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Abstract

We study two packing problems that arise in the area of dissemination-based information

systems; a second theme is the study of distributed approximation algorithms. The problems

considered have the property that the space occupied by a collection of objects together could be

significantly less than the sum of the sizes of the individual objects. In the Channel Allocation

Problem, there are requests which are subsets of topics. There are a fixed number of channels

that can carry an arbitrary number of topics. All the topics of each request must be broadcast
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on some channel. The load on any channel is the number of topics that are broadcast on

that channel; the objective is to minimize the maximum load on any channel. We present

approximation algorithms for this problem and also show that the problem is MAX-SNP hard.

The second problem is the Edge Partitioning Problem addressed by Goldschmidt, Hochbaum,

Levin, and Olinick (Networks, 41:13-23, 2003 ). Each channel here can deliver topics for at

most k requests, and we aim to minimize the total load on all channels. We present an O(n1/3)–

approximation algorithm and also show that the algorithm can be made fully distributed with

the same approximation guarantee; we also generalize the (non-distributed) Edge Partitioning

Problem of graphs to the case of hypergraphs.

Keywords: channel allocation problem; edge partitioning problem; distributed approximation

algorithm.

1 INTRODUCTION

We develop approximation algorithms for certain packing problems arising in broadcast systems;

these have the property that the objects to be packed “overlap”. In other words, the space oc-

cupied by a collection of objects together could be significantly less than the sum of the sizes of

the individual objects. This is in contrast with traditional packing problems in which the ob-

jects to be packed are disjoint. A second theme of our work is that some of our algorithms can

also be made completely distributed and implemented to run in polylogarithmic time, with only a

constant-factor loss in the approximation guarantee. We study problems that arise in the area of

dissemination-based information systems [1, 2, 11, 12, 25]. Such systems are used in application do-

mains such as public-safety systems, election-result servers and stock tickers [3]. One characteristic

of dissemination-based applications is that there is a high degree of overlap in the user needs. Since

many user-requests in such applications are similar, it would be a waste of resources to transmit the
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information to each user separately. For users with similar requests, if their requests are grouped

and transmitted only once then this wastage of bandwidth could be avoided. On the negative side,

the grouped data may contain information that would be irrelevant for some users. Hence, the

users would have to process the broadcast information to obtain the data that they want. Thus,

there is a trade-off between reducing the bandwidth used by grouping the requests and the amount

of processing of the broadcast data that the clients need to do to obtain the data that they re-

quested. In our model, there is a transmitter such as a satellite that broadcasts information on a

fixed number of physical multicast channels. Each user is assigned to some channel on which the

user gets his/her requested data. Our work deals with satisfying the client requests in a timely

manner, while minimizing the amount of bandwidth used.

Problems and Results. The first problem, Channel Allocation, can be defined as follows. There

is a set of topics (e.g., news, sports events, stock-market updates), as well as a set of requests.

Each request is a subset of topics. There are a fixed number of channels that can each carry an

arbitrary amount of topics. All the topics of each request must be broadcast on some channel.

The load on any channel is the number of topics that are broadcast on that channel, and the goal

is to minimize the maximum load on any channel. Formally, we are given: (i) a set of topics

T = {t1, t2, . . . , tn}, (ii) a collection of requests R = {R1, R2, . . . , Rm}, where Ri ⊆ T for all i, and

maxi |Ri| is a constant w; 1 and (iii) a positive integer k denoting the number of channels. Our goal

is to construct a family C = {C1, C2, . . . , Ck}, Ci ⊆ T , such that for each set Ri ∈ R, there exists a

Cj such that Ri ⊆ Cj . For all j, Cj constitutes the set of topics on channel j. If Ri ⊆ Cj then we

say that request Ri is satisfied by channel j. The load on channel j is the number of topics placed

on it: i.e., |Cj |. The objective function is to minimize the maximum load on any channel, i.e., to

1In order to achieve the claimed approximation ratios, our analysis needs to assume that maxi |Ri| = w is a

constant.
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minimize maxj |Cj |. We will denote this problem as CHA.

The second problem, Edge Partitioning (EP), basically arises by bounding the number of re-

quests that any channel can handle in CHA. The setting is the same as in CHA, with the additional

constraint that each Ri must be assigned to some channel Cj for which Ri ⊆ Cj holds; furthermore,

the number of requests assigned to a channel should be at most k.2 Subject to these constraints,

the objective is to minimize
∑

j |Cj |. This problem was studied by Goldschmidt et al. [14] for the

special case of w = 2, in the context of optical network design. (That is, given a graph G, we

seek to cover the edges by subgraphs containing at most k edges each, and we aim to minimize the

total number of vertices in the chosen subgraphs.) The work of [14] considers the case w = 2, and

presents an O(
√
k)–approximation algorithm.

We give an O
(

n
w−1
w+1 (log n)

1
w

)

–approximation algorithm for CHA; this is obtained by taking

the better of a random construction and the output of a suitable set-cover problem. Using a

simplification of our original proof due to one of the referees, we show that for any given w ≥ 2,

CHA cannot be approximated better than (w+2)/(w+1), unless P = NP. For the case w = 2, CHA

is the following graph problem: cover all the edges of a given graph by a given number of induced

subgraphs, minimizing the maximum number of vertices in these subgraphs. Here, we obtain an

O(n1/3−ε)–approximation algorithm for some positive constant ε. We also show that the problem

is NP-hard for w = 2, even when there are only two channels.

For EP, we obtain an O
(

w · n
w−1
w+1

)

–approximation algorithm, by taking the better of a simple

approach and a greedy algorithm. Recall that an O(
√
k)–approximation algorithm was developed in

[14] for the case w = 2; in this case, our bound of O(n1/3) is incomparable with O(
√
k) (note that k

can take on values from 1 up tom, the number of edges in the graph). We then present an alternative

approach with the same approximation guarantee for the case w = 2, with the help of certain tail

2Note that we use the same notation k to denote two different parameters in CHA and EP.
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bounds for sums of correlated random variables [18, 19, 24]. We show that this can be implemented

as a polylogarithmic-time distributed algorithm, where each user who makes the new request only

communicates with the servers handling the topics that the user’s request is interested in. This

brings us to the next main theme of this paper: that of distributed approximation algorithms. Given

the emergence of various contexts where distributed agents (e.g., in the Internet) make decisions

using only local information, it is natural to ask whether the notion of approximation algorithms

can be brought to bear fruitfully in such contexts. Not many polylogarithmic-time distributed

approximation algorithms are known: the few that we are aware of include [9, 15, 20, 22]. We hope

that the intriguing mix of approximation and the constraint of locality will be understood further

by research in distributed approximation algorithms.

