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Abstract

Motivated by routing issues in ad hoc networks, we present polylogarithmic-time
distributed algorithms for two problems. Given a network, we first show how to
compute connected and weakly connected dominating sets whose size is at most
O(log ∆) times the optimum, ∆ being the maximum degree of the input network.
This is best-possible if NP 6⊆ Dtime[nO(log log n)] and if the processors are required
to run in polynomial-time. We then show how to construct dominating sets that have
the above properties, as well as the “low stretch” property that any two adjacent
nodes in the network have their dominators at a distance of at most O(log n) in
the output network. (Given a dominating set S, a dominator of a vertex u is any
v ∈ S such that the distance between u and v is at most one.) We also show our
time bounds to be essentially optimal.
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1 Introduction

We present fast distributed algorithms for computing connected and weakly
connected dominating sets with good “low stretch” properties, in a given dis-
tributed network. Our motivation comes from the study of ad hoc wireless
networks. A crucial way in which these differ from current cellular networks
is that they do not have a separate routing infrastructure such as a system of
base-stations; the mobiles have to conduct their own communication through
routing. In these networks it is necessary to set up a so-called backbone, i.e.,
a set of vertices and links among them that is in charge of routing. In the
specialized literature there is a general consensus that the backbone should be
a dominating set, i.e., each vertex is either in the backbone or next to some
vertex in it. To quote Rajaraman [15], “The most basic clustering that has
been studied in the context of ad hoc networks is based on dominating sets”.
Moreover, the following additional features are considered to be appealing:
(a) the backbone should be “small” and (b) it should be connected or weakly
connected. Computing small connected dominating sets has been the focus of
many papers. A good starting point is the comparative analysis of [5] with its
comprehensive bibliography.

A dominating set D is connected if the subgraph induced by it is connected,
while D is weakly connected if the graph induced by the stars of vertices of
D is connected (the star of vertex u is the neighborhood of u including u
itself). An equivalent definition is the following: connect every two vertices
of D that are at distance 1 or 2. If the resulting graph (with vertex set D)
is connected, then D is weakly connected. While connectivity appears to be
a natural requirement, several authors have argued that the right notion to
apply in the wireless context is weak connectivity (see for instance [6]). As
a reasonable first approximation for many situations of interest, wireless net-
works can be modeled as message-passing, synchronous networks: vertices are
processors, edges are communication links and the network is synchronous.
Communication proceeds in synchronous rounds: in each round, every vertex
sends messages to its neighbors, receives messages from its neighbors, and
does some local computation. In this model, the running time is the number
of communication rounds. In this fashion, communication is charged for while
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local computation is not. This simplification is justified since the former is or-
ders of magnitude greater than the latter. This is the standard model assumed
in this paper. What does it mean to “compute” a subset S of the vertices,
such as a (weakly) connected dominating set, in this model? What we aim for
is an efficient distributed algorithm, at the end of which each vertex knows
whether it is a member of S or not. Henceforth, we denote by n the number
of vertices of the network and by ