.

has a higher integration cost, of 6EUs (at scares).
This analysis depends on the assumption that integration of a gap is not attempted

following an intransitive verb, as is consistent with studies on filler-gap processing for intran-
sitive verbs [Bol91, Sus01]. However, if it were argued that such an integration is attempted
and does incur a cost, this claim would then destroy the DLT account of the difference be-
tween an NC/RC and an RC/NC. That account hinges on the assumption that there is no
long-distance integration of a gap across the RC for an NC/RC. However, there is evidence
that the RC possibility for an NC is actively evaluated. In a potential NC, a manipulation of
the potential filler’s appropriateness as the verb’s object had an effect at the verb, indicating
that the possibility of a gap is actively considered [Pea98]. Thus, if it were argued that an
integration cost for a possible gap is incurred at an intransitive verb, such a cost would surely
also apply to a potential NC’s verb. However, in that case, there would be no difference in
integration cost for an NC/RC versus an RC/NC. Nor could it be argued that the possibility
of a gap in an NC is dropped in a potential NC/RC due to increased complexity; this would
incorrectly predict that a potential NC/RC which turns out to be an RC/RC, such as (26),
is uninterpretable.

26. The proposal that the student who Bill advises made at the meeting impressed every-
one.

Another incorrect prediction occurs for Japanese. A sentential complement within a
sentential complement (SC/SC) of the form:

27. NP-nom [NP-nom [NP-nom V1 Comp] V2 Comp] V3

has its highest integration cost at V3 = 5EUs. An SC of the form:

28. NP-nom NP-dat [NP-nom NP-dat NP-acc V1 Comp] V2

has its highest integration cost at V2 = 6EUs. However, the SC is easier than the SC/SC
[Bab99].

12.2.4 Summary

We have seen that none of the above approaches can fully account for the data. Vosse
& Kempen’s model [Vos00] replicates some complexity phenomena, but cannot explain the
V2-drop or N3-type effects. The proposal of interference in working memory [Lew96] cannot
explain the pattern of an NC/RC versus an RC/RC or an RC/NC. The DLT metric [Gib00]
is based on the distance between items that must be integrated together. It is currently the
leading account of complexity phenomena. However, it cannot account for the V2-drop effect,
the interaction of the V2-drop effect with N3-type, the lack of N3-type effect in crossed-serial
dependencies, and the difficulty of an RC/RC when V2 is an intransitive verb.
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Chapter 13

Parsing Models

In this chapter, I review those models that deal more directly with parsing and hierarchical
representations. The desiderata for such a model are as follows.

• Neurobiologically plausible hierarchical representation of thematic roles (thematic tree).

• Thematic tree should be suitable for long-term storage.

• Neurobiologically plausible working-memory representations that support construction
of the thematic tree.

• Explanation of similarity-based interference in working memory.

• Parsing algorithm for using working-memory representations to construct thematic
tree.

• Parsing algorithm should account for all complexity phenomena not explained by
similarity-based interference.

First I consider possible solutions to general problems related to representing the thematic
tree. Then I review various parsing models. In each section, I discuss how well these models
and theories meet the above criteria.

13.1 Representation of the Thematic Tree on a Computer

I start with a discussion of how a thematic tree would be represented on a computer, and
which aspects of such an encoding are neurally plausible and which are not. It is hoped that
such a discussion will illuminate the difficulties involved in formulating a neurally plausible
representation of the thematic tree.

13.1.1 How

Computer memory can be conceptualized as an array of registers. A memory address
is associated with each register, where memory addresses systematically increase as array
position increases. An address allows access to a particular register. High-level computer
languages allow a variable name to be mapped onto a memory address. (This mapping is

115



1200 Mary
1232 knows
1264 1392
1296
1328
1360
1392 Ted
1424 likes
1456 Sue

Figure 13.1: Example of encoding Mary knows that Ted likes Sue in computer memory.
The left column represents memory addresses, which systematically increase. The right
column represents registers. The programmer would declare a record having Agent, Verb,
and Theme variables. For each instance of this record the compiler would map these variables
onto specific consecutive addresses. Here the record Main starts at 1200 and the record Sub
starts at 1392. The value of Main’ s Theme variable is a pointer to Sub. Mary, knows, Ted,
etc. correspond to numbers that have been associated with each token. (For simplicity, the
problem of how to determine whether a register’s value should be interpreted as a memory
address is ignored. )

done automatically by the compiler.) Thus items can be stored and retrieved from memory
based on variable names.

The most fundamental requirement of the thematic tree is that words are associated with
thematic roles. On a computer, this is accomplished by creating variables and setting those
variables to certain values. For example, an Agent variable could be set to a pattern that
encodes Mary. Thus some memory register is labeled Agent and set to a particular value,
which represents Mary.

To represent a hierarchy, it must be possible to combine multiple bindings together into a
unit, and to refer to that entire unit. A high-level computer language allows a data structure,
called a record, which groups different items together. For example, a record might consist
of Theme, Agent, and Verb variables. The compiler maps these variables to consecutive
memory addresses. Thus variables are grouped together by putting them next to each other
in memory.

The memory address of the first variable can then be used to refer to the entire entity.
This is known as a pointer. Thus, a variable could take a pointer as its value, indicating that
the value corresponds to the entire unit starting at that memory address. For example to
encode (Agent = Mary, Verb = knows, Theme = (Agent = Ted, Verb = likes, and Theme
= Sue)), two records are created, each having the Agent, Verb, and Theme variables. Call
one record Main, and the other Sub. The variables in Sub would be set to the corresponding
values from the embedded clause (i.e., Ted, likes, and Sue). The Agent and Verb in Main
would be set to their corresponding values from the main clause, while the Theme would be
set to the address of Sub. See Figure 13.1.

In summary, binding is done by assigning a particular pattern to a particular memory
address. Hierarchy is created by assigning variables to consecutive memory addresses, and
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referring to the resulting unit by its memory address.
Note, however, that the two kinds of structure building operations - binding and hierarchy

formation - are not necessarily logically different. A binding is an association of terminal
items - a word and a role. Hierarchy is created by associations of bindings with other
bindings. Thus, in both cases, two or more items are associated together. In a computer,
the basic binding operation corresponds to assigning a pattern to a memory location. This
operation cannot be directly recursively applied, because it is not possible to physically assign
one location to another location. Rather, to perform higher-level associations, a location is
referred to by its memory address. Thus, there is a dichotomy between the way in which a
basic binding is implemented and a hierarchy is formed. This dichotomy arises because one
component of a basic binding is a physical location; this forces a different way of associating
bindings with each other, based on referring to a location by a unique identifier (its memory
address.)

13.1.2 Difference from Neural Networks

In a computer, a central executive governs serial access to memory. In contrast, in a
biological neural network, there are many, simple, massively interconnected processing units.
Of course, it would be possible to construct a computer-like memory in an artificial neural
network. For example, a set of nodes could be wired together to form register-like group,
and such registers could be wired together to form record-like units. Each unit could have
an identifying number associated with it (perhaps coded within its connection weights), that
would act like a memory address. Thus values could be filled into the record-like units, and
the identifier of a unit could be used like a pointer to link together different units. Marcus
[Mar01] has proposed such a scheme, where each record-like unit (called a treelet) encodes
hierarchical relationships between the registers. However, given its massive parallelism, it
seems highly unlikely that the brain emulates a computer-like architecture.

It is plausible that the basic binding operation could be performed in the same way as
a computer. That is, a group of nodes could encode a particular role, and a pattern across
those nodes could represent the value. For example, a certain group of nodes could be used
to represent the Agent, where the activation pattern across those nodes could encode Mary.
A different set of nodes could encode the Theme, etc.

However, this computer-like approach breaks down when it comes to encoding hierarchy.
Without memory addresses, it is unclear how items can be grouped into a unit. Two basic
approaches have been proposed: combining activity patterns to yield a new pattern, or
inducing correlated firing between two patterns.

13.2 Possible Neural Network Representations of the Thematic

Tree

13.2.1 Production of an New Pattern

One approach to the binding problem is to represent each item by a large vector (i.e. a
distributed activation pattern over n nodes), and to define operations which combine two
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or more vectors to yield a new vector (activation pattern). This new vector could then be
combined with other vectors to produce a hierarchical encoding.

Touretzky and Hinton proposed a scheme based on the outer product of the two vectors
[Tou88]. (That is, the resultant vector is comprised of all pairwise products between the
items in the two vectors.) However, the size of the resultant vector is the product of the
dimensions of the constituent vectors, giving an unbounded increase in size as more and more
bindings are performed. Instead, to avoid exponential explosion and to allow calculations to
be performed iteratively over a fixed set of cells, the combinatory operation should yield a
vector that is the same length as the constituent vectors. Thus the combination is a reduced
representation (RR) of the constituent vectors [Hin90].

Reduced Representations that are Learned

Pollack [Pol90] proposed a scheme wherein the reduced representation is comprised of the
hidden units’ activations in a network trained by back-propagation to auto-associate. See
Figure 13.2. Rohde [Roh02] used a similar approach in a system which developed an RR
representation of the syntactic structure of a sentence. This encoding could be queried to
yield the relationships specified by the sentence. Such an approach has the advantage that
the rules of processing (the grammar) are learned along with the representations. However,
we will see below that such an architecture is not actually robust enough to parse and encode
arbitrary hierarchical structure.

Reduced Representations based on Statistical Properties

A different approach is to predefine combinatory vector operators with the desired prop-
erties. Under this method, each item vector is large (dimension 1,000 to 10,000) and satisfies
certain statistical properties; the combinatory operators rely on these statistical properties.
Thus item representations do not directly encode any semantic information about an item,
but rather act as an abstract representation that allows combination with other items. Plate
[Pla95] has proposed a binding scheme for real-valued vectors, based on the convolution of
their outer product. Kanerva [Kan95] has proposed a scheme that operates in a bit-wise
fashion over binary vectors, where each element has an equal probability of being 0 or 1.
Because Kanerva’s scheme is simpler, we will focus on it.

Both proposals employ two different combinatory operators, corresponding to the bind
and group (merge) operations. Let ’@’ represent the binding operation, and“+’ represent the
grouping (merge) operation. In Kanerva’s scheme, the bind operation is bit-wise exclusive-or.
That is, the two constituent vectors are aligned; at each position, if only one element is a 1,
the result is a 1; otherwise it is a 0. See Figure 13.3. Merging is implemented as a normalized
sum of the constituent vectors, by taking a bitwise majority. That is, at each position, if
there are more 1’s than 0’s the result is a 1; otherwise it is a 0. Ties (which could arise for an
even number of constituent vectors) are broken probabilistically, with equal chance of giving
a 0 or 1.

Of course, inverse operators must also specified, so that information can be extracted
from an RR encoding. Because composition of two vectors yields a vector in the same
representational space, there is compression of the constituent vectors, thereby introducing
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Agent Verb Theme

Agent Verb Theme

hidden layer

Figure 13.2: Example of network that learns to form an RR encoding. Each box represents
a group of nodes of the same size, and each arrow represents full interconnectivity between
two groups of nodes. For each training item, the input and output layers are set to the same
value. Using the back-propagation training algorithm, the network learns to recreate the
input on the output layer. As a result, the hidden layer (in conjunction with the learned
weights) forms a condensed representation of the input. This condensed representation could
then be used as one of the values on the input layer. For example, in the Mary knows Ted
likes Sue example, the patterns for Ted, likes, and Sue would first be activated over the
corresponding sets of input nodes. The resulting pattern on the hidden layer constitutes
an RR encoding of this information. Then the input layer is set to Agent = Mary, Verb =
knows, and Theme = the hidden layer pattern. The new hidden layer pattern then represents
the encoding of the entire sentence. Such an encoding is decoded by activating the pattern
on the hidden layer to get the component values on the output layer. An output item that
is itself an RR encoding can then be fed back to the hidden layer again to be decoded.

0 1 1 0 1 0 . . . 
@ 1 1 0 0 1 1 . . .

1 0 1 0 0 1 . . .

. . . 

+ 1 1 0 0 1 1 . . .

1 1 0 0 1 0 . . .

1 1 0 0 1 0 . . .
0 1 1 0 1 0 

Figure 13.3: Example of bind and merge operations.
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noise. In order to clean up noisy vectors, it is assumed that there is an item memory which
stores the patterns of all base vectors. Such a memory could be based on an associative
recurrent network. When presented with a vector, the item memory activates any vector
that has a similarity measure above some threshold. Given two vectors, similarity is measured
as the fraction of elements that have the same value in both vectors. For unrelated vectors,
this measure has the expected value of 0.5. That is, because each bit in a vector has equal
probability of being a 0 or 1, the probability that the corresponding bit in another unrelated
vector has the same value is 50%. The merge operation yields a result that is similar to its
constituent vectors. For example, a + b gives a similarity with a of .75 and with b of .75. In
contrast, the bind operator yields a result that is not similar to its constituent vectors.

Because merge yields a vector similar to its constituents, the unmerge operation is per-
formed by comparing a vector to item memory, to retrieve all similar vectors. The unbind
operator is the same as the bind operator - bitwise exclusive-or. When this operation is
used for unbinding it will be represented as ’#’. An unbind is then followed by a com-
parison to item memory. For example, consider the vector a@b + c@d. It is the case
that exclusive-or distributes over the merge operation.1 Thus, unbinding with b would give
a@b#b + c@d#b = a + c@d#b. The resulting vector is similar to a. It is also similar to
c@d#b, but that vector is not stored in item memory. Thus, unbinding with b and comparing
with item memory gives a, as desired.

Systematic application of the compositional operations allows encoding of hierarchical
structure. First let’s consider why two operators are necessary. In order to encode structure,
an operator cannot be associative. That is, for some operator �, it should not be the case
that (a � b) � c = a � (b � c), because if this were the case, grouping information would
be lost, so hierarchy could not be represented. The merge and bind operators are both
associative, so neither one alone can create a structured representation. However, it is the
case that (a + b + c)@d 6= a + b + (c@d). This can be seen by expanding first expression to
a@d + b@d + c@d, which does not equal a + b + c@d. Thus the combination of these two
operators allows grouping information to be encoded.

How can these operations be used to represent the thematic tree? Under such an encoding
scheme, a role is not represented by a certain group of nodes, but rather is also represented
by a pattern. The representation of our favorite example could be Agent @ Mary + Verb @
knows + Theme @ (Agent @ Ted + Verb @ knows + Theme @ Sue). Here each constituent
item is a large, binary vector with the property that each element has an equal probability
of being a 0 or a 1. The whole expression denotes another vector with the same dimension
and properties. As discussed above, an item vector does not encode any lexical information
about that word. Rather, an item vector could be associated with a particular word via
corresponding connection weights which allow activation of a neural assembly which does
encode semantic and phonological information about that word.

As more and more combinatory operations are performed, the resulting representation
becomes noisier and nosier, until it may become impossible to reliably extract the encoded
information. This problem can be solved by recording intermediate results. In the above

1That is, a@(b+ c+ d) = a@b+a@c+a@d. When an odd number of items is being merged, this equality
is exact. For an even number of items, a@(b + c) ≈ a@b + a@c, because noise is introduced during each
merge (to break ties).
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Agent

Theme

Ted

Sue

Time

Figure 13.4: Example of temporal encoding of Ted = Agent and Sue = Theme. The lines to
the right of each node represent the firing pattern for that node. For simplicity, each word
and role is represented here as a single node. However, the same type of encoding could be
used for a distributed representation of each item.

example, the vector Agent @ Ted + Verb @ knows + Theme @ Sue could be saved in item
memory.

13.2.2 Temporal Encoding

An alternative possibility is to represent relationships by the timing of firing of the con-
stituent items. Shastri [Sha93, Sha99], and Hummel and Holyoak [Hum97] have used syn-
chronous firing to encode thematic binding relations for certain classes of propositions/sentences.
For example, Mary is encoded as an Agent by having the nodes representing Mary and Agent
fire together. Other pairings fire synchronously during other time slots. See Figure 13.4.

Electrophysiological studies have produced evidence that the brain may indeed rely on
a temporal synchrony for some types of binding. Various studies on the visual system
have shown that cells representing the features of a single object synchronize, while those
representing features of different objects do not. Such low-level synchronization occurs in
the gamma range [Eng01]. It is unclear if synchronization plays a role for higher level
processing, although brain-imaging evidence suggests that verbal working memory relies on
a temporal encoding involving oscillatory activity in the theta range [Kli96, Kli99, Rag01,
Jen02]. Accordingly, it has been suggested that different types of binding rely on different
frequencies, with low-level sensory binding occurring the gamma band, access to distributed
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representations in semantic long-term memory relying in the alpha band, and encoding in
working and short-term memory occurring in the theta band [Kli96, Kli99].

However, a weakness of the temporal approach for a parse representation is that time is
linear. It is not clear how to map hierarchical structure onto a linear encoding in a general
manner. While one frequency could be nested inside another, it seems that there would
be an insufficient number of possible harmonics to represent complex syntactic structure.
Another possibility, adopted by [Hum97], is for all of the nodes along some path of the tree
to fire synchronously. Each path fires in a different temporal slot, until the whole tree is
traversed. However, this raises the issue of how the cells representing the nodes are recruited,
and how proper timing is coordinated among these cells. In the Hummel and Holyoak model,
timing was coordinated by excitatory and inhibitory connections. Thus the desired tree had
to already be directly encoded by the connectivity between cells in order to instantiate the
temporal encoding. [Sha93] assumed that temporal pairings could be generated on the fly.
However, they did not address how this was accomplished, nor how nested relationships
would be represented.

Thus, no one has shown how a temporal encoding of hierarchical structure could be
generated on the fly in a general way. This requires solving two problems: (1) how syntactic
structure is mapped onto the temporal encoding; (2) how this temporal encoding is activated
during processing. Another problem is that a temporal encoding is not directly suitable for
long-term storage. However, storage could be based on a record of information that would
allow a temporal encoding to be re-instantiated.

13.2.3 Summary and Conclusions

Due to the distributed nature of neural representations, it is likely that bindings are
represented by associating patterns of activity. There have been two types of proposals as
to how this may be accomplished.

• In an RR encoding, patterns are combined via the creation of a new pattern. This
approach seems well-suited to representing hierarchical structure. It also provides a
representation suitable for long-term storage, as the resulting pattern can be stored via
connection weights.

• In a temporal encoding, patterns are associated by correlated firing of the activated
nodes. It is difficult to see how to encode arbitrary hierarchical structure in such
a framework, and the resulting representations are not directly suitable for storage
in long-term memory. However, brain imaging evidence suggests that verbal work-
ing memory employs a temporal encoding (based on a theta-band carrier wave), and
that the same type of working-memory representation may be used during sentence
processing.

Thus, an RR encoding seems more suitable for representing the thematic tree, but experimen-
tal evidence indicates that a temporal encoding may be employed during sentence processing.
However, recall that it is not sufficient to simply specify how relationships are represented in
a thematic tree. It is also necessary to specify how the thematic tree is constructed from a
sequence of words. To process center-embeddings and crossed-serial dependencies, stack-like
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and queue-like representations are required in working memory. Note that such working
memory representations are separate from the thematic tree. Thus, it may be the case that
working memory relies on a temporal representation which subserves the construction an RR
encoding of the thematic tree.

Furthermore, a temporal encoding is more appropriate than an RR encoding for inter-
mediate representations. In an RR encoding, the constituent vectors loose their identity,
because they are combined into a new pattern. In contrast, in a temporal coding, the con-
stituents retain their individuality and remain directly accessible. Because the purpose of
working memory is to provide access to individual, previously processed constituents (e.g.,
unattached subjects resulting from center-embedded clauses), a representation that retains
their individuality is desirable. Furthermore, we have seen from the LPE model how to
represent order information temporally. Given that processing of center-embeddings and
crossed-serial dependencies relies on order information, such a representation may be well
suited for intermediate representations.

In sum, an RR encoding is well suited for the long-term storage of arbitrary hierar-
chical structure. A temporal encoding is well suited for representing individual, ordered
constituents in working memory, and is consistent with brain imaging data.

13.3 Parsing Models

In the previous section, I reviewed how a thematic tree might be represented. In the
following, I review model that deal more directly with the parsing process - how a sequence
of words is converted into the thematic tree.

13.3.1 SRNs

A recurrent neural network has feedback connections. (See Figure 13.5.) Therefore,
information from one time step of processing can influence a subsequent time step. Such
feedback connections essentially provide a memory that can be used to process time-varying
input, such as a sequence of words comprising a sentence. Elman [Elm90] showed that
Simple Recurrent Neural networks (SRNs) trained on sequences via a variant of the back-
propagation algorithm can learn to predict the next item in the sequence. Thus, the network
learns the structure of set of sequences (i.e., a grammar).

Although some have hailed such results as demonstrating the ability of SRNs to handle
natural language [Chr99], such a conclusion is clearly unwarranted. It is insufficient to
simply predict upcoming words. Rather, as words are encountered they must be integrated
into a representation of the sentence’s meaning. Thus some researchers have created parsing
systems that use an SRN-like network to learn grammatical rules, supplemented by another
network which allows hierarchical representations.

One approach used a temporal specification of the syntactic tree, in which each con-
stituent was assigned to a separate phase, and the relationships between constituents were
encoded by the firing of Parent, Sibling, and Grandparent nodes [Lan01]. However, to repre-
sent the structure of a complex sentence, a large number of distinct phases would be required,
which is an unrealistic assumption.
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Input

Hidden

Output

Context

Figure 13.5: Architecture of a recurrent network. The hidden units connect into the context
units, which feed back to the hidden units. Thus the hidden units’ previous activations can
affect their subsequent activations.

In another approach, the meaning of a sentence was represented as a list of three-part
propositions, and a subset of the system was first trained to created a distributed (RR)
encoding of any sequence of propositions [Roh02]. For example, the encoding of:

29. Jim knows Sue likes big dogs.

is:

• (knows, agent, jim)

• (knows, theme, likes)

• (likes, agent, sue)

• (likes, theme, dogs)

• (dogs, mod, big)

Here, each word denotes a distributed encoding, based on semantic features. Note that this
representation does not directly encode hierarchical structure; rather, structure is inferred
from matching words. However, if a word is repeated in a sentence, this will lead to ambiguity.
For example, the encoding of

30. Jim knows Sue knows Don.

is:

• (knows, agent, jim)

• (knows, theme, knows)

• (knows, agent, sue)

• (knows, theme, don)
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This encoding could mean Sue knows Jim knows Don. This problem could be remedied by
associating an identifier with each instance of a word, requiring an additional mechanism.
In contrast, if hierarchy is directly represented, this is not a problem, as repeated words are
differentiated by their positions in the hierarchy.

Once the RR encoding mechanism was trained, the system was then trained to produce
such an RR encoding for a sentence, as follows. The propositions representing the meaning
of a sentence were fed through the system to get their RR encoding. Then the words in
that sentence were presented, and the SRN part of the system was trained to produce that
RR encoding in response to that sequence of words. Following training on a wide range of
sentences, the representational ability of the system was tested by presenting a novel sentence,
and querying the resulting RR encoding on each proposition comprising the meaning of that
sentence.

While the model showed good generalization abilities for simple sentences, performance
rapidly deteriorated for more complex structures. For example, the average error rate for
a sentence with six propositions was approximately 10%, according to the less stringent
multiple-choice criterion. That is, the response to a query was counted as correct if it
was closer to the correct response than to other distractor items. This error rate is per
proposition, so the probability of correctly encoding the entire sentence is (1.0−0.1)6, about
50 %. For eight-proposition sentences, the error rate was about 20%, so the probability of
correctly representing a sentence was only about 15%.

Error rates on center-embedded structures were particularly high. For a four-proposition
sentence having a subject-modifying RC, the error rate was 25%, so the probability of cor-
rectly encoding the entire sentence was about 30%. In contrast, humans can act out the
meaning of such sentences with 90% accuracy [Cap96]. Thus, these simulations have not
demonstrated that such a connectionist system is capable of developing representations than
can parse and encode complex syntactic structure.

While the inability of recurrent networks to handle center-embeddings has been touted
as a desirable feature because humans also have difficulty with center-embeddings [Chr99,
Ore00], we have seen that some doubly center-embedded clauses are actually rather easily
processed by humans [Gib98].

Thus SRN-based parsers have not demonstrated the strong generativity necessary for
handling natural language. This problem is especially acute for center-embeddings, but is
also present for right-branching structures. Because such systems do not explicitly model
variables and recursive processing, embeddings cannot reliably be processed.

