Sufficient Condition for a 4-Dimensional Vector Orbi-Space to Admit a Faithful Symplectic SU(2) Action

Sorelle Friedler
Janet Talvacchia
Summer 2003

Abstract
In this paper we state a sufficient condition for the existence of a 4-dimensional vector orbi-space which admits a faithful, symplectic SU(2) action.

1 Introduction
Classifying all Hamiltonian SU(2) actions on manifolds is a hard unsolved problem. We begin by looking at SU(2) actions on vector orbi-spaces since they contain all the local information. In this paper we look at faithful symplectic SU(2) actions on 4-dimensional vector orbi-spaces and have found the following sufficient condition:

Main Theorem 1. If \(\Gamma \) is a finite subgroup of the center of SU(2), there is a 4-dimensional vector orbi-space \(V/\Gamma \) which admits a symplectic, faithful SU(2) action.

2 Background
2.1 Vector Space
A vector space \(V \) over a field \(F \) is a set together with two laws of composition:
1. \(V \times V \to V, \; v, w \mapsto v + w \) (addition)
2. \(F \times V \to V, \; c, v \mapsto cv \) (scaler multiplication)
and satisfying the following axioms:
1. addition makes \(V \) into a commutative group \(V^+ \).
2. scaler multiplication is associative with multiplication in \(F \):
 \((ab)v = a(bv) \; \forall \; a, b \in F \) and \(v \in V \)
3. the element 1 acts as the identity: \(1v = v \; \forall \; v \in V \)
4. two distributive laws hold:
 \((a + b)v = av + bw \) and \(a(v + w) = av + aw \; \forall \; a, b \in F \) and \(v, w \in V \)
2.2 Bilinear Form

A bilinear form is a form on a vector space V that is a function of 2 variables on V with values in the field F, $V \times V \rightarrow F$. f satisfies the bilinear axioms:

1. $f(v_1 + v_2, w) = f(v_1, w) + f(v_2, w)$
2. $f(v, w_1 + w_2) = f(v, w_1) + f(v, w_2)$
3. $f(cv, w) = cf(v, w)$
4. $f(v, cw) = cf(v, w)$

notation: $< v, w >$

2.3 Skew-symmetric Bilinear Form

Intuitively, a skew-symmetric bilinear form is one such that

$< v, w >= - < w, v >$

(since a symmetric bilinear form has $< v, w > = < w, v >$).

However, this definition, while it is useful, does not hold for characteristic 2. The universal definition is that a bilinear form is skew-symmetric if

$< v, w >= 0 \forall v \in V$

2.4 Nondegenerate Bilinear Form

A nondegenerate bilinear form is any bilinear form such that

$\forall v \in V < v, w >= 0 \forall w \in V$ implies that $v = 0$

2.5 Matrix Representation of a Bilinear Form

Take a basis for V with $<,>$ a bilinear form on V. Let $B = (b_1, b_2, \ldots b_n)$ be the basis. The matrix of the form with respect to the basis is $A = (a_{ij})$ where $a_{ij} = < b_i, b_j >$.

The standard skew-symmetric form represented as a matrix is: $J_{2n} = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$

2.6 The Symplectic Group

The symplectic group is the stabilizer of J as given above.

$SP_{2n}(\mathbb{R}) = \{ P \in GL_{2n}(\mathbb{R}) | P^t JP = J \}$

The complex symplectic group is defined similarly. Note that all symplectic matrices have determinant 1.

2.7 Symplectic Vector Space

A symplectic vector space is a pair (v, ω) where V is a finite dimensional real vector space and ω is a nondegenerate skew-symmetric bilinear form $\omega : V \times V \rightarrow \mathbb{R}$. Since the bilinear form is nondegenerate, the dimension of the symplectic vector space is always even. All symplectic vector spaces with the same dimension are isomorphic.

example: $(\mathbb{R}^{2n}, \omega)$ where ω has the matrix representation $J.$
2.8 Quotient Space
Let \(V \) be a vector space over a field \(F \) and \(W \) be a subspace of \(V \). Then \(V/W \) is a vector space over \(F \) and the quotient space of \(V \) by \(W \) with
1. \((v_1 + W) + (v_2 + W) = (v_1 + v_2) + W\)
2. \(\alpha(v_1 + W) = \alpha v_1 + W\)
given \(v_1 + W, v_2 + W \in V/W \) and \(\alpha \in F \)

2.9 Symplectic Vector Orbi-Space
The quotient space \(V/\Gamma \) where \(V \) is a symplectic vector space and \(\Gamma \) is a finite subgroup of the symplectic group \(\text{SP}(V) \).

2.10 Unitary Matrix
\(P \) is a unitary matrix if \(P^*P = I \) where \(I \) is the identity matrix (or \(P^* = P^{-1} \)) and \(P^* \) is the matrix adjoint, \(P^* = \overline{P}^T \).

2.11 Unitary Group \(U_n \)
\(U_n = \{P|P^*P = I\} \)
(This is the group of matrices representing changes of basis which leave the hermitian dot product \(X^*Y \) invariant. [1](p27))

2.12 Special Matrices
Special matrix groups are subgroups of matrix groups that have determinant 1.

2.13 Special Linear Group
The special linear group (\(SL_n(\mathbb{R}) \)) is the group of \(n \times n \) matrices with determinant 1 and entries in \(\mathbb{R} \). (A complex group can be defined analogously.)

2.14 Special Unitary Group \(SU(n) \)
\(SL_n(\mathbb{C}) \cap U_n \)

2.15 Group Action on a Set
A group \(G \) is said to act (or operate) on the set \(S \) if there exists a map \((g, x) \mapsto gx \) of \(G \times S \) into \(S \) satisfying:
1. \(1x = x, x \in S \)
2. \((g_1, g_2)x = g_1(g_2x)\)
([6], p72)
3 Preliminary Theorems

Theorem 1. [9] Let \(\rho : H \to SP(V/\Gamma) \) be a faithful symplectic representation of a compact Lie group \(H \) on a symplectic vector orbi-space \(V/\Gamma \), and let \(N(\Gamma) \) denote the normalizer of \(\Gamma \) in \(SP(V) \). The representation \(\rho \) and the short exact sequence \(1 \to \Gamma \to N(\Gamma) \to SP(V/\Gamma) \to 1 \) give rise to the pull-back extension \(\pi : \hat{H} \to H \) and the faithful (symplectic) pull-back representation \(\hat{\rho} : \hat{H} \to N(\Gamma) \subset SP(V) \) so that \(\Gamma \) is naturally a subgroup of \(\hat{H} \), and the following diagram is exact and commutes.

\[
\begin{array}{cccccc}
1 & \to & \Gamma & \to & \hat{H} & \xrightarrow{\pi} & H & \to & 1 \\
\| & & \downarrow{\hat{\rho}} & & \downarrow{\rho} & & & & \\
1 & \to & \Gamma & \to & N(\Gamma) & \xrightarrow{\mu} & SP(V/\Gamma) & \to & 1
\end{array}
\]

Conversely, given a Lie group \(\hat{H} \in SP(V) \), a symplectic representation \(\hat{\rho} : \hat{H} \to SP(V) \) of \(\hat{H} \) on a symplectic vector space \(V \) and a finite normal subgroup \(\Gamma \) of \(\hat{H} \) such that \(\hat{\rho}(\Gamma) = \Gamma \), there exists a symplectic orbi-representation \(\rho : H \to SP(V/\Gamma) \) of the quotient \(H = \hat{H}/\Gamma \) making the above diagram commute.

Proof. Let \(\rho : H \to N(\Gamma)/\Gamma \) be a faithful symplectic representation and let \(\mu : N(\Gamma) \to N(\Gamma)/\Gamma \) be defined \(a \mapsto a\Gamma \). Let \(\hat{H} = \mu^{-1}(\rho(H)) \).

The group \(\hat{H} \) is a subgroup of \(N(\Gamma) \) as \(h, k \in \hat{H} \Rightarrow [h] \in SP(V/\Gamma), [k] \in SP(V/\Gamma), \rho^{-1}([h]) \in H \) and \(\rho^{-1}([k]) \in H \). Since \(H \) is a group,

\[
\rho^{-1}([h])\rho^{-1}([k])^{-1} \in H \Rightarrow [h][k]^{-1} \in SP(V/\Gamma) \\
\Rightarrow [h][k]^{-1} \in SP(V/\Gamma) \\
\Rightarrow hk^{-1} \in \hat{H}
\]

Thus \(\hat{H} \) is a subgroup.

Furthermore \(\hat{H} \) is a Lie group. Since multiplication in the Lie group \(SP(V) \) is smooth, the function \(\pi : \hat{h} \to H \) defined \(a \mapsto a\Gamma \) is continuous. Therefore if we consider \(H \) to be in \(SP(V) \), since \(H \) is closed in \(SP(V) \) being that \(H \) is compact, \(\pi^{-1}(H) = \hat{H} \) is also closed. By SOME THEOREM \(\hat{H} \) is a Lie group.

Thus, let \(\pi : \hat{H} \to H \) be defined \(a \mapsto \rho^{-1}(\mu(a)) \). Then \(\hat{\rho} \) is an inclusion, it is seen that \(\rho \circ \pi = \mu \circ \hat{\rho} \), \(\Gamma \) is a subgroup of \(\hat{H} \) and the sequence is exact.