Related Work. A problem related to the ones we study is the well-known Dense k-Subgraph

problem (DkS): given a graph G, select a subset of k vertices whose induced subgraph has the

maximum number of edges. In the language of CHA, we have w = 2 and one channel with capacity

k; we wish to satisfy the maximum number of requests. This problem is NP-hard, and an O(na)-

approximate solution for some a < 1
3 was given by Feige et al. [10]. The problem is not even

known to be MAX-SNP hard. Also, Daskin et al. [8] discuss the following related printed circuit

board (PCB) assembly problem. In this problem we have a list of PCBs and a list of different

component types required by each PCB. The machine that produces the PCBs can hold only a

fixed number of different component types, and can be loaded any number of times. The goal here

is to minimize the sum, over all component types, of the number of times each component type is

loaded. The requests correspond to the PCBs, the topics correspond to the different component

types required by a PCB and the channel corresponds to the machine. In other words, the channel

capacity is fixed, any number of channels could be used and the objective is to minimize the sum of

the channel loads. They show that the problem is NP-hard. For the general version of the problem
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in which each component type (topic) and PCB (request) is associated with a cost, they provide a

heuristic solution. They also provide a branch-and-bound algorithm that can optimally solve small

to moderate sized instances of the problem.

Notation. Throughout the paper, log and ln denote logarithms to the base 2 and base e, respec-

tively. Also, we let Pr [·] and E[·] denote probability and expectation, respectively.

Organization of the paper. Sections 2 and 3 discuss CHA and its special case where all requests

are of size at most two, respectively. We then present a sequential approximation algorithm for

EP in Section 4, and a distributed algorithm for the graph case of EP in Section 5. Finally, we

conclude in Section 6.

2 THE CHANNEL ALLOCATION PROBLEM

In this section, we describe our algorithm for CHA (Section 2.1) and analyze it in Section 2.2. In

Section 2.3, we show that the problem is MAX-SNP hard.

2.1 Algorithm

Our approach employs two different algorithms and chooses a solution of lower cost from the two

solutions obtained. As we will see, these two algorithms perform “well” on different sets of inputs

that cover the entire spectrum of inputs.

The first algorithm is the following simple randomized algorithm. Independently place each

topic on each channel, i, 1 ≤ i ≤ k, with a probability p which will be determined later. We will

show that with a sufficiently high probability we obtain a feasible solution whose cost is close to

its expected cost. This probability can be boosted by repeating the random process.

The second algorithm uses the greedy set cover algorithm [6, 21, 23] on the set cover instance
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Figure 1: Construction of the set cover instance. Graph Gu represents the requests. The topics are

represented by vertices and the requests are represented by edges. t = 3, w = 2.

I that is constructed as follows. The elements of the instance I are the requests in R. Let t be

some fixed large constant. For all i, 1 ≤ i ≤ ( tw
)

, consider all
(m
i

)

combinations of i elements. For

each combination Z, let Sz be the set of requests corresponding to the elements in Z and let Tz

be the topics obtained by taking the union of the requests in Sz. The combination Z forms a set

in I iff |Tz| ≤ t. The size of our set cover instance, |I| = ∑t
j=1

(|T |
j

) ≤ ∑t
j=1 |T |j = O(|T |t) =

O(nt) = O(mt). Let M
.
= maxSz∈I{|Sz|} = O(tw) be the size of the largest set in I. Since t and

w are constants, |I| is polynomially bounded and M is a constant. This construction is illustrated

in Figure 1 for t = 3, w = 2. Now we use the greedy set cover algorithm on I to obtain a set cover

for R. For each set Sz chosen by the set cover algorithm we create a new channel. The topics in

Tz constitute this channel and hence the requests in Sz are satisfied by this channel. The set cover

covers all requests in R. This solution may be infeasible as it may use more than k channels. By

using Lemma 2.1 we can convert it into a feasible solution using k channels.
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2.2 Analysis

We will now analyze our algorithm. Note that we can obtain solutions with good approximation

guarantees trivially for the following values of w and k. If w = 1 we can get an optimal solution of

cost dm/ke. If k < 2 lnm, we get a 2 lnm approximation guarantee, since for any k we can obtain

a k-approximate solution by placing all topics on each of the k channels. If k >
(

n
lnn

)w
, we can

partition the requests into groups of size d(lnn)we and place each group on a separate channel.

This is a feasible solution as there are at most nw requests. The cost of our solution is at most

O(w(lnn)w), thus giving an approximation guarantee of O((lnn)w). For the rest of the analysis we

will assume that w ≥ 2 and 2 lnm ≤ k ≤ ( n
lnn

)w
.

In the following discussion we refer to a solution to CHA that consists of y channels and each with

a load of at most X as a (X, y) solution.

Lemma 2.1 Let k′ > k. If there exists an (L, k′) solution to CHA, then there exists a feasible

(
⌈

k′

k

⌉

L, k) solution.

Proof Partition the channels into groups of size
⌈

k′

k

⌉

. Combine the load of each group and place

it on to one channel. This gives us a (
⌈

k′

k

⌉

L, k) solution.

Lemma 2.2 With a sufficiently high probability, the randomized algorithm gives an
(

O

(

n
(

log n
k

)
1
w

)

, k

)

solution.

Proof Let ONij be an indicator random variable that is 1 if topic tj is on channel i. Let

Li =
∑

j ONij be the random variable that represents the load on channel i. Let L be the random

variable maxi Li. For any fixed i, j, E[ONij ] = Pr [ONij = 1] = p. Thus, by linearity of expectation,

µ
.
= E[Li] = np. Since Li =

∑

j ONij is the sum of bounded and independent random variables,
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the Chernoff-Hoeffding bounds [5, 16] show that

Pr [Li ≥ µ(1 + δ)] ≤ e−µδ2

3 , 0 ≤ δ ≤ 1.

For any constant c1 ≥ 1, let δ = c2
√

lnn/µ = c2
√

lnn/np, where c2 =
√
3c1. We will ensure that

c2
√

lnn/np ≤ 1. We have

Pr [Li ≥ µ(1 + δ)] ≤ 1

nc1

for each i and any fixed, desired c1 > 0. Now, Pr [L ≥ µ(1 + δ)] = Pr [
∨

i Li ≥ µ(1 + δ)]. By the

union bound we have

Pr

[

∨

i

Li ≥ µ(1 + δ)

]

≤
∑

i

Pr [Li ≥ µ(1 + δ)]

which gives us Pr [L ≥ µ(1 + δ)] ≤ k/nc1 < nw−c1 (for example we could pick c1 = w + 1). To

summarize, we have proved that with high probability the maximum load on any channel is O(np).

Now we will calculate the probability that our randomized algorithm returns an infeasible solution.

The infeasibility may arise as some requests may not be satisfied by any channel, i.e., no channel has

all the topics in that request. We will calculate the probability of this bad event. Let Ei be the event

of request Ri being satisfied and Ei the event of request Ri not being satisfied. Pr
[

Ei

]

≤ (1−pw)k.

Using the union bound, we get

Pr

[

∨

i

Ei

]

≤
∑

i

Pr
[

Ei

]

≤ m(1− pw)k ≤ me−pwk.

We want this probability to be some small constant c, 0 < c < 1. Solving me−p
wk ≤ c, for any

desired, fixed c, gives us that p of the form Θ((lnn/k)
1
w ), (since m ≤ (nw

)

and w is a constant) is

an appropriate choice. This choice of p ensures that c2
√

lnn/np ≤ 1 as required, since 2 lnm ≤

k ≤ (

n
lnn

)w
. Let Eo denote the event that the cost of our solution is greater than µ(1 + δ) and

Eu denote the event that some edges are not covered. The probability that any one of these bad
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events occur is given by Pr [Eo
∨

Eu] ≤ nw−c1 + c. This probability can be reduced by repeating

the random process. This completes the proof.

Lemma 2.3 The set cover approach gives an (O((LOPT )
w), k) solution.

Proof The set cover obtained using the greedy algorithm has size at most O(logM)OPT. But

we do not know what OPT is for the set cover instance. However, we can find an upper bound on

OPT as follows. Let (LOPT , k) be an optimal solution to the CHA instance. If we can convert an

(LOPT , k) solution into a (t, k′) solution (t is the constant used in the algorithm) then k′ ≥ OPT.

We can do this as follows. Consider a channel h with at most LOPT elements. Partition the

LOPT elements on h into dwLOPT /te groups containing at most t/w elements each. Place each

subset consisting of w groups in a separate channel. Thereby every request that was satisfied

by h is still satisfied by the new placement. On the other hand, for each channel of load LOPT

we create at most
(dwLOPT /te

w

)

channels of load t, giving us a (t, O((LOPT )
wk)) solution. Thus,

OPT≤ O((LOPT )
wk). Hence, the number of sets in our set cover is at most O((logM)(LOPT )

wk) =

O((LOPT )
wk) which implies that we have a (t, O((LOPT )

wk)) solution to CHA. Using the method

described in Lemma 2.1, we can convert this infeasible solution into an (O((LOPT )
w), k) feasible

solution.

Theorem 2.4 There is a polynomial-time algorithm for CHA that gives an O(n
w−1
w+1 (log n)

1
w )-

approximate solution.

Proof Our algorithm employs the two approaches and chooses a better solution. Hence, the cost

of our solution is min

{

O

(

n
(

logn
k

) 1
w

)

, O((LOPT )
w)

}

. We calculate the approximation guarantee

by considering the following cases.

Case I: LOPT ≤ n
1

w+1
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The cost of our solution as upper bounded by the second term is at most O(Lw−1
OPTLOPT ) =

O(n
w−1
w+1LOPT ). Hence the approximation ratio is O

(

n
w−1
w+1

)

.

Case II: LOPT > n
1

w+1 and k ≥ n w
w+1

The cost of our solution as upper bounded by the first term is

≤ O

(

n

(n
w

w+1 )
1
w

(log n)
1
w

)

= O
(

n
w

w+1 (log n)
1
w

)

= O
(

n
w−1
w+1 (log n)

1
wn

1
w+1

)

≤ O
(

n
w−1
w+1 (log n)

1
w

)

LOPT

This gives us an approximation guarantee of O
(

n
w−1
w+1 (log n)

1
w

)

.

Case III: k < n
w

w+1

Note that the average load of all channels is n
k , therefore LOPT ≥ n

k . The cost of our solution

is upper bounded by the first term which is equal to O
(

n( lognk )
1
w

)

= O
(

n
k (log n)

1
w k

w−1
w

)

≤

O
(

(log n)
1
w k

w−1
w

)

LOPT . This gives an approximation guarantee of O
(

k
w−1
w (log n)

1
w

)

≤

O
(

(n
w

w+1 )
w−1
w (log n)

1
w

)

= O
(

n
w−1
w+1 (log n)

1
w

)

.

2.3 Hardness of Approximation

We now prove that CHA is MAX-SNP hard; we acknowledge the referee, whose proof that we

present here is a substantial simplification of our original proof.

Consider the “Edge Partition into Triangles” problem: given an undirected graph G = (V,E),

we wish to determine if there exists a partition of E into subsets, each of which is isomorphic to the

triangle K3. This problem is NP-complete [17]. For any given constant w ≥ 2, we can transform

this into an instance of CHA as follows. The set of topics is T is the disjoint union of V and a

set V ′ of w − 2 “dummy” topics; so if |V | = n, then we have n + w − 2 topics in total. For each
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edge {u, v} ∈ E, we create a request {u, v} ∪ V ′. Thus, we have |E| requests, each of cardinality

w, and each containing V ′. The number of channels k equals |E|/3. Now note that any optimal

solution for this problem will have V ′ contained in every channel. Next, it is easy to see that G

can be edge partitioned into triangles if and only if there is a solution to this CHA instance with

maximum load 3 + w − 2 = w + 1. If G cannot be so partitioned, then any solution to this CHA

instance has to have maximum load at least w + 2. Thus we get:

Theorem 2.5 Consider the family of CHA instances for any given constant value (that is at least

2) for the parameter w. This family is NP-hard. Furthermore, this family cannot be approximated

to within a factor smaller than (w + 2)/(w + 1) unless P = NP .

3 CHA INSTANCES WITH SMALL SET-SIZE

In this section we consider the case of CHA instances when requests are of size at most 2. In this

case the requests can be modeled as a graph in which the vertices represent the topics and the

edges represent the requests, i.e., an edge (i, j) would represent a request’s topics i and j. The goal

is to allocate channels while minimizing max1≤i≤k Li. In Section 3.1 we show that the problem is

NP-complete even when there are only two channels; recall that the hardness proof of Section 2.3

requires an unbounded number of channels. In Section 3.2 we use an algorithm for the Dense k

Subgraph problem to obtain an approximation algorithm for CHA.

3.1 NP-Hardness

Theorem 3.1 CHA is NP-hard when each request is of size two and there are two channels.

Proof The decision version of CHA in which each request is of size two can be posed as follows.
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CHA: Given a graph Gu that represents requests, and positive integers k and L. Is there a channel

allocation in which max1≤i≤k Li ≤ L?

Our NP-hardness proof builds on the intractability of the Graph Bisection Problem (GBP) which

is defined as follows.

GBP: Given a graph Gb = (Vb, Eb), |Vb| = n, n is even, and a positive integerW . Is there a partition

of Vb into V
1
b and V 2b such that

∣

∣V 1b
∣

∣ =
∣

∣V 2b
∣

∣ = n
2 and

∣

∣cut(V 1b , V
2
b )
∣

∣ ≤ W , where cut(V 1b , V
2
b ) is the

set of edges with one endpoint in V 1b and other in V 2b .

We will first transform the graph Gb into a graph Gu that will represent the requests. For each

vertex vi ∈ Vb, we create a clique Ci of size n
2. Label the vertices in each clique as 1, 2, . . . , n2.

Connect vertex j in Ci to a vertex i in Cj iff (vi, vj) ∈ Eb. Note that any node in a clique is

connected to at most one node that is not in the clique. Setting k = 2 and L = n3

2 +
⌈

W
2

⌉

completes

the reduction from a GBP instance to a CHA instance.

Claim If Gb has a bisection (V 1b , V
2
b ) such that

∣

∣cut(V 1b , V
2
b )
∣

∣ ≤W then there is a channel allocation

of cost L = n3

2 +
⌈

W
2

⌉

.

To prove this claim, let the cliques corresponding to vertices in V 1b constitute channel CH1 and the

cliques corresponding to vertices in V 2b constitute channel CH2. Let Ec be the set of edges that have

one endpoint in CH1 and other endpoint in CH2. Note that no two edges in Ec share a common

vertex. Let Ec = E1c ∪E2c where E1c is an arbitrary set of
⌈

W
2

⌉

edges in Ec and E
2
c = Ec \E1c . For

each edge (u, v) ∈ E1c such that u ∈ CH1 and v ∈ CH2, we move v to CH1. Similarly, for each edge

in (u, v) ∈ E2c such that u ∈ CH1 and v ∈ CH2, we move u to CH2. Thus L2 ≤ L1 = n3

2 +
⌈

W
2

⌉

= L.

Claim If there is a channel allocation of cost L = n3

2 +
⌈

W
2

⌉

then Gb has a bisection (V 1b , V
2
b ) such

that
∣

∣cut(V 1b , V
2
b )
∣

∣ ≤W .
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This claim is proved by observing that each clique must be contained completely on one channel.

Also, both the channels must have the same number of cliques, otherwise the load on one of the

channels would be at least n3/2 + n2. Since W < n2, by keeping the number of cliques the same

on both the channels, we can get a reduced load of at most n3/2 +W < n3/2 + n2. Note also that

no clique can appear completely on both the channels as only vertices 1, 2, . . . , n of any clique have

neighbors outside the clique and hence at most n vertices of any clique appear on both the channels.

Now, given a solution to CHA we can get a solution to the bisection problem by placing vertices

in V 1b that correspond to cliques of size n2 in CH1 and placing vertices in V 2b that correspond to

cliques of size n2 in CH2. On one channel there are
⌈

W
2

⌉

vertices that do not belong to any of

the n2-sized cliques on that channel. Since the edges between the n2-sized cliques on CH1 and the

n2-sized cliques on CH2 form a matching, on the other channel there are
⌊

W
2

⌋

vertices. Each such

vertex corresponds to an edge in cut(V 1b , V
2
b ). Hence,

∣

∣cut(V 1b , V
2
b )
∣

∣ ≤W .

3.2 Algorithm

We next give an approximation algorithm for CHA. Our algorithm uses the solution for the Dense

k-Subgraph problem (DkS) described in Section 1. Specifically, we use the approximation algorithm

DkS(G, k) due to [10].

Algorithm: Guess the optimal load by trying out all possible values. Consider a guess L. Invoke

DkS(G,L), which returns an approximate solution for the densest subgraph on L vertices. Place

these L vertices returned by DkS(G,L) onto a new channel. Remove all the covered edges from

G. If any edges remain uncovered invoke DkS again. The pseudo-code for the algorithm is given

below.

Channel-Allocation(G(V,E), k)
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1 n← |V |

2 for L = 2 to n do

3 i← 0

4 GL(VL, EL)← G(V,E)

5 while(|EL| > 0) do

6 i← i+ 1

7 CHi ← DkS(G,L)

8 EL ← EL \ Ci // Note: Ci are edges covered on CHi

9 SL ←
⌈

i
k

⌉

L

10 return min{S1, S2, . . . , Sn}

Note that the algorithm could be made more efficient, for example, we may not need to test all

values of L. However, for clarity of exposition, we will ignore the issue of efficiency.

Lemma 3.2 The algorithm Channel-Allocation(G, k) gives an O(ρ lnn)-approximate solution,

where ρ is the approximation guarantee for the DkS problem.

Proof Let us consider the iteration of the algorithm in which we guess the optimal load for the

CHA instance, i.e., L = LOPT . Let (LOPT , k
′) be the solution found during this iteration. We will

now upper bound the value of k′. Let m denote the number of edges in the graph. Let mi denote

the number of uncovered edges at the beginning of ith iteration of the while loop. Thus m1 = m.

An optimal solution to CHA would have one channel covering at least m/k edges. The first call to

DkS would return us a solution covering at least m
ρk edges, where ρ is the performance guarantee

of DkS. Thus, after the first round, the number of uncovered edges m2 ≤ m1

(

1− 1
ρk

)

. In general,

after l rounds, ml+1 ≤ ml

(

1− 1
ρk

)

. Since the algorithm terminates after k′ iterations, we must
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have at least one uncovered edge at the start of iteration k′, i.e., mk′ ≥ 1. Thus we get

mk′ ≤ mk′−1(1− 1/(ρk)); i.e., 1 ≤ m(1− 1/(ρk))k
′−1 ≤ m · e−

k′−1
ρk .

Hence, k′ ≤ ρk lnm + 1. Using Lemma 2.1, we convert the (LOPT , k
′) solution to an

(⌈

k′

k

⌉

LOPT , k
)

=
(⌈

ρk lnm+1
k

⌉

LOPT , k
)

solution for CHA. Since our algorithm tries all possible

values for the optimal load and returns the best solution, the cost of our solution is at most

dρ lnm+ 1eLOPT , which is a O(ρ lnm) = O(ρ lnn)-approximate solution.

Theorem 3.3 For a certain constant a < 1/3, there is an O(na lnn)-approximation algorithm for

CHA.

Proof The best known approximation guarantee for DkS is ρ ≤ na, a < 1/3 [10]. Combining

this fact with Lemma 3.2 completes the proof.

4 THE EDGE PARTITIONING PROBLEM

We now present a sequential approximation algorithm for EP. We will throughout use hypergraph

covering terminology: given a hypergraph H = (V,E) with n vertices and m edges (each having at

most w of vertices), we wish to partition the edges into sets of at most k edges each, in order to

minimize the sum of the total number of vertices in each set (“each set” here means “each block of

the partition”). We assume without loss of generality that k ≤ m.

4.1 Algorithm and analysis

We now present a deterministic O
(

w · n
w−1
w+1

)

–approximation algorithm; see Theorem 4.6. Recall

that the degree of a vertex in a hypergraph is the number of edges incident to it (i.e., containing it).

Let H = (V,E) be the given hypergraph. We start by considering the following greedy algorithm
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where we keep removing vertices of lowest degree in the remaining hypergraph until the remaining

hypergraph has at most k edges.

Edge Partition(H = (V,E), k)

1 F ← ∅

2 while |E| > k do

3 Remove the isolated vertices from V

4 H ′ = (V ′, E′)← H = (V,E)

5 L← ∅

6 while |E′| > k do

7 u← a lowest degree vertex in H ′

8 L← {edges in E ′ that are incident to u}

9 V ′ ← V ′ \ {u}

10 E′ ← E′ \ L

11 end

12 R← E′
⋃

L

13 Arbitrarily remove some edges from R to make |R| = k

14 F ← F
⋃{R} (i.e., R is the set of edges assigned to a new channel)

15 H ← H\R

16 end

17 F ← F
⋃{E}

Lemma 4.1 For each iteration of the outer while loop (Lines 2–16), the number of vertices in R

is at most w
(

k
m′

)
1
w n′ + 1 ' w

(

k
m′

)
1
w n′, where n′ = |V ′|, m′ = |E′| for the H ′ = (V ′, E′) being
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used in that iteration.

Proof For each iteration of the outer while loop (Lines 2–16) we only need to calculate the

number p of iterations of the inner while loop (Lines 6–11) being executed. Because each iteration

of the inner loop removes exactly one vertex from V ′ (Line 9), the number of vertices in R is upper

bounded by n′ − p+1. Let m′i (0 ≤ i ≤ p− 1) be the number of edges in E ′ and n′i be the number

of vertices in V ′ at the beginning of the ith iteration of the inner loop (or at the end of the (i−1)st

iteration of the inner loop). Let m′0 = m′ and n′0 = n′. Since in the i-th iteration the average

degree of each vertex is
wm′

i
n′i

, removing a vertex of the minimum degree (Line 7) removes at most

wm′
i

n′i
edges from E ′ (Line 8), therefore m′i+1 ≥ m′i(1− w

n′i
) and thus m′i+1 ≥ m′

∏i
j=0

(

1− w
n′j

)

. Let

m′p be the number of remaining edges after the inner while loop (Line 12). By construction of the

algorithm, we know n′j = n′ − j, m′p ≤ k and m′p−1 > k. Meanwhile, since at the beginning of the

p-th inner iteration there are at least k + 1 edges in H ′, there are at least w + 1 vertices in H ′.

Hence n′ − (p − 1) ≥ w + 1 and m′p ≥ m′
∏p−1

j=0

(

1− w
n′j

)

. Thus we have m′
∏p−1

j=0

(

1− w
n′−j

)

≤ k.

Equivalently, k
m′ ≥

∏p−1
j=0

n′−j−w
n′−j =

∏w−1
i=0

n′−p−i
n′−i . Since n′ − p ≥ w, we have n′ − p − i ≥ n′−p

w for

0 ≤ i ≤ w − 1. Hence we have
∏w−1

i=0 (n
′ − p− i) ≥

(

n′−p
w

)w
. Also, since

∏w−1
i=0 (n

′ − i) ≤ (n′)w, we

get n′ − p+ 1 ≤ w
(

k
m′

)
1
w n′ + 1 ' w

(

k
m′

)
1
w n′.

Lemma 4.2 The total number of vertices in the edge partition is at most wn
(1−1/w)

(

m
k

)1−1/w
.

Proof Let ni and mi be the number of vertices and edges in the graph H of the i-th iteration

of the outer while loop. From Lemma 4.1 we know that the total number of vertices is at most

S =

bm
k
c−1
∑

i=0

w

(

k

mi

)
1
w

· ni.

Since ni ≤ n and mi = m− ik for 0 ≤ i ≤ m
k − 1, we get

S ≤ wn

k(1−1/w)

bm
k
c−1
∑

i=0

k

(m− ik)1/w <
wn

k(1−1/w)

∫ m

0

dx

x1/w
=

wn

(1− 1/w)

(

m

k

)1−1/w
.
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Lemma 4.3 The optimal solution has at least max
{

n, w/e

k1−1/wm
}

≥ n1/w · (w/e)1−1/w

k(1−1/w)2
·m1−1/w ver-

tices.

Proof Suppose the optimal solution partitions the set of edges into t parts, and part i contains

mi edges, 1 ≤ i ≤ t. If ni is the number of vertices in part i, then
(ni
w

) ≥ mi (since a complete

hypergraph on ni vertices has
(ni
w

)

edges). Using Stirling’s formula, it is easy to verify that ni ≥
(

w
e

)

m
1
w
i . Therefore the total number of vertices is S ≥ w

e

∑t
i=1m

1
w
i . Obviously, 0 < mi ≤ k and

∑t
i=1mi = m. Because the function f(x) = x

1
w is a concave function for x ≥ 0 (since f ′′(x) < 0),

hence we have x
1
w > x

k1−1/w for 0 < x ≤ k. Therefore S > w/e

k1−1/wm. On the other hand, any

solution has at least n vertices. Hence the number of vertices in the optimal solution is at least

max
{

n, w/e

k1−1/wm
}

. Since max{a, b} ≥ apbq for a, b, p, q > 0 and p+ q = 1, let a = n, b = w/e

k1−1/wm,

p = 1
w and q = 1− 1

w , we obtain the claimed result.

Lemma 4.4 From Lemmas 4.2 and 4.3, the approximation ratio of our algorithm is at most

w2

w−1
(

en
wk1/w

)1−1/w
.

Note that in the case of graphs, i.e., w = 2, the approximation ratio of our algorithm is at most

4
√

en
2
√
k
. Also note that the constant factor of this ratio can be improved in the analysis for w = 2.

The algorithm of [14] works for w = 2, and their approximation ratio for w = 2 is about
√

k
2 .

Lemma 4.5 By partitioning E into m parts such that each part consists of exactly one edge, we

obtain a trivial algorithm whose approximation ratio is at most ek1−1/w.

Proof The cost of the trivial algorithm is wm, while the cost of the optimal solution is at least

w/e

k1−1/wm. Therefore the approximation ratio is at most ek1−1/w.
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Theorem 4.6 By running the first algorithm and the trivial algorithm and taking the best solution,

we obtain an algorithm with approximation ratio at most 2w · n
w−1
w+1 . The running time of the

composite algorithm is O
(

m
k (m+ n)

)

.

Proof The approximation ratio is at most r = min

{

ek1−1/w, w2

w−1
(

en
wk1/w

)1−1/w}
. If k ≤

(

w2

e(w−1)
)

w2

w2−1
(

en
w

)
w

w+1 , then r ≤ ek1−1/w ≤ w
(

e
w−1

)
w

w+1 n
w−1
w+1 . Else, r ≤ w2

w−1
(

en
wk1/w

)1−1/w
≤

w
(

e
w−1

)
w

w+1 n
w−1
w+1 . f(x) =

(

e
x−1

)
x

x+1 is a decreasing function when x ≥ 2 (since f ′(x) < 0). Hence,

(

e
w−1

)
w

w+1 ≤ e2/3 < 2. Thus the approximation ratio is at most r < 2w · n
w−1
w+1 . Furthermore, the

running-time bound is easily verified.

5 A DISTRIBUTED ALGORITHM FOR EP ON GRAPHS

We now present a randomized distributed O(n1/3)–approximation algorithm for the case where the

given hypergraph H is a graph G = (V,E). Recall that in the present case where w = 2, each

user basically requests two topics. We consider a fully distributed model where each broadcast

channel has a server running it, and where each topic also has its own distribution server. A topic-

distribution server can communicate with a channel server, if the former wants its topic broadcast

on that channel. Each user communicates only with the two topic-distribution servers of interest

to it; thus, the model is distributed in the sense that the users need not have any knowledge about

each other. By interpreting the topics as vertices and as the two topics of interest to a user as an

edge, we thus equivalently get the following familiar distributed point-to-point model. Each vertex

in the graph G = (V,E) has a processor which can communicate with its neighbors, as well as

with the servers handling the channels. Each processor knows the values of n (which is a static

parameter – the number of topics) and k. We now wish to assign each edge to one channel (from

among an arbitrary number of channels), such that each channel has at most k edges assigned to it.
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(The two processors at the end-point of an edge co-operatively decide which channel that edge gets

assigned to.) The goal is to minimize the sum, over all channels i, of the total number of vertices

that use i (a vertex v uses i iff some edge incident to v is assigned to i). Computation proceeds

in rounds: in each round, every node communicates with its neighbors, and updates its internal

state. The running time of an algorithm is the number of rounds, and hence locality is the main

constraint in this model; we aim for polylogarithmic-time algorithms.

One representative use of such distributed algorithms is as follows. Suppose, via statistical

knowledge of user-requests, the servers have been clustered so that most users will request their

(two) topics from within the same cluster. (For instance, the topics could be in different languages,

suggesting a natural clustering: since a typical user may request two topics of the same language, we

could cluster all topics of the same language together.) Then, a distributed algorithm will primarily

require local communication, and will not have much need for inter-cluster communication.

We further distinguish two models: strong and weak. In the weak model, if a channel has more

than k edges that attempt to get assigned to it, the channel sends back a “No” message to the

end-points of these edges, after which the end-points can retry. In the strong model, even such

attempts are disallowed, and if we ever attempt to send more than k edges to a channel, the system

enters a “Failed” state. Such a strongly constrained model is less realistic than the weak model

– we assume that a channel can report that it is getting overloaded without crashing. However,

we also study the strong model and show that if all nodes know the value of m (which can be

obtained if each incoming user “registers” with a central server which broadcasts the value of m to

all servers), then we can develop an O(n1/3)–approximation algorithm even for the strong model.

(There is a positive probability of entering the “Failed” state in our algorithm for the strong model

– indeed, this seems inevitable – but this probability can be made as small as n−c for any desired

constant c.) We first consider the strong model in Section 5.1, and then show how to modify the
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algorithm to work in the weak model, in Section 5.2.

5.1 The Strong Model

Consider the strong model. Define

k0
.
= (n2m(log n)4(log log n)4)1/3.

For a technical reason that will become apparent later, we will first do the following. If k > k0,

we will artificially assume that k = k0; i.e., if the channel capacity is more than k0, we will

restrict ourselves to using at most k0 capacity per channel. As in Section 4.1, there is the “trivial

algorithm” (which places at most k edges arbitrarily on each channel) whose total objective function

value is at most 2m. Like in Section 4.1, our main focus is on showing how to construct a feasible

solution with objective function value O(n
√

m/k); taking the better of this solution and that of

the trivial algorithm, will yield an O(n1/3)–approximation. (Each processor can see which is the

better of the two solutions, since it knows the value of m. Also, we emphasize that when we say

“O(n
√

m/k)” a few sentences above, we mean “O(n
√

m/k′), where k′ = min{k, k0}”.) Such an

O(n1/3)–approximation can be justified as follows. Recall from Lemma 4.3 that Ω(max{n,m/
√
k})

is a lower bound on the objective function. Since for any a, b > 0 and p, q > 0 such that p+ q = 1,

we have min{a, b} ≤ apbq, therefore min{m,n
√

m/min{k, k0}} ≤ m1/3(n
√
m)1/3. Also due to the

facts that max{n,m/
√
k} ≥ n and m = O(n2), it is easy to verify that for all k (whether greater

than k0 or not),

min{m,n
√

m/min{k, k0}}
max{n,m/

√
k}

= O(n1/3).

Henceforth, we assume that k ≤ k0.

The trivial algorithm can be easily implemented in the strong model with a contention-resolution

type algorithm, where each edge chooses to be assigned to each channel independently with a
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suitable probability p. If k ≥ log2 n, we take, say, 6(m/k) log n channels and p = k/(2m); each

edge tries each channel with probability p, and goes to the first channel it chose. If k < log2 n, we

take p = n−5 and (6/p) log n channels. We now verify that with high probability, these schemes

yield feasible solutions. In the case where k ≥ log2 n, the expected load on a channel is mp = k/2;

by the Chernoff-Hoeffding bounds [5, 16], the probability that some particular channel gets more

than k edges is e−Ω(k). Since there are only 6(m/k) log n channels and since k ≥ log2 n, a union

bound implies that the probability of getting an overloaded channel is negligible. Furthermore, for

any particular edge f , the probability that it does not choose any channel is

(1− p)6(m/k) logn ≤ e−6p(m/k) logn = e−3 logn. (1)

Since there are at most n2 edges, we see by the union bound that the probability of some edge

not getting assigned to any channel is negligible. Thus, with high probability, we get a feasible

solution. We argue similarly for the case where k < log2 n: recall that we take p = n−5 and

(6/p) log n channels in this case. The probability that a particular channel gets two or more edges

assigned to it is at most m2p2 ≤ n−6; a union bound over the 6n5 logn channels shows that with

high probability, no channel gets overloaded. As for each edge getting assigned to some channel,

we argue similarly as in (1).

For the rest of this discussion, we assume k ≥ log8 n, say; if k is smaller, the above trivial algo-

rithm already results in a polylog(n) approximation, since the optimal solution value is Ω(m/
√
k)

by Lemma 4.3. Assuming k ≥ log8 n, we now show how to distributively construct a feasible

solution with objective function value O(n
√

m/k).

We first give an informal description of our algorithm. The algorithm will proceed in iterations,

and each iteration has a preprocessing step followed by a random selection step. Define d̄ =
⌈

2m
n

⌉

,

and let deg(v) be the current degree of v. The preprocessing step is as follows; it basically ensures
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that the maximum degree is not much more than the average degree. Each v ∈ V makes ddeg(v)/d̄e

virtual copies of itself; it then distributes its deg(v) incident edges to these copies, so that no copy

gets more than d̄ edges. Thus we get a new graph with m edges, and maximum degree d̄. It is

easy to see that the new number of vertices is at most 2n, as follows. For any vertex v, we have

1 ≤ deg(v) ≤ n− 1. Let l = d(n− 1)/d̄e. Suppose there are n1 vertices having degrees in [1, d̄], n2

vertices having degrees in [d̄+1, 2d̄], n3 vertices having degrees in [2d̄+1, 3d̄], . . ., nl vertices having

degrees in [(l − 1)d̄+ 1, ld̄]. Then we have n1 + n2d̄+ 2n3d̄+ 3n4d̄+ · · ·+ (l − 1)nld̄ ≤ nd̄. Hence

n2 + 2n3 + · · ·+ (l − 1)nl ≤ n. Therefore n1 + 2n2 + 3n3 + · · ·+ lnl ≤ 2n. Thus, the new number

of vertices is in the range [n, 2n], there are m edges, and the maximum degree at most 2m/n; so,

the maximum degree is at most twice the average degree. We will see below that controlling the

maximum degree in this fashion greatly helps our analysis. The random selection step is: every

vertex will try a channel with probability approximately
√

k/m, so that approximately k edges will

get assigned to the channel. More precisely, the choices for the virtual copies of an original vertex

v are all made independently by v. Thus, each iteration successfully assigns some edges, and the

remaining edges move on to the next iteration.

