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Abstract. Implicit Neural Networks (INRs) have emerged as powerful006 006

representations to encode all forms of data, including images, videos, au-007 007

dios, and scenes. With video, many INRs for video have been proposed008 008

for the compression task, and recent methods feature significant improve-009 009

ments with respect to encoding time, storage, and reconstruction quality.010 010

However, these encoded representations lack semantic meaning, so they011 011

cannot be used for any downstream tasks that require such properties,012 012

such as retrieval. This can act as a barrier for adoption of video INRs013 013

over traditional codecs as they do not offer any significant edge apart014 014

from compression. To alleviate this, we propose a flexible framework015 015

that decouples the spatial and temporal aspects of the video INR. We016 016

accomplish this with a dictionary of per-frame latents that are learned017 017

jointly with a set of video specific hypernetworks, such that given a la-018 018

tent, these hypernetworks can predict the INR weights to reconstruct the019 019

given frame. This framework not only retains the compression efficiency,020 020

but the learned latents can be aligned with features from large vision021 021

models, which grants them discriminative properties. We align these la-022 022

tents with CLIP and show good performance for both compression and023 023

video retrieval tasks. By aligning with VideoLlama, we are able to per-024 024

form open-ended chat with our learned latents as the visual inputs. Ad-025 025

ditionally, the learned latents serve as a proxy for the underlying weights,026 026

allowing us perform tasks like video interpolation. These semantic prop-027 027

erties and applications, existing simultaneously with ability to perform028 028

compression, interpolation, and superresolution properties, are a first in029 029

this field of work.030 030

Keywords: Implicit Neural Representation · Video Compression · Video031 031

Understanding032 032

1 Introduction033 033

In today’s age of content explosion, large quantities of data are created every034 034

second, and storing them reliably and efficiently is of utmost importance for035 035

many applications. A scalable compression technique enables companies to pro-036 036

vide better services at reduced cost and helps the end consumer by improving037 037

their access to high-fidelity data in addition to decongesting the network. Since038 038
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Fig. 1: Existing INRs for video (left) typically take some time-coordinate, or time and
positional coordinates and train a single network to reconstruct a video. In contrast to
these, we propose an INR system where a dictionary of implicit latent codes is learned
for a video, one latent per frame. The latents are aligned to the image features of a
large vision model, while simultaneously an INR system is learned which, given these
latent codes, generates a positional INR which can reconstruct the frame. With this
framework, we successfully develop an INR which performs both reconstructive tasks
like compression, and semantic downstream tasks like retrieval and interactive chat.

the early 90s, several compression techniques have been created and widely de-039 039

ployed for this exact purpose. Out of these, JPEG [53] for images, HEVC [47],040 040

AV1 [12], and H.264 [54] for videos have emerged as the most popular choices,041 041

owing to their simple design and scalable performance.042 042

In the past decade, the rise of deep learning led to a renaissance in computer043 043

vision, eventually impacting the visual data compression landscape [4, 15, 30].044 044

Despite their success, these ML-based codecs have not seen widespread adop-045 045

tion like traditional codecs. This is in part due to failure to generalize, since ML046 046

codecs trained on large datasets can give sub-optimal compression for data points047 047

that differ significantly from their training set [7,57]. Implicit Neural Represen-048 048

tations (INR) attempt to avoid the generalization issue by operating internally.049 049

Instead of training large models that learn to identify general patterns in train-050 050

ing data and apply them to specific out-of-distribution data, implicit techniques051 051

involve training a small model to exploit the specific patterns for the given data052 052

point. That is, for video compression, this approach would train one network per053 053

video, and for image compression, it would train one network per image. The054 054

resulting model is essentially a function that represents the underlying signal in055 055

spatial/temporal space.056 056

Despite these advances, neural video compression remains unsolved. Various057 057

methods address issues of compression quality [9, 22], but two crucial questions058 058

remain unanswered – (i) how to scale for longer videos given architectural rigidity059 059

and (ii) how to reduce long encoding time due to training a network for every060 060
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video. Although recent works make some progress for these [28], the training time061 061

is still quite long, and INR behavior for lossy compression is not well-understood,062 062

limiting potential for practical adoption.063 063

Furthermore, these approaches for INR tackle only one axis of the problem,064 064

i.e., how to formulate video INRs with the primary goal of compression. These065 065

aim to solve problems like long encoding time directly, by reducing it. In con-066 066

trast to these works, we instead aim to justify the compute and time needed067 067

to train implicit representations. So, as a step towards ML-based codecs with068 068

compelling real-world potential, we present Latent-INR – a new flexible frame-069 069

work for formulating video INRs, where in addition to compression, the INR070 070

enables downstream tasks like retrieval and video question answering, without071 071

the need to decode the video. Our framework consists of two parts: (i) a dic-072 072

tionary of learnable latents, one for each frame, and (ii) a set of hypernetworks073 073

learned on the entire video which, given a latent as input, predict frame-specific074 074

weight modulations on the shared base network. This shared base takes a spatial075 075

coordinate grid as input and outputs the specific frame076 076

This design allows us to separate the spatial and temporal aspects of the077 077

video by modeling them separately. We can view the set of hypernetworks as a078 078

base model that learns the general structure and style of the video, while each079 079

learned latent conditions it to output a specific frame. The latent here acts as a080 080

proxy for the weights of the frame-specific INR. This property is apparent from081 081

the video interpolation ability of our model - a task that other video INR repre-082 082

sentations struggle to perform. Like other video INRs, our method is competitive083 083

for compression, but uniquely retains the properties of original coordinate-based084 084

INR. That is, our continuous representations of frames allows for spatial interpo-085 085

lation, which can be leveraged for superresolution and a decoding paradigm we086 086

refer to as “any-resolution inference.” That is, at inference/decoding time, our087 087

same model, with no changes to latents or architecture, can decode a video at088 088

any resolution - a key feature missing from traditional codecs. This latent is also089 089

quite flexible, and according to the procedure shown in Figure 1, we can align090 090

it with the features from a large vision model, such as CLIP [33] to encode the091 091

visual semantics of the frame while retaining nice properties such as alignment092 092

with CLIP text embeddings. This allows for a whole spectrum of applications,093 093

including frame, concept, and whole video retrieval with text queries.094 094

In summary, our framework gives that extra edge apart from compression to095 095

ML-based codecs, paving the way for their widespread adoption. Concretely,096 096

– We propose an auto-decoder latent-based framework with spatio-temporal097 097

decoupling for implicit video representations. Compared to other video INR098 098

methods, this is a new way of formulating the problem.099 099

– Our system has good compression performance, competing well with other100 100

ML-based codecs for PSNR, BPP, and decoding speed while also enabling101 101

any-resolution inference.102 102

– The learnt latent embeddings from our framework demonstrate internal gen-103 103

eralization from the encoded dataset, achieving video interpolation, a task104 104

that other INR based methods struggle to achieve.105 105
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– We align our latents with large foundational models like CLIP [33], thus106 106

making our representations useful for retrieval tasks.107 107

– We align our entire dictionary with video features for VideoLlama [56] to108 108

enable chat-style applications, including video question answering and cap-109 109

tioning.110 110

2 Related Work111 111

Implicit Neural Representations (INR’s) are a class of neural networks112 112

designed with the intention of representing a given data point or dataset perfectly113 113

rather than exploiting general patterns and generalizing for unseen data. SIREN114 114

[42] pioneered the use of periodic activations to train simple MLP’s that worked115 115

well across images, SDF and audio. This was followed by a host of works that116 116

improved the training process of INR’s by making them faster [32, 35, 50] work117 117

across multiple scales [36] and encode multiple data points [14]. Models that used118 118

meta learning [46, 49] started gaining ground as they offered the advantages of119 119

compression along with generalization. [38,48] further made improvements to this120 120

line of work by directly learning sparse-INR’s leading to improved compression121 121

and improved optimization by dataset selection respectively.122 122

Hypernetworks are a class of networks optimized for predicting parameters123 123

of another network, with the aim of generalizing across unseen tasks [16]. Some124 124

utilized these for scenes [13, 43, 44]. Trans-INR [11] introduced the paradigm125 125

of using a transformer based hypernetwork to convert data directly from image-126 126

space to INR’s. [21] improved upon this idea and made the important observation127 127

that it is sufficient to modulate only the first hidden layer of an INR to represent128 128

a dataset of points. Unfortunately, these hypernetworks act on input data points129 129

which require test-time optimizations, making them unsuitable for compression130 130

tasks. [39] try to overcome this with an “auto-decoder” framework, where learn-131 131

able latents represent a dataset of videos, with each latent corresponding to132 132

a single video, such that no encoder is needed. Others have investigated this133 133

paradigm for a variety of modalities [5,37,40]. Still, the lack of decoupling space134 134

from time prohibits the method from scaling to real-world videos.135 135

Video INRs have recently gained popularity for compression. [9] was the136 136

first implicit representation which modelled a video as a function mapping the137 137

temporal coordinates to the corresponding frames. Later works [2, 8, 18, 25] it-138 138

erated on this method, providing improvements in performance. [22] enhanced139 139

this concept by incorporating hash-grid [32] representations to speed up encoding140 140

times. NIRVANA [28] represented a video using a series of smaller INR models141 141