13.3.2 LTSMs

Some researchers have investigated networks more suitable for processing center-embeddings.
The primary reason that an SRN has difficulty in processing center-embeddings is that pre-
vious information becomes more and more degraded at each time step. This degraded in-
formation cannot then sufficiently influence the error measures that drive learning in the
back-propagation algorithm. Thus, the network has difficulty in learning the correspondence
between widely separated items (such as the main subject and main verb in a sentence with a
center-embedded clause). One way to solve this problem is to provide separate, gated blocks
of context units (i.e., registers). That is, each register has its own gating network. When
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the gating network is “open”, information can be written to a register. When it is “closed”,
the information in a register cannot be overwritten, but register activations can still drive
the learning process. Thus information can be held over time without becoming degraded.
This architecture is called a Long Short-Term Memory (LSTM) network [Hoc97].

Gers and Schmidhuber showed that an LSTM network can learn to predict the upcoming
token for strings of the form anbn [Ger01](corresponding to center-embedded clauses, as
discussed in section 11.2). The network could generalize to larger values of n that it had
been trained on, because it had learned to implement a counter in a register. For each a,
activation within the register increased by a fixed amount. When a b occurred, activation
was decreased by the same amount. Thus, an end-of-string token was predicted when the
counter reached 0.

Again, this system makes predictions, without forming a structured representation. To
create a structured representation, a counter would not be sufficient. Rather the system
would have to also learn to store previous a values, to be integrated with the appropriate
b values to form some type of hierarchical encoding. For example, each a value could be
stored in its own register. If this approach were taken, the network would not be able to
generalize to higher values of n than it had been trained on, because it would have to learn
to store each a in a particular, separate register. As two center-embeddings does seem to be
the limit for humans, this is not necessarily a problem. However, it is unclear how such a
system could account for the complexity phenomena. For example, if such a system could
parse an NC/RC it would probably be able to parse an RC/NC without difficulty, contrary
to human performance.

Furthermore, parsing based on a counter mechanism is suspect. Linguists have noted
that natural languages are all based on structural grammatical rules, rather than numeric
rules [Cho80, Ber84]. For example, no language has a rule than applies to the nth word of
a sentence.

The SRN and LSTM have the advantage that grammatical rules are learned, based
on the input characteristics. However, linguists have forcefully argued that children possess
grammatical knowledge that cannot be derived solely from the statistics of the input [Cho59,
Jac02]. It may be the case that an LSTM-like system in the brain learns to parse language
based on some pre-existing linguistic primitives. For example, the ability to manipulate stack-
like representations may be innate; an LSTM-like system may then learn what operations to
perform when.

O’Reilly and Frank [Ore03] have proposed a LSTM-like system which uses neurobiologi-
cally plausible supervised and reinforcement learning. The reinforcement learning part of the
system (modeled after the basal ganglia) learns to gate relevant information into registers,
while the supervised learning part of the system (modeled after the prefrontal cortex) learns
what transformations to perform on that information. Such a system has good potential for
learning grammatical rules (which would operate over pre-existing linguistic representations).

13.3.3 Pulvermuller

The previous models used distributed representations, and learned from examples. The
present model uses localist representations, with hand-coded weights and activation func-
tions. In [Pul03], Pulvermuller presents a proposal for how a grammar could be neurally
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Figure 13.6: Example of detector S which recognizes sequence A B, from [Pul03].

implemented. This proposal is based on a set of pairwise sequence detectors. A sequence
detector is activated by A followed by B, not B followed by A, where A and B are syn-
tactic categories activated by word nodes. This mechanism is based on nodes that support
differing activation states (inactivation, primed, ignition, and reverberation) and on connec-
tions of differing strengths (strong, weak). Essentially, external input leads to ignition and
then reverberation. Nodes that receive reverberating input from strong connections enter
the primed state. If a node is already in a primed state, and receives a second volley of
reverbatory input (over any connection strength), it too ignites. These dynamics allow the
sequence node S in Figure 13.6 to become ignited for A then B, but not B then A. If A is
activated first, node S is primed, and then receives reverbatory input when B is activated,
leading it to ignite. However, if B is activated first, node S is not primed (due to the weak
connection), and then A fails to ignite S.

Pulvermuller proposes that grammars are based on sets of such pairwise sequence detec-
tors. He also assumes that there are different levels of reverberation, which could be used
to implement stack-like processing. Thus this work focuses on how word sequences could be
recognized. Given the localist representations assumed in the model, it is difficult to see how
a neurally plausible representation of hierarchical structure could be obtained.

13.3.4 Summary

These models have focused on demonstrating the capacity to parse to natural language,
and cannot account for the detailed pattern of complexity phenomena discussed in the pre-
vious chapter. In Rohde’s model [Roh02], the thematic tree was represented as an RR
encoded list of triplets, where the RR encoding was developed via learning (back propa-
gation). The grammatical rules for constructing this representation from a string of words
were also learned. However, the trained network could not reliably process complex sen-
tences, showing particular problems with center-embedding. Learning of grammatical rules
based on a LTSM-like model [Hoc97, Ore03] could potentially produce better results. In
order to allow strong generativity, such learning should be based on grammatical primitives.
Localist models have not demonstrated how hierarchical structure could be represented in a
neurally plausible fashion [Vos00, Pul03].
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Chapter 14

The TPARRSE Model

Having discussed the neurobiological and experimental constraints on parsing, and related
research, I now turn to my proposed parsing model. As we have seen, there are actually three
somewhat independent aspects to parsing: (1) the rules which determine what to do with an
incoming word, based on the previously processed words and the grammar of the language;
(2) the working memory representations that support the application of the grammatical rules
to form the thematic tree; (3) the representation of the thematic tree itself. As discussed
previously, the model focuses on neurobiologically plausible accounts of (2) and (3). For
now, the algorithm that operates over these representations is considered at a symbolic level.
Also as discussed, this is a theoretical model. It has not been implemented in full. Rather
the representations and connectivity are specified based on computational principles. I start
with a brief overview of the model, and then specify the model in detail.

As discussed in section 13.2.3, an RR encoding is suitable for representing the thematic
tree, in that it allows representation of hierarchy, and is suitable for long-term storage. How-
ever, it is less suitable for a working memory representation, because individual constituents
are no longer directly accessible, due to the distributed nature of the representation. In con-
trast, a temporal encoding retains the individuality of constituent items, but is less suitable
for representing hierarchy and for long-term storage. Therefore, a temporal encoding is more
suitable for the working memory encoding. This assumption is in line with EEG evidence
for oscillatory phenomena associated with holding items in verbal working memory.

Thus, the model proposes a dual representation - a distributed RR encoding of hierar-
chical structure which is generated from a temporal working-memory representation. The
model consists of the following specifications:

• The basic RR encoding operations (RR primitives)

• How the thematic tree is represented via RR primitives

• The basic WM operations (WM primitives)

• How syntactic information is recorded via WM primitives

• The parsing algorithm that operates over the WM primitives to create the RR encoding
of the thematic tree.

The resulting model is dubbed TPARRSE (Temporal Parsing And Reduced Representation
Semantic Encoding).
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The underlying principles of the model are best presented incrementally. For unambigu-
ous, right-branching sentences, the thematic tree can be produced without reliance on the
temporal WM representation. Therefore, I first present the RR encoding, and the portion of
the parsing algorithm that handles right-branching sentences. I then present the temporal
WM encoding, and the full parsing algorithm.

14.1 RR encoding

Unlike models in which the system is trained to form an RR encoding, I assume that the
RR primitives are innate. This has several advantages. (a) It provides a systematic way of
representing structure. Therefore, it is possible to encode any complex set of relationships,
because the combinatory operators can reliably be recursively applied. (b) Innate combina-
tory operations allow different brain areas to use a uniform representation. It is a general
feature of neural processing that task performance is distributed across different brain areas.
If each brain area involved in parsing were to develop its own RR encoding, this would make
communication between areas much less efficient. (c) Specific properties of the RR encoding
can be exploited in the parsing algorithm.

Therefore, I assume that the thematic tree is represented via an RR encoding such as
those proposed by Plate and Kanerva, as discussed in section 13.2.1. In Chapter 15, I present
an example using Kanerva’s system. This system was chosen because it is simpler. However,
the general properties of the primitives are common to both systems. The parsing model is
based on these general properties, as described next.

14.1.1 Primitives

Each terminal item (word, morpheme, or thematic role) is represented by a large vector
with certain statistical properties. There are two combinatory operations: bind (@) and
merge (+). Merge creates a vector that is similar to the constituent vectors, while merge
creates a vector that is not similar to the constituent vectors. In the following, vectors will
be given in boldface.

There is an item memory which records the identity of all terminal items. When a vector
is compared to item memory, item memory returns all vectors which are more similar to
the comparison vector than would be expected by chance. Thus unmerging is performed by
comparing a vector to item memory.

In addition there is an unbind operation (#), such that a@b#b = a. Under the decoding
operations, bind distributes over merge. That is, using unbind and unmerge to decode
a@(b+c) gives the same result as decoding a@b + a@c. As we see in section 14.1.3, this
distributivity is crucial in allowing incremental construction of the thematic tree.

In section 13.2.1, Kanerva’s specification of such system [Kan95], which relied on binary
vectors, was presented. This system has the drawback that the bind and unbind operators
are the same as each other. Thus, it is not possible to represent a@b@b because this gives
a. Plate [Pla95] presented a more complex system based on real-valued vectors, which does
not have this drawback. However, it relies on high precision in activation values, which may
not be realistic.
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As discussed above, the TPARRSE model relies on the general properties given here.
Plate and Kanerva’s proposals are existence proofs that systems with these general properties
exist. The proposal is that the brain uses an encoding with similar properties, although this
encoding may not directly correspond to either system.

14.1.2 Representation of the Thematic Tree

Next we consider how these RR primitives are used to represent the thematic tree. This
section focuses on how information is encoded, not how the representation is created. (The
latter topic is discussed in the sections specifying the parsing algorithm.)

We first discuss some basic linguistic definitions, and then specify how these ideas are
implemented in the RR encoding. In analyzing language, verbs are often thought of as
functions, or predicates, which take arguments. For example, the verb loves is a function
that takes Agent and Theme arguments, and specifies a relationship between those two
entities. The number and type of these argument categories are determined by the predicate.
Love takes two arguments, while a verb like sleep only takes one (the Agent). Other parts
of speech are also predicates and can impose similar restrictions. For example the adverb
because requires an entire clause or proposition for syntactic and semantic completeness:

31. *Because John, ...
Because John is sick, ...

A category whose occurrence is not restricted by any semantic feature of another category,
but rather can co-occur with any member of a certain part-of-speech class, is called a modifier
or adjunct. For example, the time modifier on Tuesday may appear with any verb.

32. I slept on Tuesday.
I loved the movie on Tuesday.

Recall that the bind operator creates a new item which is not similar to its constituent
items. Therefore, it is used to represent the predicate-argument relationship. Because the
resultant vector is unlike the constituent vectors, the bind operation encapsulates the con-
stituent vectors, allowing a hierarchical encoding of argument structure. In contrast, the
merge operator is used to join together items within a clause, such as a verb’s arguments, or
an argument and an adjunct.

For example, the RR encoding of:

33. Sue kissed Bill on Saturday.

is:

sue + kissed@bill + Vmod@on@saturday

This encodes that sue is the subject of kissed, and Bill is the object of kissed 1. Saturday
is the object of on, and the prepositional phrase (PP) on Saturday modifies the verb kissed.
The verb’s arguments and adjunct (the PP) are joined together by the merge operator.

1The representation of kissed would actually be Past + kiss @ (...) . However, for brevity, I will treat
verbs as unitary items.
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Verbs and prepositions are bound directly to their objects, as the presence of these
categories is predicted by the semantic properties of that verb or preposition. The subject of
the sentence remains unbound. Other semantically determined relationships are represented
by special predefined items (identified with capital letters). For example, a PP which is a
verb adjunct is bound to the predefined item Vmod.

As we discuss in section 15.1, in order to decode an RR encoding, it is necessary to
know the identities of the predicates. Therefore, each predicate is also bound to a predefined
“hook”P, which can be used to retrieve the predicate. Thus the encoding of (33) is actually:

sue + kissed@(P + bill) + Vmod@(P + on@(P + saturday))

For brevity, we will continue to use the notation predicate @ argument to mean predicate
@ (P + argument). If a verb does not have an object, it is only bound to P. In this case,
P will be given explicitly.

In a passive sentence, the subject is the Theme and not the Agent, as in the sentence:

34. Bill was kissed by Sue.

In this case, the verb is bound to a trace of the subject, denoted Subj, and the Agent is
expressed as a predicate giving:

bill + kissed@Subj + Agent@sue

This encodes the thematic roles of the verb’s arguments, while retaining the information that
the subject Bill is the focus of the sentence.

A ditransitive verb, such as gave, requires an additional thematic role, the Goal. For
example, in the sentence:

35. John gave Bill the dog.

Bill is the Goal. The RR encoding of the sentence is:

john + gave@(the + dog) + Goal@bill

If an argument is itself a clause, the same encoding rules recursively apply. For example, in:

36. Mary said that the man arrived from the beach.

the Theme of the verb said is the sentential complement the man arrived from the beach.
The RR encoding is:

john + said@(the + man + arrived@P + Vmod@from@(the + beach))

Here said is bound to the encoding of its sentential complement. 2

2We only consider sentential clauses whose complementizer does not add additional semantics. That is,
we don’t consider sentences involving wh-movement, such as John knows when Mary came. Such sentences
would have to be handled differently, in order to include the complementizer.
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A traditional syntactic tree uses geometry to encode semantic dependencies. For example,
all phrases which constitute a clause C lie below the clausal node representing C. In the RR
encoding, we delineate such relationships by using the term enclosing scope. This refers to
the items to which an item x is bound. The enclosing scope determines where x is attached
in the thematic tree.

For example, in the sentential complement above, the phrases the + man, arrived@P,
and Vmod@from@(the + beach) all have the enclosing scope said. This gives an implicit
representation of co-constituency. Because Vmod@from@(the + beach) has the same
enclosing scope as the verb arrived, it modifies that verb. The enclosing scope of the PP
from@(the + beach) is Vmod, indicating that it modifies a verb. If this PP were not
bound to Vmod, it would be associated with the subject of the complement clause instead,
yielding a reading equivalent to:

37. John said that the man from the beach arrived.

Because bind distributes over merge, the RR encoding of the above example is equivalent
to:

john + said @(the + man) + said@arrived@P +
said@Vmod@(the + beach)

Thus, an RR encoding is comprised of NPs having various enclosing scopes; each NP’s
enclosing scope specifies its role. For example, the enclosing scope of the + beach is said
@Vmod@from, indicating that this NP is the object of the preposition from, and this
PP modifies the verb having the enclosing scope said. Therefore, an RR encoding can be
incrementally constructed by maintaining the enclosing scopes that apply to each NP or
clause, as we see next.

14.1.3 Generating the RR encoding

We now turn to how we generate the RR encoding incrementally during parsing. For now,
we address unambiguous, right-branching sentences. A right-branching clause begins to the
right (i.e., at the end) of the parent clause. These structures are easy to process because
there are no incomplete dependencies in the parent clause when the embedded clause is
introduced. Therefore, the RR encoding of such sentences can be produced directly from the
input, without relying on the temporal WM representation.

Two Stages of RR encoding

Within the RR portion of the system, there are two stages. The first stage groups together
words into phrases. When a new word signals the conclusion of a category, its RR encoding
and its syntactic type are passed to the second stage. Thus the types of items received
at the second stage are: noun phrases, adjective phrases, verbals (verb plus auxiliaries),
adverbs, prepositional phrases modifying verbs, complementizers (which introduce complete
embedded clauses), relative pronouns (which introduce relative clauses), and conjunctions.
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The second stage uses the syntactic information to incrementally attach the first-stage pieces
into higher level structure, yielding clauses.

The assumption of multiple stages of RR encoding is driven by several factors. Processing
of phrases qualitatively differs from processing of clauses in that phrases can be parsed via
a finite-state machine, while clauses cannot. That is, phrases cannot be center-embedded
within one another. For example, consider the adjective phrase pretty in pink and the noun
phrase the girl. It is not possible to say the pretty in pink girl. It is computationally more
efficient to process phrases differently than clauses because phrases can be processed via
a more restricted mechanism [Abn89]. The segmentation of sentences into phrases is also
supported by prosodic patterns [Abn95].

Furthermore, this two-stage approach is reminiscent of the dynamic programming schemes
proposed in symbolic, context-free processing systems [She76]. These systems decouple the
processing of the internal details of a phrase from the determination of the hierarchical po-
sition of the phrase in the tree. Intuitively, this captures the insight that a category is likely
to have the same internal structure irrespective of where it is attached in the tree . If re-
analysis is required, we save processing resources if reprocessing the internal details of the
category is not part of restructuring the category as a whole within a tree [She76, Lew95].
This is another reason that is computationally more efficient to process phrases separately
from clauses.

The distinction between phrasal processing and clausal processing is borne out via re-
analysis phenomena. When processing a noun phrase, its internal structure can easily be
revised as more information becomes available. For example, the interpretation of the brown
dog is readily changed if the word house follows. However, once processing of a noun phrase
is complete, is difficult to restructure that phrase. Consider [Mar80]:

38. The cotton clothing is made from grows in Mississippi.

Once the cotton clothing has been detected as a noun phrase, it is difficult to reinterpret it as
the NP the cotton followed by a relative clause starting with clothing. In this unusual case,
the detection of a phrase boundary fails, yielding a difficult reanalysis. These phenomena are
consistent with a parsing strategy that uses a greedy algorithm to process phrases (i.e., if the
next word can be incorporated into the current phrase, do so), followed by a separate process
that composes phrases into clauses [Abn91]. In the remainder of this article, we concentrate
on how these phrasal building blocks are combined in the clausal stage of analysis.3

RR Processing Units

The RR encoding of a sentence is generated clause by clause, in order to minimize the
amount of information stored in WM. In addition to the temporal representation of syntac-
tic structure, WM contains “variables” that encode other information needed for the parsing

3This is not to say that there is no interaction between the two stages. For example, in processing the
sentence John gave her earrings, the first stage could be “aware” that consecutive arguments are expected
after gave. Therefore, it is more efficient to interpret her earrings as two NPs (where her is an accusative
pronoun) than as a single NP (where her is a possessive pronoun), because the former possibility completes
the argument structure of the verb. Thus it is assumed that clausal information could influence processing
in the first stage.
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process. Each variable corresponds to a neural area dedicated to representing specific infor-
mation.

The variable CurRR holds the RR encoding of the clause currently being processed,
CurSc holds the enclosing scope within the current clause, and TotSc holds the enclosing
scope for the current clause as a whole. TotRR holds the RR encoding of the entire sentence.

A sentence is processed as follows. A verb, thematic role, or Vmod is stored in CurSc.
Each NP or PP is bound to CurSc and the result is merged with CurRR, forming the
encoding of the current clause. When the current clause is complete, it is chunked : CurRR
is bound to TotSc, and the result is merged with TotRR; if appropriate, CurSc and a
clausal predicate are incorporated into TotSc. At the conclusion of the sentence, TotRR
holds the encoding of the entire thematic tree. This algorithm is specified in more detail in
Figure 14.1.4

An Example

Table 14.1 presents the processing of the following sentence:

39. Sue likes the vase that Joe bought.

At the conclusion of the sentence :

CurRR = sue + likes@(the + vase) + likes@C@(joe + bought@(the
+ vase))

C is a predefined predicate applied to an embedded clause which is not a verbal or adverbial
argument, such as a relative clause. Because bind distributes over merge, this is equivalent
to:

sue + likes@(the + vase + C@(joe + bought@(the + vase))

Thus, placing the encoding of the RC within the enclosing scope likes attaches it to the NP
which is also in that enclosing scope, namely the + vase. Therefore, upon encountering the
RC following the vase, it is not necessary to alter the existing RR encoding of the vase in
order to convert it into an NP modified by an RC. Rather, merging of new information is all
that is required. Thus the specific form and properties of the RR encoding allow incremental
construction of the thematic tree.

Once categories are bound to each other and RR encoded, they are not directly decom-
posable, but operations can apply to the vector as a whole. For example, CurRR can merge
as a unit to TotRR.

In addition to the processing outlined here, there must also be integration of grammatical
and semantic features. For instance, the subject must match the verb’s features, such as
number, person, and animacy. The details of these integrations are beyond the scope of the
article. However, we do assume that such information must be available, and that the RR
encoding of a phrase allows access to these features.

It is not always the case that a clause following a verb is part of its argument. Consider:

4This algorithm assumes that the verb is in the active voice. The passive voice will be addressed in future
work on reanalysis.
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x CurSc CurRR TotSc

sue sue
likes likes sue

the+vase likes sue + likes @ (the + vase)
that likes@C
joe joe likes@C

bought bought joe likes@C
the+vase bought joe + bought @ (the +vase) likes@C

Table 14.1: WM variables after each item x is processed from sentence 39. The relative
pronoun that introduces the predicate C and starts a new clause, giving TotRR = sue +
likes@(the + vase). It also causes its referent, the + vase, to be stored, so that it can
be accessed when a gap is encountered. During processing of the relative clause, the parser
determines that the object of bought is a gap, corresponding to the referent of the relative
pronoun. At the end of the sentence, chunking is invoked, yielding the final value of TotRR
given in the text.

40. Mary kissed Bill when Joe won.

Here a main clause is followed by an adverbial clause. The enclosing scope of the adverbial
should indicate that the attachment point is outside of the verb phrase. 5 The desired RR
encoding is:

mary + kissed@bill + when@(joe + won@P)

In this case, kissed should not be transferred from CurSc to TotSc after when is encoun-
tered. Thus, when a new clause is initiated with an adverb, CurSc is erased without being
incorporated into TotSc.

14.2 Temporal Working Memory

As discussed in section 11.2, stack-like functionality is necessary for parsing center-
embedded clauses. I propose that a serial list provides this functionality. The serial list
is based on the same principles as the serial representation of letter order used in the SE-
RIOL model. In the TPARRSE model, two lists are used, and the relative timing of firing
across lists encodes syntactic information. Such a representation could be used like a stack,
or could be used to parse crossed-serial dependencies. I first present the basic operations on
a serial list, and then discuss how syntactic information is represented. Then we will be in
a position to see how temporal WM is used to parse center-embedded clauses.

5Syntactic tests into possible co-referents for pronouns in the adverbial clause show us that the adverb
should be attached outside of the verb phrase in what linguists refer to as an adjunction structure.
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/* Initialize*/

set WM variables to empty

/* process input */

for each item x

if (current clause is complete) /* chunk */

/* integrate current clause */

TotRR = TotRR + TotSc @ CurRR

CurRR = empty

/* integrate current scope */

(if x is not an adverb) TotSc = TotSc @ CurSc

CurSc = empty

end if

if start of new clause /* branch */

/* integrate new scope */

if (x is a relative pronoun) TotSc = TotSc @ C

else (if x is an adverb) TotSc = TotSc @ x

end if

/* integrate x itself */

if (x is a verb) CurSc = x

else if (x is a PP) CurSc = Vmod

if (x is an NP or PP) CurRR = CurRR + CurSc @ x

end for

Figure 14.1: Basic algorithm for generating the RR encoding of a sentence having only
right-branching clauses.
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Figure 14.2: Illustration of timing of firing of list elements A, B, and C. Each new element
is activated at the peak of the oscillatory cycle. Previously activated items move forward
with respect to the cycle, due to the ADP. Over time, A, B,and C come to fire successively
within a single cycle.

14.2.1 Primitives

The neural substrate of a temporal list is the same as in the SERIOL model, described
in section 6.2.2. For ease of presentation, I will first consider list items that are comprised
of a single node. Then vector list items will be addressed.

