
Scalable Resilient Media Streaming
�

Suman Banerjee, Seungjoon Lee, Ryan Braud, Bobby Bhattacharjee, Aravind Srinivasan

ABSTRACT
We present a low-overhead media streaming system, called SRMS
(Scalable Resilient Media Streaming) that can be used to scalably
deliver streaming data to a large group of receivers. SRMS uses
overlay multicast for data distribution. SRMS leverages a proba-
bilistic loss recovery technique to provide high data delivery guar-
antees even under large network losses and overlay node failures.
The clients in the SRMS system are able to interoperate with exist-
ing media streaming servers that use RTP for data transport. One of
the interesting features of SRMS is that it can simultaneously sup-
port clients with disparate access bandwidths. It enables the nec-
essary bandwidth adaptations using standard Real-time Transport
Protocol (RTP) mechanisms, e.g. RTP translators. We have imple-
mented and evaluated the SRMS system in detail on an emulated
network as well as on a wide-area testbed with up to 128 clients.
Our results show that clients using SRMS achieve high (� 97%)
data delivery ratios with low overheads (� 5%) even for a very
dynamic network (up to five membership changes per minute).

Categories and Subject Descriptors: C.2.2 Network Protocols —
Applications

General Terms: Design, Experimentation

Keywords: media streaming, overlay network, multicast, resilience

1. INTRODUCTION
We present SRMS (Scalable Resilient Media Streaming): a sys-

tem for scalable delivery of streaming media data to a large num-
ber of receivers using application-layer multicast. The design of
SRMS is independent of any specific application-layer multicast
�
S. Banerjee is with the Department of Computer Sciences, Univer-

sity of Wisconsin, Madison, WI 53706 USA. S. Lee, R. Braud, B.
Bhattacharjee, and A. Srinivasan are with the Department of Com-
puter Science, University of Maryland, College Park, MD 20742,
USA. B. Bhattacharjee and A. Srinivasan are also with the Insti-
tute for Advanced Computer Studies, University of Maryland. S.
Banerjee, S. Lee, R. Braud, and B. Bhattacharjee were supported
in part by NSF award ANI 0092806. A. Srinivasan was supported
in part by NSF Award CCR-0208005.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’04, June 16–18, 2004, Cork, Ireland.
Copyright 2004 ACM 1-58113-801-6/04/0006 ...$5.00.

delivery protocol or media format. SRMS incorporates a protocol-
independent loss recovery technique called Probabilistic Resilient
Multicast (PRM) [3], which permits high data delivery ratios even
under high network losses and node failures. The SRMS architec-
ture logically admits media transcoding for handling clients with
disparate access bandwidths. We describe a full implementation of
the SRMS architecture, including wide-area deployment with over
one hundred simultaneous clients. We believe this paper presents
the first implementation experience that explicitly addresses the is-
sues of data resilience with large application-layer multicast groups.

The data delivery mechanism of SRMS is based on overlay mul-
ticast (also known as application-layer multicast) [7, 9, 2, 6]. Logi-
cally, the end-hosts form an overlay network, and the eventual data
delivery path in application-layer multicast is an overlay tree. The
SRMS system can be implemented with any application-layer mul-
ticast protocol to construct the underlying data delivery paths. In
our current implementation we chose the NICE application-layer
multicast protocol [2]. Our choice was based on the following: (1)
NICE achieves good best-effort delivery ratios [2], (2) NICE has a
scalable construction and therefore is suitable for large application
groups, and (3) the source-code for NICE is publicly available.

A key challenge in building a resilient media streaming system
based on application-layer multicast is to provide fast data recovery
when overlay node failures partition data delivery paths. Although
data packets can be lost in the network level (e.g. due to conges-
tion), this sort of loss recovery is relatively easy and can be handled
using retransmissions or FEC. In contrast, overlay nodes are pro-
cesses on regular end-hosts which are potentially more susceptible
to failures than the routers. Each such failure of a non-leaf overlay
node causes data outage for nodes downstream until the data deliv-
ery tree is reconstructed. This outage duration can be on the order
of tens of seconds (e.g. the Narada application-layer multicast pro-
tocol [7] sets default timeouts between 30-60 seconds).