trained in an autoregressive manner to scale for longer videos.142 142

Video Interpolation has been a fundamental task in computer vision,143 143

helping in creating smoother visual experiences. Over the past few years, deep144 144

learning based methods have vastly improved the quality of these interpola-145 145

tions [19, 41].However, current INR-based video encoders lack this feature (see146 146

discussion in [8, 10], for example), hindering their widespread usage.147 147

Video Retrieval is an essential process in the digital media landscape,148 148

where the objective is to efficiently search and extract specific video content from149 149
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Fig. 2: We propose a new framework for video INR models by decoupling the spa-
tial and temporal aspects of modeling. Our framework consists of auto-decoder based
learnable latents that modulate the base network using a hypernetwork, via low-rank
modulation. Once encoded, the resulting latents act as a proxy for the underlying
weights of the representation. On the right, we show the use of these latents for addi-
tional tasks like video interpolation. By aligning these latents to the embedding space
of foundational models like CLIP and VideoLlama, we also perform retrieval and chat.

expansive datasets. The complexity of understanding and indexing diverse video150 150

content has traditionally posed significant challenges. However, with the advent151 151

of machine learning-based methods, there has been a remarkable improvement152 152

in both the accuracy and efficiency of video retrieval systems [1, 3, 26]. These153 153

advances are limited to systems requiring an additional model, which can act as154 154

a burden on the system as they do not compress the data.155 155

3 Approach156 156

3.1 Background157 157

Implicit Neural Representations parameterize a function,158 158

fθ : X → Y where X = {(xi, yi)|0 ≤ xi ≤ W, 0 ≤ yi ≤ H}159 159

represents the coordinate space, with height H and width W, and Y represents160 160

the underlying signal. In the standard case of an RGB signal, Y can be repre-161 161

sented as162 162

Y = {(R,G,B) | R,G,B ∈ [0, 255]}163 163

This parametrization is usually trained with a standard MSE-loss, where we try164 164

to minimize the MSE-loss ||fθ(X) − Y ||2. For a given video V ∈ RN×H×W×3165 165

containing N frames, [42] represents them as pixels moving across time, i.e.,166 166

fθ(x, y, t) = Yt167 167
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where Ti denotes the boundary of a step. Other formulations exist which168 168

learn frame-based [9] or patch-based [28] representation, yet in each of these169 169

formulations, the focus is on representing the underlying data, with the added170 170

motivation of compressing it. However, none of these systems are designed with171 171

the goal of making these representations, fθ, useful for downstream tasks. In-172 172

stead, we utilize a learnable latent, z, as a part of an auto-decoder framework,173 173

along with a hypernet h to not only compress but to create useful representa-174 174

tions.175 175

fθ((x, y)|θt) = Yt θt = h(zt) (1)176 176

The resulting latent z can be used for various downstream tasks like interpolation177 177

and retrieval, as we show in our work.178 178

3.2 Latent-INR179 179

Directly predicting the weights θ of the base network f , using the hypernet180 180

h, is expensive, parameter-heavy, and unsuitable for compression. Hence, we181 181

follow [45] [37] and instead predict low-rank matrices, which are then applied to182 182

the base network weights. This type of modulation acts as a form of subnetwork183 183

selection, analogous to systems proposed in [17] [34]. For a base network f with184 184

L layers, our formulation now looks like185 185

fθ((x, y)|θl1t , θl2t ...θlLt ) = Yt

θlt = σ(P l ×Ql) ◦ θl hl(zt) = [P l, Ql]
(2)186 186

where θl represents the weights of the l-th layer and θlt denotes the modulated187 187

weights for frame t. Here, σ signifies an activation function on the matrix-product188 188

of low rank matrices P l , Ql, which are of dimensions RK×r and Rr×K where K189 189

is the width of the base network fθ and rank r ≪ K. These matrices are respon-190 190

sible for adjusting the weights θl as dictated by the corresponding hypernetwork191 191

hl. Note that all hypernetworks use the same latent zt ∈ RD as input. The rank192 192

r and the number of modulated layers essentially act a hyperparameters that193 193

control the compression-performance trade-off.194 194

195 195

3.3 Model architecture196 196

In our experiments, both the base network fθ and hypernetworks hl are feedfor-197 197

ward MLP’s that take in a coordinate input. Following [28], we also propose a198 198

variation to the base network with an additional convolutional up-sample block,199 199

which accepts coordinates of centroids as input and gives frame patches as out-200 200

put. We use the standard ReLU for base network and tanh for the hypernetwork201 201

as the respective non-linearities. The latents Z are initialized to be a standard202 202

normal with small variance, as we found empirically that this made the conver-203 203

gence faster. The complete model architecture is presented in Figure 2. For more204 204

details, see Appendix.205 205
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3.4 Model Compression206 206