Nodes that represent list items oscillate in synchrony and send lateral inhibition to each
other [Lis95]. Timing of firing of an oscillatory node is driven by input level. A high
input level allows a node to fire near the trough of the cycle (where excitability is low).
Lower input levels push firing later into the cycle, because firing is delayed until excitability
increases enough to cross threshold. It has been proposed that an after-depolarization (ADP)
can maintain short-term memory across oscillatory cycles in the absence of external input
[Lis95]. The ADP is a slow, steady increase in excitability observed in cortical cells following
spiking, peaking at approximately 200 ms post-spike [And91]. The temporal gradient of the
ADP can maintain the firing order of elements across oscillatory cycles, as demonstrated
in a simulation [Lis95]. For example, consider nodes A, B, C firing in sequence during one
oscillatory cycle. During the next cycle, node A will have the highest ADP (because its
ADP has been increasing for the longest period of time), and node C will have the lowest
ADP (because it fired most recently). Therefore, node A will cross firing threshold first, then
node B, then node C. Thus, the firing order is preserved across cycles, providing a working
memory. The lateral inhibition between nodes is required to maintain this sequential firing.
If this lateral inhibition is removed, nodes A, B, and C will eventually start to fire at the
same time as each other.

How then is the initial firing pattern established ? As long as a node is first activated
after all active nodes have already fired (near the peak of the oscillatory cycle), the correct
firing order will be maintained. In successive cycles, each newly activated item will fire earlier
within the cycle (as a result of the ADP), until it can fire no earlier, due to lateral inhibition
from previous node, or to reaching the trough of the cycle (for the node activated first). See
Figure 14.2. Thus, one basic operation is the Append operation, which adds a new item to
a list by activating the corresponding node(s) during the peak of the oscillatory cycle. The
new item then comes to fire after all of the previously active items.

Read out from a list occurs implicitly during every oscillatory cycle, as each item fires.
This firing could be used to drive other computations. It is assumed that any such compu-
tations are always activated during the trough of the oscillatory cycle, so as to recover the
full list.

The proposed list items are not single units, but rather large, binary vectors. I propose
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that a bank of cells exists for each vector position. A vector is represented by synchronous
firing across these banks. All vectors in a list are represented by these same banks of cells.
That is, a subset of cells in each bank is activated for each vector. Thus, for a 1 (or 0)
in the same position in two different vectors, different subsets of cells from the same bank
are active on different temporal subcycles. Each bank of cells consists of two populations,
one population representing 1, and the other population representing 0. I assume that each
subset is activated stochastically from the population of cells; it is possible for a cell that is
already representing an item x to be recruited to represent a different item y. However, it is
unlikely that all cells representing x will be reassigned. Thus, the activation of a new item
can reduce the activation level of previous items somewhat.

The two populations of cells within a bank reciprocally inhibit each other through fast
connections, because the two possibilities (0 or 1) are mutually exclusive within a single
sub-cycle (i.e. within a vector position). Cells across banks (positions) send fast but weak
excitation to each other, to promote nearly synchronous firing within a subcycle, preventing
firing drift across vector positions. Cells also inhibit one another across banks via slower
inhibitory connections. These slower inhibitory connections create the sub-cycles and main-
tain sequential firing. Thus the fast excitatory and inhibitory connections serve to coordinate
firing within a vector (sub-cycle), while the slower inhibitory connections serve to keep differ-
ent vectors separate from one another (across sub-cycles). See Figure 14.3. Indeed, Abbott
[Abb91] has demonstrated that a network with fast excitation, and fast, as well as slow,
inhibition allows convergence to a series of attractor states. The fast connections allow con-
vergence to a stored pattern, while the slow inhibition deactivates that pattern, allowing
formation of a new pattern. In the Abbott model, the patterns are determined by connec-
tion weights. In the present model, the patterns (vectors) are determined by ADP level, and
the slow inhibition serves primarily to separate patterns, rather than to directly deactivate
patterns.6

Thus oscillatory cells with the above inter-connectivity allow a repeating encoding of a
sequence of vector items. It would be possible to have another, separate set of oscillatory cells
with the same inter-connectivity (within that set). Thus separate temporal lists could be
maintained. If the cells oscillate in synchrony across lists, this would allow synchronization
of firing across lists. For example, the first item activated on list A (denoted A1) would
come to fire at the trough of the oscillatory cycle, as would the first item activated on list B
(B1). Thus A1and B1could be initially activated at different times, but would come to fire
in synchrony.

The other important memory function is the Delete operation. An list item is deleted
via inhibition. If all active items are to be deleted, a general inhibitory signal could be
broadcast. However, if a subset of the active items is to be deleted, the specific items to be
inhibited must be identified. How might this occur? One possibility is deletion is based on

6The specification of separate populations representing 0 and 1 is contingent on the particular RR encoding
used in the model (based on binary vectors). However, the general scheme of an array of cell banks is
applicable to any type of RR encoding, although it would be more difficult to maintain a WM memory
representation if the activation level within a position mattered. In the current scheme, a cell is either active
or not; the positional value is determined by which cells are firing (0 or 1). If the positional value depended
on activation level, then both activation level and timing of firing would have to be preserved in the WM
representation.
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Figure 14.3: Proposed architecture for a WM list, illustrated for positions N to N+2. In
this example, 100, 110, and 001 are encoded across those positions on successive oscillatory
subcycles. Each large circle represents a bank of nodes coding for the same value and
position. A subset of those nodes is shown by the small circles. Each column represents a
vector position. The top row encodes 0’s, while the bottom row encodes 1’s. The number
in each node reflects the oscillatory subcycle in which in fires. Fast connections coordinate
firing within a sub-cycle, while slower inhibitory connections separate subcycles.
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serial position. That is, it could be recorded that deletion should start at the nth item on a
list. However, this would require the addition of a counting mechanism. Furthermore, such
a mechanism is suspect, as linguists have observed that natural language seems to crucially
eschew use of counting predicates [Cho80, Ber84]. Rather, natural language operates under
structural constraints. Therefore, it is assumed that partial deletion from a list is based on
the structural identity of a list item. That is, when a list item that will later require a partial
deletion is first activated, the syntactic features of that item are stored in a WM variable.
When partial deletion is required, inhibition is triggered when the currently firing list item
matches the stored value. Comparison between activation patterns is generally taken to be
a fundamental function of neural networks. Thus identification based on identity does not
require any additional mechanisms. Further details of this deletion process will be discussed
in the following section.

14.2.2 Representation of Syntactic Information

We have seen how separate, but synchronized, temporal lists could be neurally instanti-
ated in WM. I propose that working memory uses such lists to store syntactic information
about all incomplete clauses. This parallel representation of the sentence serves two pur-
poses. (1) When the RR encoding cannot be directly generated from the input (in the case of
center-embedding or crossed-serial dependencies), it allows processing of interrupted clauses
to be re-instantiated. (2) When a parsing error occurs because the wrong choice was made
at a point of ambiguity, the temporal encoding allows an alternative RR encoding to be
generated (in some cases). The present work focuses on the first possibility. The second will
be addressed in future work.

I propose that syntactic structure is encoded by employing two separate lists - one for
noun phrases, and one for predicates and verb adjuncts. The lists are synchronized so that
items which are in the same position in different lists fire at the same time. The relationship
between an NP and a verb is encoded by their relative firing times. Subjects and adjuncts
fire asynchronously with their verbs (with subjects firing prior to their verbs in English),
while objects fire synchronously with their verbs. For example, the WM representation of
(41) is:

sue bill

E called on@Monday

41. Sue called Bill on Monday.

The top row is the noun list, and the bottom row is the verb list. Each column represents a
temporal slot. That is, the first items in each list fire together, then the next items, and so
on. The filler item E occupies the first slot on the verb list in order to establish the proper
firing relationships. A PP which modifies a verb is recorded on the predicate list.

Each item on the lists is accompanied by a tag field, which records syntactic features.
Recall that the first stage of RR processing returns syntactic information along with the
encoding of the phrase. The syntactic information specifies the type of the phrase; this type
determines which list the phrase is Appended to, and is used to update the internal state of
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the parser. When the lists are used to generate an RR encoding, it is necessary to access this
syntactic information so that the parser can return to the correct internal state. A tag-field
item is not a vector, but rather is a unitary feature. For example, the encoding of 41 with
the tag fields is:

NP NP
sue bill

E called on@Monday
E V PP

where the corresponding tag fields are given in the outer rows. NP, V, etc. represent that
nodes representing that feature are active during that temporal slot.

The start of an embedded clause is also marked in the tag field. For example the encoding
of (42) up to fell is:

E NP NP, Cl, GapReq Gap
E the + vase sue Gap

on@wednesday E E bought
PP E E V

42. On Wednesday, the vase that Sue bought fell.

Cl marks sue as the start of an embedded clause, and GapReq indicates that a gap is
required (i.e., it is a relative clause). If the relative clause is subject extracted, the verb is
tagged instead. For example, the encoding of (43) is:

E NP NP, Cl, Gap
E the +woman bill

on@wednesday E knows
PP E E

43. On Wednesday, the woman who knows Bill ...

This unambiguously and efficiently encodes a relative clause with a gap in the subject posi-
tion.

The proposed temporal encodings can be generated by sequentially Appending each item
as it is received to the proper list (under the assumption that a subject also generates an
Append(E, verb list) and a PP generates an Append(E, noun list)). Recall that each item
comes to fire as early as possible on its respective list. Thus the first items on both lists will
fire together, then the second items, etc.

As discussed in section 13.2.2, the problem of how to represent a hierarchical structure
temporally is a difficult one. There must be a mapping from a two-dimensional structure
(a tree) onto one-dimensional structure (time). Given this mapping, there must be a way
to initiate the correct firing times on the fly. Our proposal for the structure of WM solves
these problems. Because the oscillatory cycle provides a reference frame, two items that are
activated at different times on different lists can come to fire synchronously. Because the
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order of firing is maintained across cycles, information can be encoded by the sequence of
firing, not just by the synchrony of firing. Because each list item is an RR encoding, this
allows structure to be represented within a single temporal slot. Thus this scheme solves
the problem of how to temporally represent arbitrary hierarchical on the fly. This temporal
representation maintains the identity of phrasal subcomponents, allowing them to referenced
separately from each other. In the next section, I discuss how this representation is used for
parsing of center-embedded clauses.

14.3 Processing Center-embedded Clauses

Now, we will see how the addition of the temporal encoding allows us to handle the
problem of center-embedding. Recall that the encoding of a clause is constructed in CurRR,
and then transferred to TotRR when a new clause begins. However, when a center-embedded
clause is encountered, the RR encoding of the current clause is not integrated into TotRR.
Rather, CurRR and CurSc are set to empty, so that they will only encode the embedded
clause. When the embedded clause is complete, its temporal representation is deleted from
the lists and is replaced with its RR encoding.

The information on the lists is then used to re-instantiate the RR encoding of the higher
clause; this process is denoted WM-RR encoding. During WM-RR encoding, the information
on the lists is RR-encoded as each pair of list entries fire. Afterward, the parser is in the
same state that it was prior to the center-embedded clause, except that the RR encoding of
the center-embedded clause is included in CurRR.

Next we consider an example. This processing requires an additional WM variable,
CntrSc, which maintains the enclosing scope of a center-embedded clause. We will see how
parsing of (42) proceeds.

• Initially, the WM variables and lists are empty.

After the vase, CurRR = Vmod@(on@wednesday) + the + vase, CurSc
= empty, and the lists are:

E NP
E the + vase

on@wednesday E
PP E

• At that, CntrSc is set to C, to record the enclosing scope of the upcoming clause.
CurSc and CurRR are set to empty, so that only the upcoming clause will be RR
encoded.

After bought, CurRR = sue + bought @(the + vase), CurSc = bought,
and the lists are:

E NP NP, Cl, GapReq Gap
E the + vase sue Gap

on@wednesday E E bought
PP E E V
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• At fell, the center-embedded clause is complete. A partial delete of list items is initiated
at the start of the embedded clause, and then CntrSc@CurRR is Appended to the
lists, giving:

E NP ChunkedCl
E the + vase C@(sue+bought@(the+vase))

on@wednesday E E
PP E E

CurRR, CurSc and CntrSc are set to empty. The information on the lists is
then used to recover the RR encoding of the main clause, giving:

CurRR = Vmod@(on@wednesday) + the + vase +
C@(sue + bought@(the + vase)

Importantly, the + vase is encountered as a separate entity, in principle allowing
access to grammatical and semantic features necessary for integration with the
upcoming verb. (However, details of such integration are beyond the scope of the
present work.)

• Now fell can be processed as usual (i.e., directly incorporated into the current clause).