In this paper, we describe SRMS, the first implementation of a
resilient video delivery system based on application-layer multi-
cast. Using PRM, the probabilistic loss recovery technique, SRMS
is able to achieve high data delivery ratios even with frequent over-
lay node failures. Our implementation enables wide-area streaming
of multimedia to large groups. Apart from good resilience proper-
ties, the proposed SRMS system also enables selective data rate
adaptation for clients with disparate access bandwidths.

Roadmap. In Section 2 we present an architectural overview of
the SRMS system. In Section 3 we describe the implementation
of the system. In Section 4 we report the experiment results with
SRMS on an emulated network as well as a wide-area testbed. In
Section 5 we describe some related work and present our conclu-
sions in Section 6.

Joined to group:
ms.a.org:554/StarWars

SRMS-RP
rp.b.org:5000

Media
Streaming

Server
ms.a.org:554

Designated
Source

srms://rp.b.org:5000/ms.a.org:554/StarWars

M

B

S

X

M

B

S

W

Y Z

Join group: ms.a.org:554/StarWars
group-RP = rp.c.com:4999

RTP stream
M

B

S

X

M

B

S

X

0 1

23

rtsp://ms.a.org:554/StarWars

X

Figure 1: Architectural overview of the SRMS System.

2. SRMS ARCHITECTURE
A SRMS system comprises of the SRMS Rendezvous Point (SRMS-

RP) and a set of receivers. Each media stream served by the SRMS
system requires a separate multicast group. To receive the relevant
media stream, a receiver has to join the appropriate application-
layer multicast group. One of the receivers in the group serves as
the multicast source. The source is responsible for acquiring the
media from the streaming server and forwarding it to the remain-
ing group members. The media streaming server need not be aware
of the multicast delivery tree. This construction allows any media
streaming server to interoperate with the SRMS system. We defer
the discussion of specific protocol issues to Section 3.

In SRMS any client can potentially operate as a source to the
multicast group. However, in a typical deployment, we expect the
service provider to designate a specific host as the source (which
will be co-located with the media streaming server and the SRMS-
RP). Otherwise, the SRMS-RP will select a source among the ex-
isting clients. In this paper, we focus on the first scenario.

In Figure 1 we show a typical sequence of operations of the
SRMS system. We define a new application protocol, srms, for
communication between the media clients and the SRMS-RP. A
media stream is uniquely identified by a SRMS URL which con-
sists of the srms protocol identifier; the hostname, port number
pair of the SRMS-RP; the hostname, port number pair of the me-
dia streaming server and the media stream identifier. (The syn-
tax is intentionally similar to the Real-time Streaming Protocol
(RTSP) [19] URL format.)

In Panel 0, Figure 1, a client, � , requests the following URL:
srms://rp.b.org:5000/ms.a.org:554/StarWars.
This identifies SRMS-RP at rp.b.org:5000, the streaming server
at ms.a.org:554, and the StarWarsmedia stream. The SRMS-
RP instructs � to join the application-layer multicast group iden-
tified as ms.a.org:554/StarWars (Panel 1). Application-
layer multicast protocols typically have a group Rendezvous Point
(group-RP) which is responsible for bootstrapping the join proce-
dure. The SRMS-RP conveys this group-RP information to � .
Note that the SRMS-RP and the group-RP are two logically sep-
arate entities, but will likely be co-located on the same host. This
logical separation allows us to decouple SRMS from undue depen-
dence on any specific application-layer multicast protocol.

In our example, the designated source for this media stream, � ,

has already joined the corresponding application-layer multicast
group. It has also contacted the media streaming server, � , us-
ing the URL: rtsp://ms.a.org:554/StarWars (Panel 1)
and is subsequently receiving the media stream from the server. On
receiving the media stream, � multicasts it on the overlay tree of
the application-layer multicast group. Therefore, when � joins the
group, it starts receiving the media stream from � . Subsequently
when other clients, � , � and 	 request the same media stream,
they eventually join the same application-layer multicast group and
data forwarded by � reaches all these clients.

3. IMPLEMENTATION OF SRMS SYSTEM
We now describe the implementation of the SRMS system. SRMS

consists of the SRMS-RP and a set of receivers. On receiving a me-
dia stream request using the srms protocol, the SRMS-RP directs
the client to the appropriate application-layer multicast group on
which it can receive the media stream. While SRMS can be imple-
mented using any application-layer multicast protocol, for reasons
explained in Section 1 we use the NICE protocol enhanced by PRM
to construct the application-layer multicast data paths. The imple-
mentation of the SRMS-RP is relatively straightforward. Therefore
we focus on the client implementation in this paper.

3.1 PRM-enhanced NICE
PRM [3] is a loss recovery technique for resilient application-

layer multicast. PRM uses randomized forwarding, which is a
novel proactive technique that quickly recovers lost data due to
overlay node failures. In PRM, each overlay node chooses a small
number of other overlay nodes uniformly at random and forwards
data to each of them with a low probability (e.g. 0.01). Such a con-
struction interconnects the data delivery tree with some cross edges
and is responsible for fast data recovery. Randomized forwarding
operates in conjunction with the usual data forwarding mechanisms
along the tree edges, and may lead to a small number of duplicate
packet deliveries. Due to our choice of parameters, these duplicates
contribute to less than 5% data overheads in SRMS in comparison
to a non-resilient, best-effort scheme. Clients in the group detect
and suppress such duplicates using sequence numbers. Addition-
ally, clients in PRM can also detect gaps in sequence numbers and
initiate Negative Acknowledgment (NAK)-based recovery, a well-
known reactive technique [17]. Such NAKs enable recovery from
network losses only, and randomized forwarding is essential for
clients to recover data losses due to node failures in the multicast
tree. More detailed description of PRM can be found in [3].

Integration of NICE and PRM
Our current SRMS implementation uses NICE application-layer
multicast [2] for the underlying data delivery path. We also added
the PRM extensions to NICE, which is less than 500 lines of C
code. One of the key requirements of PRM is the ability to forward
data to a few other overlay nodes, chosen uniformly at random.
Therefore in our PRM extension, we let each overlay node period-
ically discover a set of random other nodes on the overlay as de-
scribed in [3] 1. To implement triggered NAKs, each overlay node
piggybacks a bit-mask with each forwarded data packet indicating
which of the prior sequence numbers it has correctly received. The
recipient of the data packet detects missing packets using the gaps
in the received sequence and sends NAKs to the previous node to
request the appropriate retransmissions.

If an overlay construction protocol like Narada [7] was used, no

such discovery mechanism would be needed because in Narada
each node maintains state information about all other nodes.

Media
Streaming

Server

RTP (Video)

RTCP (Video)

RTP (Audio)

RTCP (Audio)

Overlay
Multicast

Source on Overlay

PRM+NICE

RTP
translator

A/V
Output

PRM+NICE

RTP
translator

A/V
Output

loopback
demux

Overlay
MulticastOverlay

Multicast

PRM+NICE

RTP
translator

Standalone
Player

loopback
demux

RTP

A/V
Output

Streaming
Proxy

Host X: Integrated Client

Host Y: Proxy-based Client

Figure 2: RTP and RTCP paths in SRMS.

3.2 RTP and Designated Source
To transport encoded media, SRMS uses the Real-time Transport

Protocol (RTP) [18]. The data component of RTP carries encoded
media in the payload, timing and synchronization information and
the source identifier. The control component of RTP is called Real-
time Transfer Control Protocol (RTCP) [18] and performs a variety
of related control operations (e.g. quality of service feedback from
receivers, synchronization of different media streams).

In conformance with the RTP standards [18], the media stream-
ing server sends the content using two separate RTP streams, one
for audio and one for video. Also, each RTP stream has an accom-
panying RTCP stream. In the SRMS system the designated source
receives these streams in four different ports. Then, it multiplexes
the RTP data packets (transcoded if necessary) and the re-generated
RTCP packets onto a single overlay multicast port, which are for-
warded to receivers along the overlay delivery tree (Figure 2).