We train this entire system end-to-end with MSE-loss as the objective function.207 207

Once trained, we apply a standard quantization to all network parameters, fur-208 208

ther reducing the required storage. Given ϕ, a flattened parameter tensor, we209 209

transform it according to the following equations210 210

ϕi =

⌈
ϕi − ϕmin

2b

⌋
scale =

ϕmax − ϕmin

2b
(3)211 211

where the ⌈·⌋ (round) operation converts its argument to the nearest integer212 212

as dictated by bit width b of the quantization process. We also store the scale,213 213

ϕmax, ϕmin and the parameter shapes. These quantized values for all parameters214 214

are concatenated and further compressed using Huffman encoding.215 215

3.5 Interpolation216 216

Given a video of N frames and a scale α, the task of interpolation involves217 217

creating α · N coherent frames that essentially increase the FPS of the video.218 218

Once we encode a video using our framework, we do linear interpolation on219 219

the frame latents {zt} and pass the resulting latent through the hypernetwork.220 220

This gives us the weight modulation required in the INR, and the updated base221 221

network is used to obtain the interpolated frames.222 222

zinter = βi · zt + (1− βi) · zt−1 Yinter = fθ(X;h(zinter)) (4)223 223

where,224 224

βi ∈ [
1

α
,
2

α
, ...,

α− 1

α
]225 225

essentially generating α−1 frames between any two given frames. We train with226 226

held out frames and show results for α ∈ {2, 4, 8}.227 227

3.6 Downstream Tasks228 228

Retrieval. Video retrieval involves searching and retrieving videos or clips from229 229

a large database based on similarity to given user search queries that are usually230 230

in the form of text. This can be viewed as a function R mapping query q to a231 231

set of corresponding videos V .232 232

R : q → V (5)233 233

The function R can use a similarity measure like cosine, euclidean, or nearest234 234

neighbors to retrieve closest matches. We encode a dataset of videos using our235 235

Latent-INR framework and use the resulting trained latents as our frame level236 236

representation. To ensure that the latents share the same space as the text237 237

queries, we add a cosine similarity loss between the latents and the CLIP image238 238
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Fig. 3: We plot the rate distortion curves on PSNR and SSIM to compare compression
with other methods. We observe that our large model achieves comparable PSNR to
current SOTA [22]. Note that, while not plotted here, our decoding FPS is superior.
Additional per-video results are available in the Supplementary.

embeddings of the corresponding frames. Our loss function during encoding now239 239

becomes:240 240

L = LMSE + λ · Lclip(Zt, Z
clip
t ) (6)241 241

where Zclip
t is the CLIP Image embedding of the input frame and λ controls the242 242

strength of this loss. We set the value of λ to be 0.01 in all our experiments.243 243

Chat. We modify the formulation from retrieval slightly, aligning our dictionary244 244

of features to VideoLlama [56] instead of CLIP. Since the shapes are not com-245 245

patible, we treat our latents as tokens and project the dimension to match the246 246

VideoLlama space. With this, we are able to integrate with the powerful LLM,247 247

substituting our latents for the raw video input tokens. We can then perform any248 248

task that VideoLlama can, in particular question answering and captioning. We249 249

wish to emphasize that our latents are flexible – we can align well with any large250 250

model, such that to improve the VQA or captioning performance, one would251 251

only need to align with a more powerful or efficient model.252 252

4 Experiments253 253

4.1 Video Compression254 254

We perform comparative analysis for video compression on the standard Ultra255 255

Video Group (UVG) dataset [31].256 256

This dataset comprises seven high-quality videos, each featuring diverse scenes257 257

shot at 120fps over a duration of five seconds. While most videos contain 600258 258

frames, the ‘shakendry’ video is an exception with 300 frames, all at a resolu-259 259

tion of 1080x1920. To assess the visual quality, we use standard metrics such260 260

as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity index (SSIM).261 261

For measuring the storage efficiency of these methods, we use the standard bits262 262



ECCV 2024 Submission #2356 9

Fig. 4: With the same model, we can
perform inference at any resolution, with
speeds competitive or beating HEVC. We
show sample frames for each resolution.
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Fig. 5: We achieve high quality recon-
struction and are able to reproduce even
the finer details like water dountains and
the hair on the horse.

per pixels (BPP) as our metric. As mentioned earlier, we use feedforward MLPs263 263

for both the base network fθ and hypernetworks hl. The base network consists264 264

of 6 layers with layer size of 512 and each hypernetwork that modulates a se-265 265

lected layer has one hidden layer of size 128 with tanh non-linearity, followed by266 266

the output layer. In the case where we use patch centroids as inputs, we add a267 267

convolutional layer followed by a pixel-shuffle [27] for upsampling.268 268

We use hash-grids [32] for positional encoding due to their high quality recon-269 269

struction, although it should be noted we can use other schemes, such as Fourier270 270

features [50] to exchange some quality for faster training (see Appendix). We271 271

compare our method against NeRV [9] and NVP [22], with each of them encod-272 272

ing a video per model, and the results are presented in Figure 3. We observe273 273

that compression from our framework is comparable to baselines at similar bpp274 274

ranges, in addition to the other downstream benefits it offers.275 275

Due to our architecture, we are also able to operate in a novel paradigm,“any-276 276

resolution inference.” Without changing the network architecture at all, we277 277

can decode the video at arbitrary smaller resolutions, as well as at higher res-278 278

olutions (super-resolution) by leveraging the continuous resolution property of279 279

our hash grids and MLPs. We show our FPS decoding at various resolutions280 280

in Figure 4, although it should be noted that HEVC, the standard codec we281 281

compare to, must encode separately for every resolution while we can store all in282 282

the same model. We show some sample reconstructions in Figure 5 to showcase283 283

our method’s fidelity.284 284

4.2 Video Interpolation285 285

In our framework, learned latents serve as a mapping for the model weights,286 286

enabling valid frame outputs upon interpolation. We conduct experiments on287 287

two datasets: the “big buck bunny sequence" and a selection of ten videos from288 288

the Taichi test set. Frames are held out at a scale stride α during encoding.289 289

During testing, we interpolate the resulting latents on the held out frames and290 290

evaluate their performance.291 291

We use the same INR models utilized for compression as our baselines, with292 292

a reduction in network layer size and modulating mask rank. While NeRV [9]293 293

and NVP [22] interpolate time positions used as input, NIRVANA interpolates294 294
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Table 1: Interpolation Performance
(PSNR), for different scale strides (α).

Dataset α NeRV NIRVANA NVP Ours

Bunny

2 15.92 19.14 20.10 33.17

4 15.43 18.90 19.11 28.08

8 13.68 18.67 18.08 25.88

TaiChi

2 16.91 18.19 19.33 35.13

4 17.14 17.71 18.52 31.84

8 15.72 16.21 17.7 27.72

Table 2: Reconstruction and retrieval
ablations of CLIP on MSR-VTT.

Reconstruction Retrieval (T2V)

CLIP λ PSNR R@1 R@5 R@10

0.0 30.03 0.1 0.3 0.8

1e-3 29.83 28.4 50.8 60.6

1e-2 29.46 30.2 52.4 61.0

1e-1 28.93 29.7 51.5 61.8

1.0 28.61 30.2 51.4 61.3
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Fig. 6: We compare interpolation with Latent-INR to NVP and NIRVANA. We find
that our method has less artifacts and smoother motion in the interpolated frames.

the weights. In Table 1, we observe that while other INR methods fail to produce295 295

perceptual frames at scale of 2, our model can give reasonable interpolations even296 296

at a scale of 8. We confirm this qualitatively also, by inspecting interpolated297 297

frames such as those shown in Figure 6. Our outputs have noticeably fewer298 298

artifacts, and while imperfect, handle the motion better. Compared to other299 299

video INR methods, our approach of using learnt latents facilitates the model to300 300

have an internal representation of the video content.301 301

4.3 Downstream Tasks302 302

Retrieval303 303

To showcase the flexibility of our latents, we align them with CLIP and evalu-304 304

ate their performance on standard retrieval tasks. We utilize the validation set of305 305

COIN dataset [51] and a subset of Howto100m dataset to evaluate performance.306 306

We first encode each video in our split using our Latent-INR framework with307 307

a loss that encourages the latents to be closer to the CLIP-Image embeddings308 308

of the frames, in addition to the standard reconstruction loss. We consider two309 309

distinct problems – retrieval of the correct class across all videos and retrieval310 310
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Table 3: Class and segment retrieval. Our
method often exceeds CLIP performance.

Class Level Segment Level

Dataset Method R@1 R@5 R@10 R@1 R@5 R@10

COIN
CLIP 31.60 44.70 50.70 6.60 13.10 16.50

Ours 34.40 45.10 50.50 6.40 13.30 17.00

HowTo100m*
CLIP 31.58 36.84 47.37 21.13 37.32 40.85

Ours 31.58 42.11 47.36 23.24 43.67 48.60

Table 4: Whole video retrieval. Our
method matches CLIP performance.