Thus the lists work like a stack to maintain unattached subjects. A center-embedded clause
overwrites processing of the higher clause; the RR encoding of the higher clause is later
re-generated from the temporal WM encoding. Next we consider in more detail the deletion
of the center-embedded from the lists.

14.4 Partial Deletion

Recall that partial deletion is performed by storing the identity of the target item, and
then matching to this stored value. Given that rules in natural language operate on syntactic
structures, I assume that an item is identified by its syntactic features. When a center-
embedded clause is encountered, the corresponding syntactic features are recorded in a WM
variable denoted Dtag. In our example, Dtag would be set to (Np, Cl, GapReq). When
the embedded clause is complete, inhibition is initiated at the item having these syntactic
features. That item, and all successive items on both lists are inhibited, thereby deleting the
temporal representation of the relative clause from working memory.

Next we consider lower-level details of how the inhibition is triggered. I propose that
matching works on the principal of dis-inhibition. That is, Dtag features inhibit the inhibition
of list items, while tag-field features inhibit Dtag features. When deletion is required, its
initiation is inhibited by the activity of Dtag features. When the corresponding features
are active in the tag field, they inhibit the Dtag features. Therefore, inhibition is no longer
inhibited by Dtag, and is triggered. Inhibition then continues for the remainder of the
oscillatory cycle. If no features are initially active in Dtag, a full deletion of all list items
is automatically carried out. See Figure 14.4 for a schematic of the proposed network.
When deletion occurs, only those cells that are currently firing should be inhibited. This is
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Deletion 
Required

Perform
Deletion

Dtag

Tag Field

List Node

Excitatory 

Inhibitory

F1 F2 FnF3

F1 F2 FnF3

F1 F2 FnF3

Gating Node

Figure 14.4: Proposed architecture of deletion network. The tag field is comprised of syntac-
tic features F1, F2, F3 ... Fn, with multiple instances of each feature (two instances shown
here). Each feature has inhibitory connections to the corresponding feature in Dtag, and
each feature in Dtag inhibits the node which drives the deletion process. When the tag-field
features inhibit all of the Dtag features, the perform-deletion node is activated and deletion
is initiated. Deletion is sustained via the self-excitatory connection. The gating node be-
comes activated only if it receives excitation from both the perform-deletion node and the
list node. In that case, the list node is inhibited. Thus inhibition only applies to active list
nodes, and does not affect list nodes that fired prior to the initiation of deletion. (Only a
single list node is shown. A similar circuit is required for each list node.)
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accomplished via a gating mechanism that allows the inhibitory signal to reach a cell only if
that cell is active. (See Figure 14.4.)

Note that the proposed matching mechanism does not require an exact match between
the tag field and Dtag. There is an asymmetry. For deletion to be initiated, all of the active
Dtag features must also be active in the tag field, but all tag-field features do not have to be
active in Dtag. Thus, a match occurs when the tag-field features are a superset of the Dtag
features, but not when the Dtag features are a superset of the tag-field features. As we will
see in Chapter 16, this asymmetry is crucial in explaining complexity phenomena.

14.5 Arbitrary Hierarchical Structure

Thus far we have seen how a single right-branching or center-embedded clause is handled.
However, arbitrary combinations of branching patterns can occur in natural language. The
parsing algorithm can easily be extended to handle arbitrary hierarchical structure. Aside
from right-branching and center-branching structures, a clause could also be preposed or
left-branching. A preposed clause occurs when an adverbial is moved to the front of the
higher clause, as in:

44. When the vase fell, Mary was upset.

A left-branching clause is a sentential subject, as in:

45. That the vase fell upset Mary.

Preposed and left-branching clauses are processed the same way as center-embedded clauses.
If a right-branching clause occurs within a non-right-branching clause, its predicate is stored
in CntrSc, so that it can be deleted when the higher clause is complete. Thus CntrSc
holds any clausal predicates that must be deleted at some point, while TotSc holds purely
right-branching predicates.

If a predicate is assigned to CntrSc, it is also recorded on the lists, so that it can be
recovered if necessary. That is, if a non-right-branching clause A is being processed, and
another embedded clause B is encountered, B will overwrite the information in CntrSc
pertaining to A. Once the processing of B is complete, the information pertaining to A can
be re-instantiated during WM-RR encoding. This allows recursion, and therefore arbitrary
branching patterns can be processed. In contrast, predicates that are assigned to TotSc
are not maintained on the lists, because they cannot be overwritten, and should never be
re-processed. For example, the Cl syntactic feature (which corresponds to the C predicate)
is activated in the tag field of a center-embedded RC, but is not activated for a purely right-
branching RC (because C is stored in TotSc in this case). In section 15.3, the full parsing
algorithm and simulations of the algorithm are presented.
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Chapter 15

Computational Demonstrations

In this chapter, I present implemented demonstrations of some aspects of the above
theoretical model. In the first section, I present the decoding of an RR encoding of a
sentence. In the second section, I show that the proposed single-node dynamics of a WM
allow a serial encoding of items activated during different oscillatory cycles. In the third
section, a simulation of the full parsing algorithm is presented.

15.1 Decoding an RR encoding

In the following, I use Kanerva’s [Kan95] scheme to demonstrate that the information
recorded in the RR encoding of a sentence can indeed be extracted. Recall that the unmerge
operation is performed by comparing to item memory, and that all predicates in the RR
encoding are bound to P to allow them to be recovered. Each unbind is followed by a com-
parison to item memory, to clean up the result of the unbind. Decoding proceeds as follows.
First the vector is compared to item memory. This retrieves the unbound constituent, i.e.,
the Agent. Then the vector is unbound with P to retrieve any predicates. The vector is
unbound with each of those predicates to retrieve their arguments.

We first illustrate decoding at the conceptual level, then we present a numerical example.
Consider the vector:

Q = ann + loves@(P + joe)

where ann, loves, and joe are stored in item memory. Comparing Q to item memory yields
the Agent ann, because it is the only constituent vector that is unbound. The vector Q is
then unbound with P, yielding:

Q#P = ann#P + loves@P#P + loves@joe#P

which is similar to loves. It is also similar to ann#P and to loves@joe#P, but these
vectors are not stored in memory and act as noise. Thus, comparing Q#P to memory
yields loves. The vector Q can then be unbound with loves to yield joe.

If too many relationships were encoded within a single vector, so much noise could be
introduced that it would not be possible to retrieve the base vectors. This can be remedied
by storing intermediate results. The result of an unbinding which is not a base vector can
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then be cleaned up by retrieving the similar item from memory. Therefore, we assume that
if an argument is itself a clause, its encoding has also been recorded.

Next I present a numerical example of the encoding and decoding of a sentence containing
an embedded clause. The sentence:

46. John told Mary that Bill gave Sue money.

was encoded, where john, mary, bill, sue, told, gave, Goal, and money were vectors
stored in item memory. 3000 distractor vectors were also stored in item memory. Vectors
were of dimension 10,000, and were randomly generated under the constraint that each vector
position had equal probability of being a 0 or a 1. The encoding of the sentential complement
Bill gave Sue money was also recorded in memory:

V1 = bill + Goal@(sue + P) + gave@(money +P)

The encoding of the entire sentence was:

V = john + Goal@(mary + P) + told@(V1 + P)

V was then decoded as follows. (All items exceeding a similarity cutoff of 0.52 are presented,
with the similarity value in parentheses.) V was compared to item memory to get the subject.
This yielded john (0.75; i.e., 75% of V’s positional values matched john’s). V was unbound
with P, and the result was compared to memory to get any predicates. This yielded told
(0.63) and Goal (0.62). V was unbound with told to get the Theme, yielding V1 (0.62)
and bill (0.57). This similarity to bill is appropriate since V contains told@bill (because
bill is the subject of V1) 1. V was unbound with Goal, yielding mary (0.62). This process
was repeated with V1. The subject was bill (0.75). Unbinding V1 with P yielded gave
(0.63) and Goal (0.62). Unbinding V1 with gave yielded money (0.63) and unbinding with
Goal yielded sue (0.63). Thus, it was possible to retrieve the information stored in the RR
encoding of the sentence.

The goal of this implementation was to demonstrate the feasibility of RR encoding and
decoding. Thus the operations were performed algorithmically ( i.e., not implemented as a
neural network). However, the proposed operations are neurobiologically plausible. Because
the merge, bind, and unbind functions operate on corresponding bits across two vectors,
they could be implemented within a neural network using one-to-one connections between
the areas over which the input vectors are represented. The unmerge operation requires
an auto-associative memory; recurrent networks employing distributed representations have
long been touted as a natural framework for this kind of memory.

1Thus the Theme and the subject of a sentential complement are represented in the same way; both are
bound to the verb. This similarity in representation may be related to the ease with which a Theme can be
reanalyzed as a the subject of a sentential complement in ambiguous sentences lacking that, such as John

knows Bill likes Sue.
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15.2 Temporal WM

The goal of the following simulation is to demonstrate the basic functionality of a WM
list, which allows a serial representation of the order of items activated at different times.
This is a network simulation, with each list item being represented by a single node. A list
node is always initially activated during the peak of the oscillatory cycle. Thus a mechanism
that coordinates timing of activation with the oscillatory cycle is assumed. However, this
mechanism is beyond the scope of the present work. Thus, it was not implemented as part
of the network.

Following [Lis95], list nodes are modeled as units that undergo a sub-threshold oscillatory
drive, exhibit an increase in excitability after firing (ADP), and send lateral inhibitory inputs
to each other. We use i to denote the ith node to be Appended. The membrane potential,
V , of a node is given by:

V (i, t) = O(t) + A(i, t) − I(t) + E(i, t)

where O denotes the oscillatory drive, A denotes ADP, I denotes inhibitory input, and E
denotes excitatory external input. A node fires when V exceeds a threshold, TH. TH
is specified relative to resting potential, and set to 10mV. Firing causes the node’s ADP
component to be reset, and inhibition to be sent to the other nodes.

The oscillatory function O has a cycle length of 200ms, and linearly increases from -5mV
to 5mV during the first half of the cycle, and decreases back to -5mV during the second half.

The ADP and inhibition are modeled by functions of the form:

F (t; M, T ) = M ∗ (t/T )1.5 ∗ exp(1 − t/T )

which increases to a maximal value (controlled by M) and then decreases (on a time scale
controlled by T ). The ADP is given by:

A(i, t) = F (t − ti; MA, TA)

where ti denotes the time at which the ith node last fired. (A(i, t) is 0 if the node has not
yet fired.) The inhibition is given by:

I(i, t) =
n

∑

j=1

F (t − tj; MI , TI)

where n gives the number of nodes, and F is 0 if node j has not yet fired, or if i = j. The
following values were used: TA = 230ms, MA = 13mV, TI = 5ms, MI = 3mV.

The external input, E, is such that node i receives an input of amount MA commencing
at time F + i ∗ P , where F and P are constants. Node i continues to receive this input at
each time step until it fires. F is set to 100ms (the peak of the first cycle), and P is assumed
to be a multiple of 200ms, so that items to be Appended are activated at the peak of a cycle.

A simulation using the above equations, with P = 200 and 8 nodes, yielded all nodes
firing in the correct sequence after 9 cycles. Nodes 1-8 fired at times 31, 48, 61, 71, 80, 88,
95, 103, respectively (times are given relative to the start of the cycle). Thus, when a new

148



item was activated at each successive peak of the oscillatory cycle, all items came to fire
sequentially within a cycle, as desired.

If, however, external input is applied out of sync with the oscillatory cycle, incorrect
orderings result. For example,P = 173 yielded the following after 9 cycles: nodes 5, 4, 1, 2,
3, 6, 7, and 8 fired at times 30, 47, 60, 70, 70, 85, 85, and 85, respectively, while P = 227
yielded nodes 5, 6, 4, 7, 1, 2, 3, and 8 firing at times 30, 47, 60, 60, 76, 76, 89, and 89.

15.3 Parsing Algorithm

In the present work, the aim is to show that the proposed algorithm is viable at the
computational level, by demonstrating that the algorithm is powerful enough to handle the
complex structures found in natural language. Therefore, the algorithm was implemented at
the symbolic level.

15.3.1 Implementation

The full parsing algorithm is given in Figures 15.3.1 and 15.3.1. This algorithm was
implemented using a positional variable taking one of four values (before subject, before verb,
before object, or after object) to determine the branching direction of an embedded clause.
Each input sentence was represented by a sequence of two-character symbols, representing
phrases formed by a first stage of RR encoding. The first character was alphabetic, specifying
syntactic type, and the second character was numeric, distinguishing different instances of
the same syntactic type. For example, the input representation of a sentence with a sentential
complement containing a preposed adverbial clause having a right-branching relative clause,
like:

47. John said that after Mary dropped the vase that Jim bought, Jane got a new vase.

is:

N1 V1 C1 A1 N2 V2 N3 R1 N6 V3 N4 V4 N5

where ’N’ specifies an NP, ’V’ a transitive verb, ’C’ a complementizer, ’A’ an adverb, and
’R’ an relative pronoun. The output for each sentence is a string specifying the RR encoding
of the sentence. For the above sentence, the desired output is the string:

N1 + V1@A1@(N2 + V2@N3) + V1@A1@C@(N6 + V3 @ N3) + V1@(N4 +
V4@N5)

The model was tested on a variety of sentences containing multiple embeddings of relative,
sentential, adverbial, and noun-complement clauses. These inputs are given in section 15.3.2.
The correct output was generated for all of the sentences, except for RC/RCs and an NC/RC,
consistent with human performance. The reason that the algorithm failed on these structures
is discussed in the following chapter.
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Chunk Current Clause

/* Remove current clause from lists */

if (Dtag is empty) Empty lists

else Partial delete starting at Dtag; Dtag = empty

/* Integrate current clause */

if (part of a center-embedded clause)

Append CntrSc @ CurRR to lists

if (starting right branch) CntrSc = CntrSc @ CurSc

else WM-RR encode

else /* right branching only */

TotRR = TotRR + TotSc @ CurRR

TotSc = TotSc @ CurSc

end if

Branch on predicate x

/* Record start of clause */

if (lists not empty) Dtag will get tag field of clause

/* integrate new scope into clausal scope */

if (starting a center-embedded clause)

CntrSc = x

elseif (starting a right branch inside a center-embedded clause)

CntrSc = CntrSc @ x

else /* right branching only */

TotSc = TotSc @ x

end if

/* reset encoding of current clause */

CurSc, CurRR = empty

Figure 15.1: Chunking and branching procedures for the full RR encoding algorithm
.
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/* Initialize */

set WM variables and lists to empty

/*Process input */

for each item x

if (x starts an embedded clause)

if (x is an adverb) CurSc = empty

if (no incomplete dependencies) Chunk current clause

Branch on x

else if (x resumes a higher clause)

Chunk current clause

end if

if (x is a verb) CurSc = x

else if (x is a PP) CurSc = Vmod

if (x is a subject NP) CurSc = empty

if (x is an NP or PP) CurRR = CurRR + CurSc @ x

if (x is an NP, PP, or verb) Append x to lists

end for

Figure 15.2: Full RR encoding algorithm, using Chunk and Branch operations specified in
Figure 3.

151



15.3.2 Stimuli

The following lists the stimuli used for the parsing simulation. For ease of comprehension,
an example sentence is presented for each input sequence. The correct output was generated
for all sentences, except 12 and 13 (RC/RCs) and 27 (NC/RC).

N1 V1 N2

1. The cat chased the rat.

*Two clauses*

N1 V1 C2 N2 V2 N3

2. The man knows that the cat chased the rat.

N1 R1 I2 V3 N3

3. The cat which was chased ate the fish.

N1 R1 N2 V2 V1 N3

4. The cat which the dog chased ate the fish.

N1 R1 V2 N2 V1 N3

5. The cat which chased the rat ate the fish.

N1 V1 N2 R1 V2 N3

6. The cat chased the rat which ate the cheese.
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N1 V1 N2 R1 N3 V2

7. The cat chased the rat which the dog bit.

A1 N1 V1 N2 N3 V2 N4

8. After the cat chased the rat, the dog ate the meat.

N1 V1 N2 A1 N3 V2 N4

9. The dog ate the meat after the cat chased the rat.

C1 N1 V1 N2 V2 N3

10. That the dog ate the chocolate bothered Bill.

N4 C1 N1 V1 N2 V2 N3

11. The fact that the dog ate the chocolate bothered Bill.

.

*Three clauses*

N1 R1 N2 R2 N3 V3 V2

12. The rat which the cat which the dog hates chased

V1 N4

ate the cheese.
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N1 R1 N2 R2 V3 N3 V2

13. The rat which the cat which hates the dog chased

V1 N4

ate the cheese.

N1 R1 V2 N2 R2 N3 V3

14. The dog which chased the cat which the rat feared

V1 N4

ate the meat.

N1 R1 V2 N2 R2 V3 N3

15. The dog which chased the cat which chased the rat

V1 N4

ate the meat.

N1 V1 N2 R1 V2 N3 R2

16. The dog chased the cat which chased the rat which

V3 N4

ate the cheese.

N1 V1 N2 R1 V2 N3

17. The dog chased the cat which chased the rat
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R2 N4 V3

which the lion liked.

N1 V1 N2 R1 N3

18. The dog chased the cat which the rat

R2 V4 N4 V3

which ate the cheese feared.

N1 V1 N2 R1 N3

19. The dog chased the cat which the rat

R2 N4 V4 V3

which the lion liked feared.

N1 R1 V2 C1 N3 V3 N4

20. The man who thinks that the cat chased the rat

V1 N5

ate the cheese.

N1 R1 N2 V2 V1 C3 N3

21. The man who the lion chased thinks that the rat

V3 N4

ate the cheese.
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N1 V1 N2 R1 V2 C3 N3

22. The lion chased the man who thinks that the rat

V3 N4

ate the cheese.

N1 V1 C2 N2 V2 C3

23. The man knows that the girl thinks that

N3 V3 N4

the cat chased the rat.

N1 V1 C2 N2 V2 N3

24. The man thinks that the rat ate the cheese

A1 N4 V4 N5

after the dog bit the cat.

N1 V1 C1 A0 N2 V2 N3

25. The man knows that when the cat chases the rat,

N4 V4 N5

the lion chases the dog.

N4 C1 N5 R1 N1 V1

26. The fact that the dog which Sue adopted
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V2 N2 V3 N3

ate the chocolate bothered Bill.

N4 R1 N5 C1 N1 V1 N5

27. The woman who the fact that the dog ate the chocolate

V2 V3 N3

bothered hit Bill.

*four clauses*

N1 R1 V2 C2 N2 V3 N3

28. The man who knows that the cat chased the rat

A1 N4 V4 N5 V1 N6

after the dog ate the meat ate the pie.
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Chapter 16

Complexity

Next we consider how the proposed processing accounts for complexity phenomena. Re-

call that we want to explain the following.

• RC/RC

– Very difficult

– Effect of NP type

∗ Easier if N3 is a pronoun.

∗ N3 pronoun is easier than an N1 or N2 pronoun.

– V2-drop

∗ Felicitous for double center-embedding.

∗ Not felicitous for center-embedded RC within a right-branching RC.

– N3-type x V2-drop interaction - V2-drop is not felicitous for pronoun N3

• Noun Complements

– NC/RC easier than RC/RC.

– RC/NC as hard as RC/RC.

• Crossed-serial Dependencies
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– Easier than double center-embeddings.

– Pronoun N3 has no effect.

• Similarity-based interference

– Increase in difficulty as number of similar items increases.

– For a fixed number of similar items, increase in difficulty as their proximity to

each other increases.

First we will see how the proposed processing of center-embedded clauses accounts for the RC

and NC phenomena. Then the relative ease of crossed-serial dependencies will be addressed,

followed by a discussion of similarity-based interference.

16.1 Center Embedding

16.1.1 RC/RC

Consider processing of the sentence:

48. The vase that the man that Sue dated bought fell.

At the first that, center-embedded processing is invoked. At the second that, center-embedded

processing is again invoked, overwriting the information in the WM variables pertaining to

the first RC. When bought is encountered, the lists are:

NP NP, Cl, GapReq NP, Cl, GapReq Gap

the + vase the + man sue Gap

E E E dated

E E E V
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and Dtag is set to the values of the tag field of the inner RC (NP, Cl, GapReq). At this point,

deletion of the inner RC from temporal WM is required. Recall that explicit read out of a list

is always initiated at the trough of the oscillatory cycle. Thus, the “Deletion Required” node

is activated at that point. During the first temporal slot, inhibition is prevented because

the tag field does not match Dtag. However, a match does occur during the second slot,

and inhibition is triggered. However, this inhibition is premature; it really should have been

initiated at N3. Therefore, N2 is erroneously deleted from the lists, giving:

NP

the + vase

E

E

Thus, because list items are read out in order, and N2’s syntactic features match N3’s, infor-

mation about the outer RC is erroneously deleted from WM. I propose that this premature

deletion is the fundamental cause of the difficulty of an RC/RC.

Note that the the V2-drop effect [Gib99] falls out naturally from this account. During

WM-RR encoding following deletion, processing of the main clause is re-instantiated, because

only the main-clause subject remains on the lists. Thus only the main-clause verb is expected.

However, in the case of a center-embedded RC within an right-branching RC, such as (49),

incorrect deletion does not arise.

49. I like the vase that the man that Sue dated bought.

Following the vase, the word that signals the start of a right-branching clause. All items on

the lists (i.e. the temporal encoding of the main clause) are deleted. In this case, the subject

of the outer RC is not tagged with the Cl feature, because the C predicate is permanently

stored in TotSc. Therefore the lists up to bought are:
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NP, GapReq NP, Cl, GapReq Gap

the + man sue Gap

E E dated

E E V

and Dtag is (NP,Cl, GapReq). During deletion of the inner RC, a match does not occur at

the first temporal slot because the required Cl feature is not active. Therefore the sentence

is processed correctly, explaining why V2-drop is not felicitous in this case [Gib99].

An RC/RC could be processed correctly if N2 could be distinguished from N3. I propose

that this is why a pronoun N3 makes an RC/RC seem easier [Gib98, War02a]. When N3

is a pronoun, this additional syntactic information is reflected in its tag field. Thus, N3

will have have the syntactic features (NP, Pr, Cl, GapReq). This tag field will overwrite

N2’s features in Dtag. During deletion of the inner RC, matching is performed against N3’s

syntactic features. In this case, a match does not occur at N2 because it does not possess

the Pr feature. Thus deletion of the inner RC proceeds correctly. During WM-RR encoding,

center-embedded processing of the outer RC is re-instantiated. The outer RC is processed,

and then processing of the main clause is re-instantiated. Thus the sentence is processed

correctly. This implies that V2-drop should not be felicitous for a pronoun N3, as we have

demonstrated [Whi04d].

However, this analysis only applies when N3 is a pronoun. Recall that a match occurs

when all of Dtag ’s features are active in the tag field. If one of the other subjects is a pronoun

(while N3 is not) a premature match will occur at N2, because N2 would possess all of N3’s

features. Thus the match asymmetry arising from the disinhibition mechanism explains why

an N3 pronoun is easier than an N1 or N2 pronoun [War02a].
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16.1.2 Noun Complements

A clause that must be a relative clause contains the GapReq feature, while a potential

noun complement does not. Note that this syntactic feature is independently motivated.

Consideration of the following examples demonstrates that the parser needs to keep track of

some important differences between these constructions.

50. a. The fact that John read magazines surprised Sue.

b. The fact that John read in the newspaper surprised Sue.

c. *The fact which John read magazines surprised Sue.

d. The fact which John read in the newspaper surprised Sue

e. The item that John read in the newspaper surprised Sue.

f.* The item that John read magazines surprised Sue.

Read is a verb that can be used in either transitive or intransitive constructions. This is

why (a) is grammatical as a noun complement, with or without the presence of the direct

object magazines. This structure has a third reading as a relative clause, as shown in (b).

The contrast between (b) and (c) shows that the complementizer which can only introduce

a relative clause. The fact that the ungrammaticality of (c) is easily detectable shows that

the parser must have some device to indicate that the requirement of a gap to be bound to

the head of the relative clause is not satisfied. The easily detected contrast between (a) and

(f) shows that the parser must directly mark whether a noun complement is permissible; it

is not sufficient to indicate the lexical choice of the complementizer. The GapReq feature

fulfills these requirements, specifying an additional constraint on an embedded clause. It is

necessary to store this feature in the tag field to allow retrieval of this information (during

WM-RR encoding) if a center-embedded clause interrupts the processing of an RC or a

potential NC.