Conversely, given a group \(\hat{H} \subset SP(V) \), a symplectic representation \(\hat{\rho} : \hat{H} \to SP(V) \) of \(\hat{H} \) on a symplectic vector space \(V \) and a finite normal subgroup \(\Gamma \subset SP(V) \) of \(\hat{H} \) such that \(\hat{\rho}(\Gamma) = \Gamma \), we have \(\hat{\rho}(\hat{H}) \subset N(\Gamma) \subset SP(V) \). This follows since for all \(h \in \hat{H} \), \(h\Gamma h^{-1} = \Gamma \) and since \(\rho \) is a homomorphism \(\rho(h\Gamma h^{-1}) = \rho(\Gamma) = \Gamma \Rightarrow \rho(h)\rho(\Gamma)\rho(h)^{-1} = \Gamma \Rightarrow \rho(h) = N(\Gamma) \).

If we let \(\pi : \hat{H} \to H \) be defined \(h \mapsto h\Gamma \) and \(\mu : N(\Gamma) \to SP(V/\Gamma) \) be defined \(h \mapsto h\Gamma \) then we can let \(\rho : H \to SP(V/\Gamma) \) be defined \([h] \mapsto \mu(\hat{\rho}(h)) \). It is obvious that \(\rho \circ \pi = \mu \circ \hat{\rho} \) and that the diagram commutes and is exact.

Theorem 2. If \(\Gamma \subset Z(G) \) (the center of \(G \)) then \(\Gamma \) is a normal subgroup of \(G \).

Proof. A subgroup \(N \) of a group \(G \) is called a normal subgroup if it has the property that for all \(a \in N \) and \(b \in G \), \(bab^{-1} \in N \). So we want to show that for all \(a \in \Gamma \) and \(b \in G \), \(bab^{-1} \in \Gamma \):

Pick some \(b \in G \) and \(a \in \Gamma \). Is \(bab^{-1} \in \Gamma \)? Since \(a \) is in the center of \(G \), \(a \) commutes with \(b \) and \(b^{-1} \) since both are in \(G \).

So \(bab^{-1} = bb^{-1}a = a \) and \(a \in \Gamma \).

Theorem 3. If \(\hat{G} = \langle G, \Gamma \rangle = \{tv : t \in G, v \in \Gamma \} \) where elements of \(G \) and \(\Gamma \) are represented by square matrices of the same dimension and \(\Gamma \) is normal in \(G \), \(\Gamma \) is normal in \(\hat{G} \).
Proof. Let \(a \in \Gamma \) and \(tv \in \hat{G} \). If \(tv(tv)^{-1} \in \hat{G} \), \(\Gamma \) is normal in \(\hat{G} \).

\[
(tva(tv))^{-1} = tva^{-1}t^{-1}
\]

since \(v \) and \(t \) are matrices

\[
\varphi v^{-1} \in \Gamma \text{ since } v, a \in \Gamma
\]

let \(vav^{-1} = b \in \Gamma \)

\[
= tbt^{-1}
\]

\[
= ttt^{-1}b = b
\]

So \(\Gamma \) is normal in \(\hat{G} \).

\[\square\]

Theorem 4.

\[\varphi : \begin{pmatrix} a & b & a' & b' \\ -b & a & b' & -a' \\ -a' & -b' & a & b \\ -b' & a' & -b & a \end{pmatrix}\]

with \(a^2 + b^2 + a'^2 + b'^2 = 1 \in SP(4, \mathbb{R}) \rightarrow \begin{pmatrix} a + d'i & b + y'i \\ -b + y'i & a - d'i \end{pmatrix} \in SU(2) \)

is an isomorphism.

Proof. Let

\[A = \begin{pmatrix} a & b & a' & b' \\ -b & a & b' & -a' \\ -a' & -b' & a & b \\ -b' & a' & -b & a \end{pmatrix}\]

and \(C = \begin{pmatrix} c & d & c' & d' \\ -d & c & d' & -c \\ -c' & -d' & c & d \\ -d' & c' & -d & c \end{pmatrix}\)

with \(a^2 + b^2 + a'^2 + b'^2 = 1 \) and \(c^2 + d^2 + c'^2 + d'^2 = 1 \)

First, \(A \in SP(4, \mathbb{R}) \):

\[A^t J A = \begin{pmatrix} a & b & a' & b' \\ -b & a & b' & -a' \\ -a' & -b' & a & b \\ -b' & a' & -b & a \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} a & b & a' & b' \\ -b & a & b' & -a' \\ -a' & -b' & a & b \\ -b' & a' & -b & a \end{pmatrix} = \]

\[
\begin{pmatrix} a' & b' & a & b \\ b' & a & b & a' \\ -a & b & a' & b \\ b & a & b & a' \end{pmatrix}
\]

since we have the condition \(a^2 + b^2 + a'^2 + b'^2 = 1 \) we get

\[
\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} = J
\]

So \(A \in SP(4, \mathbb{R}) \).