3.3 SRMS-client
A SRMS-client has three logical components (Figure 2):
� Overlay-multicast: This is the PRM-enhanced NICE application-

layer multicast protocol.
� RTP translator: This performs any necessary data rate adap-

tations before packet forwarding on the overlay hops.

� Audio/Visual Output: For the playback of the media, we use
the player code from the MPEG4IP tool publicly available
from http://sourceforge.mpeg4ip.net.

Each client receives the RTP and RTCP packets through the sin-
gle overlay multicast port. The overlay multicast code delivers the
packet to the appropriate RTP or RTCP port internally.

The SRMS-client can be implemented in two different ways. An
integrated client implements all the three components in a single
process (Host � in Figure 2). This is the most efficient implemen-
tation of the client. In particular, there is no redundant RTP code
(unlike in the alternative approach described next). Additionally it

can closely integrate the different components. For example, the
duplicate detection and suppression buffers of PRM and the play-
back buffer of the audio/video output component can be shared and
there is no redundant data movement.

On the other hand, a proxy-based client needs two processes that
together serve as a single client (Host � in Figure 2). One pro-
cess called streaming proxy implements the overlay multicast and
the RTP translator functionalities. Additionally it forwards a copy
of the received RTP and RTCP packets to the stand-alone media
player. In this scenario, RTP functionality is replicated in both the
player and the proxy. While such a construction is comparatively
inefficient, it decouples the implementation of the media player
from the rest of the SRMS-system. This implementation gives a
user the flexibility to use off-the-shelf media player binaries as part
of the SRMS system.

3.4 RTP Translation
RTP enables application sources to perform quality of service

adaptations by defining mechanisms for receivers to send appropri-
ate feedback. Based on sequence numbers in received data pack-
ets, receivers infer loss rates on the data path, and periodically send
Receiver Report (RR) RTCP packets to the source. The source ap-
plication can use this feedback to appropriately adapt the data rate.
Efficient implementations of media transcoding and compression
can be found in [1, 20].

If network-layer multicast is used for streaming media to a group
of clients, data rate adaptations by the source would affect all clients.
However, the use of application-layer multicast in SRMS provides
a new opportunity for more subtle rate adaptation. In SRMS, we
treat each client on the overlay data delivery path as a potential RTP
translator [18], and data transcoding is performed at the granularity
of overlay hops based on bandwidths available to individual clients.
As a result clients are not constrained to the minimum bandwidth
on the entire network, but are able to receive data at the maximum
permissible bandwidth on the path to the source. Each overlay hop
in SRMS is treated as an independent RTP session. Some RTCP
packets (e.g. RR packets) carry control information meaningful
only to such individual RTP sessions, and they are not forwarded
to the entire data delivery tree.

Interaction of RTP translation and PRM
In PRM randomized forwarding, the media encoding in the pay-
load of the forwarded packet may potentially be inconsistent with
the media encoding at the receiver due to intermediate RTP trans-
lations. We describe solutions to such a case as well as data rate
adaptation mechanisms in SRMS in a Technical Report [4].

4. EXPERIMENTAL RESULTS
In this section we focus on the results from our implementation

of the SRMS system. In contrast to the simulation study in [3],
the results presented here demonstrate the performance of PRM
when integrated with real media streaming applications on a more
realistic environment.

4.1 Experiment Testbed
Our experiments were performed in two different environments [23]:

(1) a publicly available emulated network (Emulab in University
of Utah), and (2) a public wide-area testbed (MIT’s RON testbed
which forms a distributed version of the Emulab). In all our exper-
iments, we streamed multimedia data from the Darwin streaming
media server 2. The server streamed a four minute MPEG4 encoded
�
publicly available at http://www.apple.com/quicktime/products/qtss/

Domain E
3 hosts

Domain B
7 hosts

Domain C
15 hosts

Domain A
15 hosts

Domain D
15 hosts

Domain F
3 hosts

70 ms

150 ms

100 ms
65 ms

100 ms

35 ms
15 ms

35 ms

Figure 3: The network topology used in the emulated network
environment. Each backbone link is marked with the average
latency. The losses on the links connecting the access gateways
and the backbone were chosen randomly between 1% and 2%.
Within each domain the latencies between pairs of hosts were
randomly assigned between 5 and 10 ms, and the correspond-
ing losses were 0.2% to 0.5%.

Failure and Join rate (per min)
Scheme 1.2 4.8

BE 0.81 0.72
PRM-128 (3,0.01) 0.98 0.98
PRM-256 (3,0.01) 0.99 0.98

Table 1: Comparison of data delivery ratio for different overlay
node failure rates. The average number of overlay nodes was 64
and the experiment duration was 30 minutes.

movie to the clients using SRMS. Each experiment lasted between
15 minutes and one hour. The Darwin media streaming server and
the designated source of the multicast group were co-located in the
same host for all these experiments. The average bandwidth of the
media stream was about 250 Kbps.

For the emulated experiments, we modeled a group of clients
distributed geographically in different parts of the world as shown
in Figure 3. The choice of parameters were based on ping mea-
surements we performed on the Internet. Our wide-area testbed
consists of 32 hosts. Out of these 4 hosts were in Europe, 2 in
Asia, 1 in Canada, and the remaining in different locations in the
USA. More details about the emulated and wide-area testbeds can
be found in [23].

4.2 Experiment Scenarios
We have evaluated the performance of the SRMS system for a

range of different system parameters, e.g. group sizes up to 128,
with different join-leave patterns. In these experiments, all depar-
tures of clients were modeled as “ungraceful leaves,” where the
departing member is unable to send a Leave message to the group.

In the experiments reported in these section, we first let a set
of end-hosts join the multicast group. Subsequently end-hosts join
and leave the multicast group, which was varied for different ex-
periments. The join and the leave rates for members are chosen
to be equal so that the average size of the group remained nearly
constant. In all results reported in this section, we use the notation
PRM-
���������� to indicate an SRMS configuration where the param-
eters of PRM are set as follows:
 denotes the size of the bitmask
used for NAK-based retransmissions, � denotes the number of ran-

0

0.2

0.4

0.6

0.8

1

800 810 820 830 840 850 860 870 880 890 900

D
el

iv
er

y
R

at
io

Time (sec)

64 clients on emulated network environment

PRM 256 (3,0.01)
BE

Figure 4: Data delivery ratio achieved for a group of 64 clients
as they join and leave the multicast group. Overlay node fail-
ure and join rate was 4.8 per minute. Between time 850 and
860 seconds four intermediate overlay nodes on the data deliv-
ery tree left the multicast group.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

C
um

ul
at

iv
e

fra
ct

io
n

of
 c

lie
nt

s

Maximum data outage period (sec)

64 clients on emulated network environment

PRM 256 (3,0.01)
PRM 128 (3,0.01)

BE

Figure 5: The cumulative distribution of the largest data out-
age period seen by all the clients for a 64 client experiment with
overlay node failure and join rate of 4.8 per minute.

domly chosen neighbors, and � denotes the probability of forward-
ing to each of these random neighbors.

In these results we compare the performance of SRMS-based
resilient media streaming to a baseline overlay media streaming
system without resilience (e.g. the basic NICE application-layer
multicast protocol [2]).

4.3 Experiments on Emulated Network
We first describe results from experiments performed on the em-

ulated network environment using the topology in Figure 3.

Resilience
We measure resilience by data delivery ratio — the fraction of
packets successfully delivered to receivers out of all packets trans-
mitted by the source. In Table 1 we show the average delivery ratio
of SRMS. For example, with 4.8 node failures and joins per minute,
SRMS delivers 98% of data packets while the best-effort scheme
achieves 72% data delivery. We can also observe that a longer bit-
mask (for NAK-based retransmissions) leads to better performance.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

C
um

ul
at

iv
e

fra
ct

io
n

of
 c

lie
nt

s

End-to-End Latency (in ms)

64 clients on emulated network environment

Ideal
PRM 128 (3, 0.01)
PRM 256 (3, 0.01)

BE

Figure 6: Distribution of latency experienced at the clients for
a group of 64 nodes (on average) with overlay node failure rate
and join rate of 4.8 per minute. Ideal marks the latency dis-
tribution for a hypothetical scenario when the overlay paths to
the clients are instantaneously repaired following a failure or a
join, i.e. there are no data losses on the overlay path.

We now present a detailed 100-second snapshot of data delivery
ratio from a specific experiment (with node failure and join rate of
4.8 per minute) in Figure 4. Both SRMS and best-effort schemes
used the same join-leave pattern. Unlike the best-effort scheme, the
PRM-based scheme maintains a high data delivery ratio (� 95%)
for all receivers at all times. For example, four intermediate overlay
nodes departed from the group between time 850 and 860 seconds.
The effect of these departures was quite severe for the best-effort
case and the data delivery ratio decreases to less than 10%, while
the performance of SRMS was largely unaffected.

In Figure 5 we plot the cumulative distribution of the maximum
data outage period experienced by the different clients in the same
experiment as in Figure 4. The PRM-based scheme with a bitmask
size of 256 performs extremely well — about 98% of the clients
have a maximum data outage period of less than 10 seconds. This
is a significant improvement over the best-effort case, where more
than 90% of them experience data outages of 30 seconds or more.

The data overheads for SRMS in all these experiments, due to
data duplication in randomized forwarding, was 3%. This follows
from the parameter choice of PRM: each client chose three other
random clients (�����) and forwarded data to them with probabil-
ity, ��� 0.01.

Latency
In Figure 6 we plot the distribution of overlay latency experienced
by different clients in the same experiment (with 4.8 failures and
joins per minute). The best-effort schemes delivers all data using
the single overlay path along the overlay tree. In contrast, path
lengths in SRMS are longer — some of the clients receive the data
along potentially longer paths (traversing random overlay hops).
For example, 64% of the clients observe data latencies of up to 500
ms in the best-effort case, while about 58% of the clients observe
the same latency bound in the case of PRM schemes. However, as
shown in Table 1, this marginally higher overlay latency in SRMS
allows significantly higher data delivery ratio (98% for PRM, 72%
for best-effort).

Lastly, we report that the control overheads (typically less than 2
Kbps at each overlay node) was essentially insignificant compared
to the data rate.

0

0.2

0.4

0.6

0.8

1

200 400 600 800 1000 1200 1400 1600 1800

D
el

iv
er

y
R

at
io

 a
ve

ra
ge

d
ov

er
 2

0
se

co
nd

s

Time (sec)

60 clients on wide-area testbed

PRM 64 (3,0.01)
BE

Figure 7: Data delivery ratio achieved by a group of 60 clients
(on average) on the wide-area testbed for a 30 minute exper-
iment. The media stream was started three minutes into the
experiment. The data delivery ratio is averaged over each 20
second interval for clarity. The overlay node failure and join
rate was 4.8 per minute each.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

C
um

ul
at

iv
e

fra
ct

io
n

of
 c

lie
nt

s

Data Loss (%)

60 clients on wide-area testbed

PRM 64 (3,0.01)
PRM 32 (3,0.01)

BE

Figure 8: Cumulative distribution of data losses for a 30
minute experiment on a group with 60 clients (on average) per-
formed on the wide-area testbed. The overlay node failure and
join rate was 4.8 per minute each.

4.4 Wide-area Experiments
The wide-area experiment was performed using 60 clients dis-

tributed across 22 hosts on MIT’s Resilient Overlay Networks testbed.
The Darwin server and the designated source was co-located in a
single host (located in the US) and the distribution of one-way la-
tencies from the source to the other clients varied between less than
1 ms to 225 ms. To limit the load imposed on this wide-area testbed,
we had reduced the data rate sent out from the Darwin server to
about 32 Kbps. We also used correspondingly smaller bitmasks for
NAK based retransmissions. As before, the overlay node failure
and join rate was 4.8 per minute.