The above informal description assumes that every vertex knows the residual number of edges;

however, this number can only be estimated. We now give details of this estimation. (Getting

all vertices to determine this number exactly by flooding, i.e., sending to the neighbors their local

information and information received from other neighbors, would take time proportional to the

diameter of the graph.) The algorithm actually proceeds in two phases, where the iterations of

Phase I are informally described above, and Phase II is an invocation of the trivial algorithm. We

now describe the two phases more formally.
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Phase I. We first wish to define a = a(n) to be a quantity that is asymptotically slightly smaller

than 1/ log n; we will take

a =
1

(log n) log logn
. (2)

Recall that we have assumed that k ≤ k0; we may also assume without loss of generality that the

graph G is connected, and hence that m ≥ n− 1. Thus, if m ≤ k/a2, we must then have that n,m

and k are all within polylogarithmic factors of each other, and the trivial algorithm will hence be

a polylogarithmic approximation. So, suppose m > k/a2. The number of residual edges will decay

by a factor of about (1 − a/2) in every iteration; define i∗ to be the largest nonnegative integer i

such that

m(1− a/2)i ≥ k/a2. (3)

Note that i∗ ≤ O((log n)/a). Phase I proceeds in iterations numbered i = 0, 1, 2, . . . , i∗; the ith

iteration is as follows. Let Ei be the set of edges at the beginning of the iteration; i.e., these

edges have not been assigned successfully until now. All vertices start with an estimate mi of |Ei|.

Initially, m0 = m = |E| is obtained from the system. We will show that the number of residual

edges decays, with high probability, by a factor very close to (1− a/2) in every iteration; thus we

define

mi = m(1− a/2)i, 1 ≤ i ≤ i∗, (4)

and will show later that |Ei| = mi(1 ± o(1)) with high probability, for all i. Now, in the ith

iteration, the preprocessing step is as described in the informal description, with m replaced by mi.

The server chooses ami/k new channels. Each vertex then independently goes (following its copies)

into each of these channels with probability pi =
√

k/2mi. (The choices for all virtual copies of an

original vertex v are made independently by v.) An edge is assigned to a channel iff both of its
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end-points choose to go into that channel; if an edge gets assigned to more than one channel, it

chooses one arbitrarily.

Phase II. Once we succeed in proving that |Ei| = mi(1± o(1)) with high probability for all i, we

see from (3) that with high probability, we will have O(k/a2) edges left at the end of Phase I. In

Phase II, we run the trivial algorithm to assign these edges. We will prove that the cost of Phase

I is O(n
√

m/k) with high probability; also, the cost of Phase II is O(k/a2). Thus, the total cost is

O(n
√

m/k) +O(k/a2) = O(n
√

m/k);

this is where we use the assumption that k ≤ k0.

We will describe and analyze only Phase I of the algorithm below. The ith iteration, 0 ≤ i ≤ i∗,

of Phase I is as follows. The channel-server allocates ami/k new channels, where a = 1
(log n) log log n .

The pseudocode for each vertex v is:

Edge Partition(G(V,E), k, v, i) [Strong Model]

1 Let mi be as in (4);

2 d̄i ← d2mi/ne; pi ←
√

k/(2mi);

3 if all edges incident to v have been assigned

4 then return // preprocessing step

5 deg(v)← number of unassigned edges incident to v;

6 v makes ddeg(v)/d̄ie virtual copies of itself

and equitably distributes its edges to the copies; // random selection step

7 Independently put each copy of v in each channel with probability pi;

8 // Let uc be a virtual copy of vertex u, vc be a virtual copy of v;

9 if ∃ a channel CH s.t. uc ∈ CH and vc ∈ CH

10 then edge (u, v) is assigned to channel CH.
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5.1.1 The Strong Model: Analysis

We now turn to analyzing the algorithm. Define an event to have negligible probability if its

probability is n−ω(1), i.e., goes to zero faster than any inverse polynomial of n. In the other

direction, define an event to happen with very high probability (“w.v.h.p.”) if its complement has

negligible probability. We will also assume as stated before that log8 n ≤ k ≤ k0. Define Ui to be

the following event that is desirable for us:

m(1− a/2− a2/4)i ≤ |Ei| ≤ m(1− a/2 + a2/4)i. (5)

We aim to show that w.v.h.p: all the events Ui hold, no channel is ever overloaded, and that the

total cost of Phase I is O(n
√

m/k).

Remark. Note that Ui implies that |Ei| = mi(1± o(1)). If Ui holds, then

|Ei| = m(1− a/2)i · (1±O(a2))i = mi · (1±O(a2i));

since i ≤ O((log n)/a) and a = o(1/ log n), we get that |Ei| = mi(1± o(1)).

We now proceed to show that the required events happen w.v.h.p. Fix an iteration i. Let E be

the event U0 ∧U1 ∧ · · · ∧Ui. Conditional on E , we will show that the following three events happen

w.v.h.p:

(C1) Ui+1,

(C2) no channel is overloaded in iteration i, and

(C3) the total cost of iteration i is O(a · n ·
√

mi/k).

Given this, a union bound over all i implies that w.v.h.p., all events Uj hold, and no channel is

ever overloaded. It also implies that w.v.h.p., the total cost is at most

O





∑

i≥0
a · n ·

√

m(1− a/2)i/k


 = O(n ·
√

m/k).
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Thus, we are studying iteration i, and are conditioning on E . We will only require the fact that

Ui holds, which is implied by E . Let us first show (C3). Consider any channel; the load on it is

a sum of independent binary random variables (one for each vertex attempting to use the channel

in this iteration), and the mean load is O(n
√

k/mi). Thus, by a Chernoff-Hoeffding bound, the

probability that the load is more than twice its mean is at most

e−Ω(n
√

k/mi) ≤ e−Ω(
√
k) ≤ e−Ω(log4 n),

which is negligible. Thus, by a union bound, (C3) holds w.v.h.p.

We now move on to (C1) and (C2), where the situation is much more complicated due to

correlations among neighboring edges. However, we will see that the fact “maximum degree is

within a constant times the average degree,” which follows from our pre-processing in iteration i,

will help a great deal in bounding these correlations.

Lower-bounding |Ei+1|. We first show a lower bound on |Ei+1| that will hold w.v.h.p., given

that Ui holds. We will use Janson’s lower-tail bound [18], which is as follows. Let Φ be a finite set,

and R ⊆ Φ determined by the experiment in which each element r ∈ Φ is independently included

in R with probability pr. Let {Ai | i ∈ I} be a family of subsets of Φ, and denote by Bi the

event that Ai ⊆ R. Write i ∼ j if i 6= j and Ai ∩ Aj 6= ∅. Define ∆ =
∑

i∼j Pr [Bi ∧Bj ] (the

sum is over ordered pairs). Let X =
∑

iXi, where Xi is an indicator variable for the event Bi, let

µi = E[Xi] = Pr [Bi] and µ = E[X] =
∑

i µi.

Theorem 5.1 (Janson’s inequality [18].) With the notation as above and with 0 ≤ δ ≤ 1,

Pr [X ≤ (1− δ)µ] ≤ e−δ2µ/(2+∆/µ).