Thus the temporal encoding of (51) up to fell is:
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NP NP, Cl NP, Cl, GapReq Gap

the + fact the + vase sue Gap

E E E bought

E E E V

51. The fact that the vase that Sue bought fell upset her.

Deletion of the RC will proceed correctly because N2 does not possess the GapReq feature,

explaining the ease of an NC/RC [Gib98].

However, in the case of an RC/NC, N2 would contain all of N3’s features. Again, due

to the matching asymmetry, Dtag (containing N3’s features) would match at N2, triggering

premature inhibition and the erroneous removal of the RC from temporal WM. This explains

the difficulty of an RC/NC [Gib00]. Therefore, an RC/NC should show the same pattern of

N3-type and V2-drop effects as an RC/RC. Intuitively, this seems to be the case, although

experimental studies have not been done to confirm this.

This analysis implies that an RC/RC that could have been an NC/RC, such as (52),

should be processed correctly.

52. The proposal that the student who Amy advises made at the meeting intrigued us.

This is because the lack of a GapReq feature is determined at the start of the clause. Thus,

N2 would not have the GapReq feature, allowing the inner RC to be correctly deleted. For

such an RC/RC, N3-type should not have an effect, in contrast to unambiguous RC/RC.

This prediction is unique to the TPARRSE model, and will be experimentally tested in the

future. (However, note that perceived overall complexity may still remain high, due to the

reanalysis triggered by made at. The specific prediction is that N3-type should have no effect

at the processing of the final verb phrase in a self-paced reading study, in contrast to the

effect previously observed for the unambiguous case [Whi04d]. )
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16.1.3 Summary

The above complexity phenomena are explained by the following key assumptions:

• Subject NPs are stored serially in working memory, with accompanying syntactic fea-

tures.

• Items are deleted from working memory by sequentially “searching” for target syntactic

features; the search is initiated at the first item.

• There is an asymmetry to the search process due to the disinhibition mechanism; for

inhibition to be triggered, all target features must be active in the list item, but not

necessarily vice versa.

Premature deletion (starting at N2 rather than N3) follows from the first two assumptions,

and explains RC/RC difficulty and the V2-drop effect. The blocking of this premature

deletion via syntactic differences between N2 and N3 explains the relative ease of an NC/RC

and a pronoun N3. Because deletion of the inner RC proceeds correctly, V2-drop is not

felicitous for a pronoun N3, or for a center-embedded RC within a right-branching RC. The

third assumption explains the difficulty of an RC/NC and a pronoun N2.

Thus, the proposed account is based on the nature of WM representations. This approach

differs from previous accounts, which depend on capacity in some way. The DLT proposes

capacity limitations in re-exciting previously processed constituents [Gib98]. The interference

account is based on a maximal number of unattached subjects [Lew96]. In the Vosse &

Kempen model [Vos00], correct attachment depends on relative inhibitory strength. We have

seen in Chapter 13 that none of these proposals can fully explain the complexity phenomena.

In contrast, the novel account offered by the TPARRSE model covers all of these phenomena.

Next we see how the model also explains crossed-serial dependencies.
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16.2 Crossed-Serial Dependencies

The processing of a center-embedding requires deletion of the embedded clause from WM,

in order to correctly associate the separated higher-level subjects and predicates. However,

processing of cross-serial dependencies does not require such deletion, because the subjects

and verbs occur in the same order. Thus the verbs can be slotted into WM, and then the

RR encoding can be read off. For example, consider processing of the English gloss of (9):

53. Joanna has the men Hans the horses helped to-teach to-feed.

The NPs are processed by Appending them to the noun list, giving 1:

NP NP NP NP

joanna the + men hans the + horses

E

E

Then the verbs are Appended, giving:

NP NP NP NP

joanna the + men hans the + horses

E has-helped to-teach to-feed

E V V V

Now the verbs line up with their objects, and the information in WM can be RR-encoded in

the manner of a right-branching sentence, giving:

Joanna + has-helped@(the + men) + has-helped@to-teach@hans +

has-helped@to-teach@to-feed@(the + horses)

which is equivalent to:

1It is assumed that the auxiliary between the first and second subjects is saved, to be joined with the

first verb.
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joanna + has-helped@(the + man + to-teach@(hans + to-feed@(the

+ horses))

Thus the sentence can be processed without deleting individual embedded clauses from

WM. 2 Therefore, processing of crossed-serial dependencies is more efficient that center-

embeddings, accounting for their reduced complexity[Bac86]. Because partial deletion is not

required, making N3 a pronoun should not influence processing. This is exactly the result

observed in [Kaa04].

We have now seen how the WM lists can used like stacks for processing center-embeddings,

and like queues to process crossed-serial dependencies. Because the lists are not actually

stacks (i.e., there is no pop operation that removes the last element on a list), processing can

break down, explaining complexity phenomena associated with double center-embeddings.

In contrast, the dual seriality of the lists can be used directly to represent crossed-serial

dependencies, enabling more reliable processing.

16.3 Interference in Working Memory

Recall that a WM list is comprised of banks of cells, and each activated list item draws

on a subset of each of those banks. A new list item can therefore “steal” cells from already

activated items. In this way, adding new items to WM can degrade the representation of

previous items. The more similar the new item is to a previous item (i.e. the greater the

number of matching bits), the more the opportunity for degradation of the previous item.

Thus WM representations will become more degraded as the number of items increases, and

as their similarity to each other increases. In addition to these factors, WM representations

are also likely to be degraded over time. As an item continues to fire across oscillatory cycles,

its activation may decay, the synchronization across positional banks may decrease, and/or

constituent cells may fire in the wrong subcycle.

2Partial RR encodings could be created by performing WM-RR encoding after each verb.
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Recall that fast within-position inhibition and fast, weak across-position excitation are

proposed to stabilize the representation of a single item (within a oscillatory subcycle),

whereas slow inhibition serves to separate items. The amount of fast excitation would have

to be rather narrowly tuned in order to avoid causing cells that should fire at upcoming

subcycles to fire prematurely, but yet promote almost synchronous firing within a subcycle.

Within each position, it is easiest to maintain separation between subcycles n and n+1 when

the polarity switches (0 to 1 or 1 to 0) across subcycles, due to the additional support of the

fast inhibition. When the polarity doesn’t switch between subcycles, it is more likely that

cells belonging to subcycle n+1 will fire prematurely in subcycle n. If the subcycles remain

separated, this is not a problem. However, if this occurs on a large scale, n and n+1 may col-

lapse into a single subcycle. As the number of positions in which the polarity stays the same

increases, this merging of subcycles becomes more likely, as there are fewer non-switching

positions to drive strong separation between subcycles. Thus, when two similar items fire

in consecutive subcycles, it is more difficult to maintain the separation between those items,

accounting for the observed increase in perceived complexity as proximity between similar

items increases [Lew02, Lee03, Kaa04].

In the DLT [Gib98, Gib00], capacity constraints emerge from the general assumption of

a fixed pool of resources. The TPARRSE model provides a more detailed proposal for the

nature of such capacity limitations. However, we have seen that capacity limitations per se

cannot explain all of the complexity phenomena. Rather, the underlying structure of WM in

the TPARRSE explains interference effects and general distance effects, while the proposed

manipulations over those representations explain the specific pattern of complexity effects

observed for doubly center-embedded clauses.
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Chapter 17

Conclusion

I first speculate briefly on future directions of research related to the TPARRSE model,

and then summarize the most important points of this dissertation.

17.1 Future TPARRSE Research

As for explaining behavioral data, I have concentrated on complexity effects in the present

work. I believe that the proposed TPARRSE representations could also explain reanalysis

phenomena - namely why some ambiguous sentences are easy to reanalyze, and some are

not. Current explanations assume that reanalysis operations are carried out a representation

corresponding to a syntactic tree. In contrast, I propose that reanalysis operations are

carried out over the WM lists. When an unexpected word or phrase occurs, the information

encoded on the WM lists is reinterpreted to generate a new RR encoding of the previously

processed material. If the established WM representation is incompatible with the correct

interpretation, the sentence will be difficult to reanalyze. One avenue of future work will focus

on specifying the nature of these reanalysis operations in detail, to allow a comprehensive

account of the standard reanalysis cases.

Thus far, I have concentrated on the representations that encode hierarchical structure,

and have left the specification of the neural implementation of the parsing algorithm for

future work. In general, I assume that the parsing rules are implemented by gating nodes
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which appropriately direct the flow of activation to neural areas which implement the WM

variables, the WM lists, and the merge, bind, Append and Delete operations. I assume that

the ability to perform these basic operations is innate. Thus language acquisition entails

learning to store the relevant information in WM variables, and to invoke the appropriate

primitive operations. A recent model of sequential-task learning, in which the basal ganglia

gate individual “stripes” of prefrontal cortex [Ore03], seems ideal for this task. A stripe

could correspond to a WM variable. Perhaps such an implemented model could develop the

functionality of CurSc, CurRR, etc., as well as triggering of the required control operations.

Therefore, future work on a neurally plausible implementation of the proposed parsing rules

will focus on the application of this learning algorithm.

I would also like to pursue experimental investigations into the TPARRSE model. The

model predicts that N3-type should not have an effect at the final verb for an RC/RC that

could have been an NC/RC. This will be tested in a self-paced reading study. An EEG

study has shown that theta-band amplitude increases as a sentence is processed [Bas02].

This amplitude may index syntactic working memory load [Bas02]. If so, this amplitude

should be sensitive to the syntactic structure of a sentence. For example, working memory

load should decrease following the completion of a center-embedded clause, implying that

theta-band amplitude should also decrease at that point. This prediction will be tested in

an EEG study

17.2 Conclusion

The goals of this work have been three-fold: (1) to advocate a particular approach to

computational modeling; (2) to apply this approach to the problem of letter-position encod-

ing; (3) to apply this approach to the problem of sentence parsing and the representation of

hierarchical structure.

The approach places an emphasis upon developing computational theories, rather than on
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implementation of models. It emphasizes first understanding mature neural systems, rather

than developing learning algorithms. Understanding what the mature system is doing would

then provide strong constraints for investigations into how the system develops, because the

endpoint is known.

The approach is truly interdisciplinary. Strong emphasis is placed on explaining the

details of a wide range of relevant behavioral data. Such data provides clues as to what

algorithms the brain is using. Although brain imaging is amazing, revolutionary, etc., I

believe that behavioral data actually reveal more about how the brain is doing what it is

doing. Consideration of neural architecture also provides information/constraints on what

algorithms the brain is using. Knowledge of computational theories of neural processing

provides the building blocks for formulating a model that meets the behavioral and neuro-

biological constraints.

The resulting model of a particular task specifies how information is mapped onto neural

representations, and how one type of neural representation is transformed into another type.

This abstract approach allows consideration of the big picture, without being limited by

implementational constraints. Ideally, it leads to novel, verifiable predictions.

I first applied this approach to understanding how the brain encodes letter order during

visual word recognition. The architecture of the visual system determined the lowest level of

the model. Behavioral data on letter perceptibility, word priming, error patterns, and visual-

field effects provided information about how this initial representation is transformed into a

lexical representation. The goal of explaining this behavioral data led to the SERIOL model.

The fact that the model led to an experiment which identified the source of the asymmetry of

the length effect, which had been a subject of debate for half a century [Mel57, Bou73, Ell88,

Jor03, Naz03], confirms the viability of the model and of the overall approach. These results,

in conjunction with the experimental results on the N effect, demonstrate that although the

SERIOL model is abstract, it is highly specific.

I have also applied this approach to the question of how hierarchical information is en-
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coded during sentence processing. This is a more difficult task because (1) the problem is

much harder and (2) there is much less relevant data available. Neural constraints were

limited to generalities - fixed connectivity and local processing, although imaging data on

oscillatory phenomena associated with verbal working memory were suggestive. Behavioral

data was primarily in the form of complexity effects. The consideration of these factors, the

computational demands of the task, and insights from the SERIOL model have led to the

TPARRSE model. This model is unique in several ways: (1) the use of a neurobiologically -

motivated sequential representation [Lis95] for stack-like and queue-like processing; (2) the

dichotomy of representations used in temporal WM versus the thematic tree; (3) an account

of complexity effects based on the specifics of WM representations and manipulations. It is

hoped that this model too will lead to informative experimental results.
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