In Figure 7 we show the data delivery ratio achieved over the
entire duration of this experiment. We can observe that SRMS
achieves a high data delivery ratio for nearly the entire 30 minute
duration, while the best-effort based data delivery suffers signif-
icant losses. In Figure 8 we show the cumulative distribution of
data that was lost at the different clients for the same experiment.
We can observe that for the PRM-based system (with a 64 bit bit-

mask) about 20% of the clients do not experience any data loss on
the wide-area testbed. About 90% of the clients experience a loss
of less than 5%. The additional data overheads for both the PRM-
based schemes were 3%. This is a significant improvement over
the best-effort system, in which about 50% of the clients experi-
ence more than 20% data loss.

5. RELATED WORK
A large number of research efforts (IVS [22], Rendez Vous 3,

vic, vat 4, rat 5, CUSeeMe 6, etc.) have addressed real-time media
streaming in the last decade. Media streaming to a group of users in
these systems typically relied on network-layer multicast support.
A number of commercial efforts (e.g. Real Networks, Windows
Media Player, Fast Forward Networks) handle media streaming to
groups of users using proprietary protocols.

On the other hand, a number of projects have addressed the prob-
lem of constructing efficient data delivery paths for application-
layer multicast [7, 9, 2, 6]. Of these, the Narada protocol [7] has
been used to deliver media streams to a set of clients. However the
protocol itself does not address the issue of resilience and recov-
ery in the way PRM and SRMS does. The Overcast protocol [11]
is defined specifically to provide reliable multicast services using
overlays. Each overlay hop in Overcast uses TCP for data transfer
and such a construction is not suitable for streaming media appli-
cations with real-time requirements. In fact none of these protocols
explicitly address the issue of resilience which is essential to media
streaming applications.

A large number of research proposals have addressed reliable
delivery for multicast data, most notably in the context of network-
layer multicast [8, 17, 14, 13]. In contrast to the PRM approach
used in SRMS, all these techniques employ reactive mechanisms
for providing data reliability and therefore incurs moderate or high
delivery latencies. A comparative survey of these protocols is given
in [12] and [21]. On the other hand, proactive schemes using redun-
dant data encoding (e.g. FECs) have been used to provide multicast
data reliability [10, 16, 5, 15]. All these FEC based approaches
can recover from network losses. However, they alone are not suf-
ficient for resilient multicast data delivery when overlays are used.
We presented a detailed comparison of these reliability mechanisms
(including PRM) in [3].

SRMS differs from all these other schemes by providing a proac-
tive component that allows the receivers to recover from losses
due to overlay node failures. To the best of our knowledge the
SRMS system is the first application-layer multicast based media
streaming application that explicitly addresses resilience. Second,
all the network-layer multicast based schemes employ completely
reactive mechanisms for providing data reliability and therefore in-
curs moderate or high delivery latencies. In contrast, our proactive
mechanism, (i.e. randomized forwarding) significantly improves
resilience for applications that require low latency data delivery.
SRMS also defines a framework in which various bandwidth adap-
tation techniques [1, 14] can be applied within the context of media
streaming to user groups.

6. CONCLUSIONS
In this paper, we have described SRMS, an application-layer

multicast based system for resilient media streaming to a large group
of clients. The system is implemented such that it can interoperate�

Rendez Vous is available at www.lyonnet.org/IVStng�
Both vic and vat are available at www-nrg.ee.lbl.gov�
http://www-mice.cs.ucl.ac.uk/multimedia/software/rat/index.html
CUSeeMe is currently available commercially at www.fvc.com

with existing tools for media streaming and playback. Based on
the PRM loss resilience scheme, SRMS is able to achieve very high
data delivery ratios in spite of network losses and overlay node fail-
ures. Another interesting component of SRMS is its architecture
that allows flexible implementation of data rate adaptation to suit
application needs. We use existing techniques and protocols to en-
able selective data rate adaptation based on the network conditions
and access bandwidths of individual clients.

We have studied the performance of SRMS through detailed ex-
periments on public emulated network environments and wide-area
testbeds. Our results show that SRMS provides good data resilience
(� 97% delivery ratio) even under adverse conditions with less than
5% overheads.