Let q be the probability that a particular edge is assigned to at least one channel; we have

q = 1− (1− k/(2mi))
ami/k ≥ a

2

(

1− a

4

)

, (6)
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where we have used the inequality (1 − ψ)r ≤ 1 − rψ + r2ψ2/2, valid for 0 ≤ ψ ≤ 1 and integral

r ≥ 1. In the setting of Theorem 5.1, we take Φ = V (G), and each Ai is an edge. Let Xe be the

event that edge e is assigned to some channel. Define e ∼ f iff the edges e and f are different, and

have a common end-point. Since Pr [Xe ∧Xf ] ≤ Pr [Xe] = q, we have

∆
.
=

∑

(e,f): e∼f
Pr [Xe ∧Xf ] =

∑

e

∑

f : e∼f
Pr [Xe ∧Xf ] ≤ 2|Ei|(d̄i − 1)q.

Letting X =
∑

eXe and µ = E[X] = q|Ei|, we get ∆/µ ≤ 2|Ei|(d̄i− 1)q/(q|Ei|) = 2(d̄i− 1); this in

turn is O(mi/n), since Ui is assumed to hold. Also, µ = Θ(miq) since Ui is assumed to hold. So,

since

µ = Θ(miq) and ∆/µ ≤ O(mi/n), (7)

Janson’s inequality shows that

Pr [X ≤ µ(1− a/4)] ≤ e−Ω(miqa
2/max{1,mi/n}) = e−Ω(min{mi,n}·a3), (8)

which is negligible since mi ≥ k ≥ log8 n. Thus, we have w.v.h.p. (conditional on E) that

|Ei+1| ≤ |Ei| · (1− q · (1− a/4)) ≤ |Ei| · (1− a/2 + a2/4). (9)

Upper-bounding the channel load. To establish (C1) and (C2), we next show that no channel

is overloaded, w.v.h.p; we use recent tail-bounds of [19, 24]. In particular, we adopt the following

formulation of the Janson-Ruciński’s inequality [19].

If Γ is a set and κ ≥ 1 a natural number, let [Γ]κ denote the family of all subsets I ⊂ Γ with

|I| = κ, and [Γ]≤κ =
⋃κ
j=0[Γ]

j . Let A and Γ be finite index sets, and suppose the following scenario

holds. There is a family ξα, α ∈ A, of independent random variables. We also have non-negative

random variables YI , I ∈ H ⊆ [Γ]≤κ, with the following properties:

• we have a family of subsets AI ⊆ A, I ∈ [Γ]≤κ, such that each YI is a function of the tuple

〈ξα : α ∈ AI〉 alone;
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• A∅ = ∅ and AI ∩ AJ = AI∩J for all I, J ∈ [Γ]≤κ.

Let X =
∑

I∈H YI . We want an upper-tail bound for X; to do so, we define certain quantities XI ,

µI and µl next.

Define XI =
∑

J⊇I YJ . Next, define

µI = supE[XI | ξα, α ∈ AI ];

the supremum is taken over all possible values for the tuple 〈ξα : α ∈ AI〉 that can occur with

nonzero probability. Further let, for l ≤ κ,

µl = max
|I|=l

µI .

Note that µ0 = µ = E[X]. We are now ready to state the upper-tail bound:

Theorem 5.2 (Janson-Ruciński’s inequality [19].) With notation as above and N = |Γ|, for every

t > 0 and r1, . . . , rκ such that

r1 · · · rj · µj ≤ t, j = 1, . . . , κ,

we have, with c = 1
8κ ,

Pr [X ≥ µ+ t] ≤
(

1 +
t

µ

)−cr1
+

κ−1
∑

j=1

N j

(

1 +
t

r1 · · · rjµj

)−crj+1

.

Armed with this theorem, we can now show that for any particular channel, it does not get

overloaded, w.v.h.p. In the discussion now, we consider all virtual copies of a vertex as separate

vertices. Fix a channel. In the setting of Theorem 5.2, we take Γ to be the vertex set V , κ = 2, and

H as the set of all vertices and edges of the current residual graph. Let Ye be the indicator variable

that edge e gets assigned to the channel (i.e., both of its end-points attempt to join the channel).

Define Y{v} ≡ 0 for all v ∈ V . Let A = V , and let ξv be the event that v attempts to join the
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channel. We now see what the quantities XI and µl are in our context. We have Xv =
∑

e:v∈e Ye.

Since Ui holds, µ1 = maxv E[Xv | ξv] = Θ(
√
kmi
n ); µ2 = maxe supXe = 1. Let X =

∑

e Ye. Then,

µ = E[X] = |Ei| · k
2mi

; since Ui holds, µ ∼ k/2. Let t = µa/2; note that t ∼ ka/4. The constraints

required by Theorem 5.2 are that r1µ1 ≤ t and r1r2µ2 ≤ t. We choose r1 of the form Θ(a
√
k) and

r2 of the form Θ(
√
k) to satisfy these constraints. With these choices, Theorem 5.2 yields

Pr

[

X ≥ (1 + a/2) · |Ei| ·
k

2mi

]

≤ e−Ω(
√
kδ2) + ne−Ω(

√
k), (10)

which is negligible since k ≥ log8 n.

Now, (10) implies that (C2) holds w.v.h.p. Furthermore, we get that w.v.h.p., the total number

of edges assigned in this iteration is at most

(ami/k) · (1 + a/2) · |Ei| ·
k

2mi
= (a/2) · (1 + a/2) · |Ei|. (11)

Therefore,

|Ei+1| ≥ |Ei| · (1− a/2− a2/4). (12)

Along with (9), this implies that since Ui is true, Ui+1 is also true; thus, we have established (C1)

also. This completes our analysis of Phase I of the algorithm, and hence also the analysis of our

algorithm for the Strong model.

5.2 The Weak Model

We may assume here that k ≥ log2 n. Indeed, if k < log2 n, we can run the trivial algorithm

for the “k < log2 n” case from the early paragraphs of Section 5.1, to achieve a polylogarithmic

approximation. (Note that this algorithm does not require knowledge of the value of m.) We show

a simple algorithm to guess the value of m with high accuracy by a contention-resolution-type

procedure; we can then run the algorithm for the Strong model.
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Let ε > 0 be a sufficiently small constant. We proceed for log1+ε n
2 = O(log n) iterations,

numbered 0, 1, 2, . . .. In iteration number i, the server allocates a new channel, and each edge

independently tries the channel with probability 1/(1 + ε)i. Recall that k ≥ log2 n, and that ε is

a constant. A simple application of the Chernoff-Hoeffding bounds shows that the following hold

with high probability:

• if (1 + ε)i ≤ m(1− ε)/k, then the channel gets overloaded in iteration i; and

• if (1 + ε)i ≥ m(1 + ε)/k, then the channel does not get overloaded in iteration i.

Thus, the server is able to come up with a very accurate estimate of m with high probability,

which it can then advertise; this information can then be read by the vertices. We can now run the

algorithm for the Strong model.

6 CONCLUSION

We have presented new approximation algorithms for two related problems in broadcast-scheduling;

a natural open question is to find the approximation threshold for these problems. As a related

problem, we note again that it is not even known if the DkS problem is MAX-SNP hard; this

problem is fairly basic, and it would be good to understand its approximability. Regarding our

second general theme of distributed algorithms, an immediate open question is whether we can get

good distributed approximation algorithms for the hypergraph version of EP. In general, we believe

that more research is required in the area of distributed approximation algorithms.
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