\(\varphi \) is a homomorphism:

We want to show that \(\varphi(AC) = \varphi(A)\varphi(C) \).

\[
\varphi(AC) = \varphi \left(\begin{pmatrix} a & b & a' & b' \\ -b & a & b' & -a' \\ -a' & -b' & a & b \\ -b' & a' & -b & a \end{pmatrix} \begin{pmatrix} c & d & c' & d' \\ -d & c & d' & -c \\ -c' & -d' & c & d \\ -d' & c' & -d & c \end{pmatrix} \right) = \]

\[\text{[Expression]}\]

5
\[
\varphi \left(\begin{pmatrix}
ac - a'c' - bd' - bd' \\
bd + ac - ad' + be' \\
ac' + bd' + a'c - d'd \\
ad' - bc' + a'd + b'c
\end{pmatrix}
\right) = \begin{pmatrix}
ac - a'c' - bd' - bd' + (ad + bc - a'd' + b'e')i \\
bd + ac - ad' - bc' + bd' + (ad - bc - a'd' + b'c)i \\
ac' + bd' + a'c - d'd + (ad' - bc' + a'd + b'c)i \\
ad' - bc' + a'd' - bc' + bd' + ac
\end{pmatrix}
\]

\[
(ace - bde - b'd = bd'd') + (ace' + bd'e + b'd')i = (ad + bc - a'd' + b'e')i + (ad' - bc' + a'd + b'c)i
\]

\[
\varphi = \begin{pmatrix}
\alpha & \beta \\
-\beta & \alpha
\end{pmatrix} \in SU(2)
\]

\[
\varphi(\alpha, \beta) = \varphi(\alpha, \beta) = \varphi(\alpha, \beta)
\]

\[
\varphi \text{ is obviously injective.}
\]

Is \(\varphi \) surjective?

Pick some element \(\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} \in SU(2) \). We want to show that there is some element in \(SP(4, \mathbb{R}) \) which maps to \(\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} \). Pick \(\begin{pmatrix} a & b & a' & b' \\ -b & a & b' & -a' \\ -a' & -b' & a & b \\ -b' & a' & -b & a \end{pmatrix} \) such that \(a + a'i = \alpha \) and \(b + b'i = \beta \) then since

\[
\det \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} = a^2 + b^2 + a'^2 + b'^2
\]

So \(\varphi \) is surjective.

\(\Box \)

4 Main Theorem

Main Theorem 1. If \(\Gamma \) is a finite subgroup of the center of \(SU(2) \), there is a 4-dimensional vector orbi-space \(V/\Gamma \) which admits a symplectic, faithful \(SU(2) \) action.

Proof. Let \(\tilde{\Gamma} \) be a finite subgroup of the center of \(SU(2) \) and \(\varphi \) as described in Theorem 4. Let \(\Gamma = \varphi^{-1}(\tilde{\Gamma}) \in SP(4, \mathbb{R}) \).

Let \(SU(2) = \left\{ \begin{pmatrix} a & b & a' & b' \\ -b & a & b' & -a' \\ -a' & -b' & a & b \\ -b' & a' & -b & a \end{pmatrix} \in SP(4, \mathbb{R}) \right\} \).

Let \(\overline{SU}(2) = \left\{ tv : t \in SU(2), v \in \Gamma \right\} \). \(\overline{SU}(2) \in SP(4, \mathbb{R}) \) since \(\Gamma \subset SP(4, \mathbb{R}) \) and \(SU(2) \subset \overline{SU}(2) \).
$SP(4, \mathbb{R})$. Γ is normal in $SU(2)$ by Theorems 2 and 3 since $\Gamma \subset Z(SU(2))$.

Thus by Theorem 1, since we have a symplectic representation of $\widehat{SU}(2)$ on the vector orbi-space \mathbb{R}^4/Γ, we have the following diagram which is exact and commutes:

$$
\begin{array}{cccc}
1 & \rightarrow & \Gamma & \rightarrow & \widehat{SU}(2) & \xrightarrow{\pi} & SU(2) & \rightarrow & 1 \\
\| & \downarrow & \hat{\rho} & & \downarrow & \rho \\
1 & \rightarrow & \Gamma & \rightarrow & N(\Gamma) & \xrightarrow{\iota} & SP(V/\Gamma) & \rightarrow & 1
\end{array}
$$

Thus there is a symplectic representation of $SU(2)$ on the vector orbi-space \mathbb{R}^4/Γ. Thus the vector orbi-space admits an $SU(2)$ action.

References