Text to Video Video to Text

Dataset Method R@1 R@5 R@10 R@1 R@5 R@10

MSR-VTT
CLIP 30.10 51.50 61.50 24.70 49.30 61.90

Ours 30.20 52.40 61.10 25.40 49.90 61.70

ActivityNet*
CLIP 38.4 74.8 86.6 36.2 73.6 84.8

Ours 38.5 73.9 86.4 36.1 73.5 84.7
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.314 .313 .311.311 .311 .311 .310 .310

.322 .319 .317.317 .316 .315 .313 .312
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Fry Salmon

Cross the rope to wrap the bolt

Spray towards the fire

Put the clothes neatly on an ironing table

Fig. 7: Nearest Neighbours for segment-level matching of sample queries from COIN
validation set. The green boxes denote the true positives and the red ones are false pos-
itives. We show the inner product similarity between the image and the corresponding
query inside the green boxes at the bottom of each image

of the correct segment within a video. These two use cases cover both ends of311 311

the spectrum, from localizing an event in a given video to searching for similar312 312

events across videos. We utilize the standard recall at K, where we have selected313 313

k ∈ [1, 5, 10] to evaluate the efficacy of our method. The results are presented314 314

in Table 3. We can see that our method matches CLIP in its retrieval perfor-315 315

mance and even exceeds it in some cases. The qualitative results are presented316 316

in Figure 7, where we visualize the top 5 nearest neighbours of the text query317 317

that map to trained latents across all videos. Further results can be found in the318 318

supplementary.319 319

We even find that our method can perform whole-video retrieval on MSR-320 320

VTT [55] and a custom 1,000 video sample from the ActivityNet Captions [23]321 321

‘val-1’ split. We average-pool both our features and CLIP features (similar to [6])322 322

and use CLIP features computed on video captions. In Table 4 we find that our323 323

retrieval is quite competitive to retrieval using the CLIP features themselves,324 324

showing that the learnt latents have similarly good averaging and summarizing325 325
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Fig. 8: Latent-INR LLM. We show results for aligning our learned latents to a Vide-
oLlama model, which allows for interactive chat. We show a success case (left) and
failure case (right) each for a generic (top) and more targeted prompt (bottom).

properties even over longer (180 seconds) videos, as well as alignment even to326 326

the paragraph-length captions used in ActivityNet.327 327

Video-based Chat328 328

We evaluate the performance of our trained latents, when aligned to inter-329 329

mediate VideoLlama features. This alignment enables access to the full scope of330 330

text chat with video understanding. We show a sample of such results, in the331 331

form of text and video prompts with text response, in Figure 8. These results332 332

show the LLM is able to understand video inputs when provided in the form333 333

of INR latents rather than raw video tokens. While not perfect, we infer the334 334

majority of the shortcomings of this system are primarily the fault of the LLM335 335

we align to.336 336

Furthermore, on the basis of our success in aligning with CLIP and now337 337

VideoLlama, we believe our latents can be aligned to any representation. So, for338 338

more powerful chat, one simply needs to align to a more powerful chatbot. We339 339

thus provide these results two purposes. First, we show our model’s capability340 340

to power efficient open-ended captioning and question answering, while still re-341 341

taining reconstruction capabilities. Second, we point to the immense potential of342 342

our model (or a similar paradigm) to continue to be leveraged with such models343 343

as they expand in their size and performance.344 344

4.4 Visualizing Trained Latents345 345

The trained latents, representing the modulated frames, offer intriguing insights346 346

when visualized in a reduced dimensional space. Utilizing Uniform Manifold Ap-347 347

proximation and Projection (UMAP) [29] we project the embeddings Zt into348 348

a 2D space, allowing for an intuitive interpretation of their relationships. In349 349

Figure 9, we plot the UMAP for three distinct videos from the UVG dataset:350 350

‘Bosphore,’ ‘Honeybee,’ and ‘Jockey,’ each offering unique characteristics for ex-351 351

amination. ‘Bosphore’, characterized by its slow-moving object and relatively352 352
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Fig. 9: We visualize the trained latents Zt projected to 2D using UMAP.We show that
the trained latents from our framework capture meaningful semantics of the underlying
data.Left to right: Latents for Bosphore, Honeybee and Jockey from UVG dataset. Dark
to Light color indicates frame numbers ranging from 0 to 600.
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Fig. 10: Ablations to study the effect of layer modulations in the hypernetwork and
the effect of patch size on reconstruction quality (PSNR).

static foreground, exhibits a smooth latent trajectory in the 2D space. This353 353

smoothness reflects the minimal variance in frame content, suggesting that our354 354

method effectively captures the subtle dynamics of the scene. In contrast, the355 355

‘Honeybee’ video, with its repetitive frames, results in latents that cluster tightly356 356

together, signifying our model’s ability to recognize and encode repetitive pat-357 357

terns efficiently. The most dynamic of the three, ‘Jockey’, presents a more com-358 358

plex scenario with rapid changes in both the foreground and background. Here,359 359

the latents form clusters around similar scenes, yet maintain a discernible trajec-360 360

tory through the 2D space. These visualizations illustrate the semantic richness361 361

embedded within the latents obtained from our framework even when trained362 362

only for compression.363 363

5 Ablation Studies364 364

CLIP λ. We investigate the impact of the large model alignment weighting365 365

term on both reconstruction and retrieval for MSR-VTT. In Table 2, we find366 366
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that PSNR decreases slightly as λ increases. However, the retrieval performance367 367

seems to saturate at λ = 0.01. So, we suggest not tuning the λ too high for any368 368

application, given the diminishing returns.369 369

Layer Modulations. In our approach, we have separate hypernetworks that370 370

modulated the selected layers. To evalute the importance of each, we design an371 371

experiment where they are modulated in isolation. We use the same setup as372 372

the compression experiments with the modulating mask rank fixed at 20 for all373 373

models. In Figure 10, we can clearly see that the first few layers have a significant374 374

impact on the encoding performance. This matches the observations from [21]375 375

about the out sized impact of first few layers while modulating INRs.376 376

Patch Size. Scaling to higher-resolution videos can be memory-intensive. This377 377

is particularly true when employing memory-demanding positional encoding378 378

schemes such as hash-grids [32]. To investigate this aspect further, we experiment379 379

with models that process centroids of fixed-size patches, directly predicting the380 380

corresponding frame patches, to save memory. From Figure 10 we observe that381 381

smaller patches have similar performance, with a steep drop observed for higher382 382

patch sizes.383 383

6 Conclusion384 384

Limitations. Our latents are somewhat restricted by the quality of the em-385 385

beddings they are aligned to. Additionally, more work is still required to match386 386

standard codecs in terms of storage and encoding time, in spite of impressive387 387

gains in terms of quality and decoding speed. Future work could both improve388 388

the compression, and leverage more powerful vision models.389 389

Broader Impacts. Our method for simultaneously compressing and learning390 390

useful features for recognition could reduce the need to decode videos for these391 391

tasks and thus save computational resources, cutting costs and helping the envi-392 392

ronment. However, work that advances performance for compression and recogn-393 393

tion also has applications in surveillance and warfare.394 394

In this work, we propose a new framework, Latent-INR, where we decou-395 395

ple the temporal aspect from the spatial into a dictionary of learnable latents.396 396

These auto-decoder based learnable latents modulate the layers of the base INR397 397

network via low-rank modulation using hypernetworks. Latent-INR is not only398 398

well-suited to video compression, but the resulting latents learn an internal rep-399 399

resentation of the data they encode that lends itself to SOTA interpolation for400 400

video INRs. Additionally, we also augment these latents by training them to401 401

be aligned with CLIP and VideoLlama, which allows us to bring the power of402 402

foundational models to compressed representations, and perform retrieval and403 403

chat-based applications like captioning and question answering. Our work thus404 404

opens up new possibilities of research in the implicit neural space where down-405 405

stream tasks can be performed by these model without the need for decoding.406 406
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Latent-INR: A Flexible Framework for Implicit407 407

Representations of Videos with Discriminative408 408

Semantics409 409

Supplementary Material410 410

A Network Architecture411 411

Base Network: We use an MLP with 10 layers, width of 512 and ReLU non-412 412

linearity as our base network fθ.413 413

Hypernetwork: All hypernetworks hl used to modulate a layer l of the base414 414

network have 3 layers with a hidden dimension of 512 and tanh as non-linearity.415 415

Unless specified, we only modulate the first hidden layer of the base network.416 416

Latents: Each latent Zt corresponding to a frame has a dimension of 512 and417 417

is initialized to be standard Gaussian before training. We set our learning rate418 418

as 5e-4 and used the standard Adam optimizer without any weight decay.419 419

B Compression420 420

B.1 Fourier Features421 421

We use the multiresolution hash grid for positional encoding in all our models.422 422

In table 5 we show results for full coordinate resolution using fourier features for423 423

positional encoding. Due to lack of a hash grid, the resulting models train upto424 424

30% faster, but at the cost of inferior reconstruction.425 425

B.2 Quantization426 426

Instead of quantizing all components equally, we notice that retaining the latents427 427

and the base network at full precision provides better reconstruction at negligible428 428

additional storage.429 429

B.3 Effect of latent dimension430 430

To study the effect of latent dimension on compression, we train models by431 431

varying it and encode the “bosphore” video from UVG dataset. The results are432 432

presented in Figure 11. We notice that there is positive gains till dimension 512433 433

and diminishing returns thereafter. Hence we choose that as our default latent434 434

size in all our experiments.435 435
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Fig. 11: Effect of varying latent dimension across different bitrates.

C Video Retrieval436 436

We perform two retrieval tasks on the COIN dataset [51] - class-level, and437 437

segment-level. In both settings, we use the standard val set as the database.438 438

For class-level, we use the distinct video-level task names in COIN as our query439 439

set. For segment-level, we use the set of distinct clip-level captions in COIN as440 440

our query set. We get the CLIP ViT-B/32 text embeddings of each of these441 441

captions, and these become our query vectors. For database vectors, we use the442 442

per-frame learned latents for each video in the database. For comparison with443 443

CLIP, we replace these database vectors with the CLIP ViT-B/32 image em-444 444

beddings for each frame. For class-level retrieval, we consider a result frame a445 445

positive match if it belongs to a video with the same class label as the queried446 446

caption. On the other hand, for segment-level retrieval, we consider a result447 447

frame a positive match only if it belongs to a segment with the same caption as448 448

the query. Further, this search is done over all videos. We use FAISS [20] as our449 449

retrieval implementation and use cosine similarity as the distance metric.450 450

We perform whole-level video retrieval as described in the main paper. For451 451

text, we use CLIP to compute a feature for the paragraph caption. For the video,452 452

we compute a per-frame feature for CLIP, or use the learnt latents from Latent-453 453

INR. For a single video feature, we then average these per-frame features. We454 454

normalize all features, and perform retrieval by finding the closest embeddings455 455

using dot product similarity. Both text-to-video and video-to-text are performed456 456

in the same manner, the only difference being which features are used as query457 457

and key.458 458

Fig.12, shows the retrieval results on the COIN data in the segment-level459 459

setting. It can be seen that a majority of failure cases could be attributed to460 460

visual similarity across different tasks when seen at an individual frame level.461 461

D Video Chat462 462

We interface our latents with learned features from Video-Llama [56] to enable463 463

interactive chat with the compressed videos. In [56], the N video frames are464 464
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.324 .323 .322.322 .321 .320 .320 .319
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.359 .356 .355.355 .353 .350 .350 .349

.327 .326 .324.324 .324 .324 .323 .323

Put nicely and align the quilt and the cover

Soak them in water

Pour the cooked noodles

Begin to practice Karate

Fig. 12: Nearest Neighbours for segment-level matching of sample queries from COIN
validation set. The green boxes denote the true positives and the red ones are false pos-
itives. We show the inner product similarity between the image and the corresponding
query inside the green boxes at the bottom of each image

Fig. 13: Additional results for Latent-INR interface with Video-LLM.

passed through a ViT based visual encoder to extract features of size k × d per465 465

frame. These are then passed through a Query Former [24] to obtain a unified466 466

video representation of size kv × dv. This tensor is then passed to a trainable467 467

MLP layer before aligning with an LLM of our choice (LLama-2 [52] in our468 468

models).469 469

We align our latents Z with these per-video features of size kv × dv using a470 470

linear projection layer which is trained end to end. The loss function is slightly471 471

modified to incorporate a cosine similarity loss between the terms.472 472

L = LMSE + λ · Lcos(Ft, F
V-LLM
t ) (7)473 473

where Ft is the predicted feature and FV-LLM
t is the corresponding Video-LLama474 474

extracted features. We show additional results of the interactive chat in Figure475 475

13.476 476
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Table 5: Fourier Feature Models

Method PSNR BPP

Ours- Fourier - S 31.99 0.31
Ours- Fourier - M 33.69 0.62
Ours- Fourier - L 33.19 0.84

E Video-wise results477 477
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Fig. 14: BPP vs. PSNR, SSIM for beauty.
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Fig. 15: BPP vs. PSNR, SSIM for bosphore.

We plot the results for each video from UVG dataset [31] in Figures 14,478 478

15, 16, 17, 18, 19, and 20. We show three versions of our model based on the479 479

dimension of the low-rank modulating matrix. The Ours-s, Ours-m, and Ours-480 480

l correspond respectively to size = 50, 100, 200 The Ours-m model achieves481 481

reasonable performance when compared to other methods, and at the same time482 482

can do the downstream tasks of interpolation and retrieval which none of the483 483

compared methods can.484 484
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Fig. 16: BPP vs. PSNR, SSIM for honeybee.
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Fig. 17: BPP vs. PSNR, SSIM for jockey.
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Fig. 18: BPP vs. PSNR, SSIM for readysteadygo.
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Fig. 19: BPP vs. PSNR, SSIM for shakendry.
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