7. REFERENCES
[1] E. Amir, S. McCanne, and H. Zhang. An application level video gateway. In

ACM Multimedia, Nov. 1995.
[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer

multicast. In Proc. ACM Sigcomm, Aug. 2002.
[3] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. Resilient multicast

using overlays. ACM Sigmetrics, June 2003.
[4] S. Banerjee, S. Lee, B. Bhattacharjee, A. Srinivasan, and R. Braud. Scalable

resilient media streaming. CS-TR 4482, University of Maryland, College Park.
http://www.cs.umd.edu/projects/nice/papers/cs-tr-4482.pdf, May 2003.

[5] J. Byers, M. Luby, and M. Mitzenmacher. A digital fountain approach to
asynchronous reliable multicast. IEEE Journal on Selected Areas in
Communications, 20(8), Oct. 2002.

[6] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. SCRIBE: A
large-scale and decentralized application-level multicast infrastructure. IEEE
JSAC, 20(8), Oct. 2002.

[7] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling Conferencing
Applications on the Internet using an Overlay Multicast Architecture. In
Proceedings of ACM SIGCOMM, Aug. 2001.

[8] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A reliable multicast
framework for light-weight sessions and application level framing. IEEE/ACM
Transactions on Networking, 5(6), Dec. 1997.

[9] P. Francis. Yoid: Extending the Multicast Internet Architecture, 1999. White
paper http://www.aciri.org/yoid/.

[10] C. Huitema. The case for packet level FEC. In Proc. 5th International
Workshop on Protocols for High Speed Networks, Oct. 1996.

[11] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O’Toole. Overcast:
Reliable Multicasting with an Overlay Network. In Proc. OSDI, Oct. 2000.

[12] B. Levine and J. Garcia-Luna-Aceves. A comparison of reliable multicast
protocols. Multimedia Systems Journal, 6(5), Aug. 1998.

[13] B. Levine, D. Lavo, and J. Garcia-Luna-Aceves. The case for concurrent
reliable multicasting using shared ack trees. In Proc. ACM Multimedia, Nov.
1996.

[14] X. Li, S. Paul, P. Pancha, and M. Ammar. Layered video multicast with
retransmissions (LVRM): Evaluation of error recovery schemes. In Proc.
NOSSDAV, 1997.

[15] A. Mahanti, D. Eager, M. Vernon, and D. Sundaram-Stukel. Scalable
on-demand media streaming with packet loss recovery. In ACM Sigcomm, Aug.
2001.

[16] J. Nonnenmacher, E. Biersack, and D. Towsley. Parity-based loss recovery for
reliable multicast transmission. IEEE/ACM Transactions on Networking, 6(4),
Aug. 1998.

[17] S. Paul, K. Sabnani, J. Lin, and S. Bhattacharyya. Reliable multicast transport
protocol (rmtp). IEEE Journal on Selected Areas in Communications, 15(3),
Apr. 1997.

[18] H. Schulzrinne, G. Gokus, S. Casner, R. Frederick, and V. Jacobson. RTP: A
transport protocol for real-time applications. RFC 1889, Jan. 1996.

[19] H. Schulzrinne, A. Rao, and R. Lanphier. Real time streaming protocol: RTSP.
RFC 2326, Apr. 1998.

[20] B. Smith. Fast software processing of motion JPEG video. In ACM Multimedia,
Oct. 1994.

[21] D. Towsley, J. Kurose, and S. Pingali. A comparison of sender-initiated and
receiver-initiated reliable multicast protocols. IEEE Journal on Selected Areas
on Communication, 15(3), Apr. 1997.

[22] T. Turletti and C. Huitema. Videoconferencing in the internet. IEEE/ACM
Transactions on Networking, 4(3), June 1996.

[23] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar. An integrated experimental environment
for distributed systems and networks. In Proc. of the Fifth Symposium on
Operating Systems Design an d Implementation, pages 255–270, Boston, MA,
Dec. 2002. USENIX Association.

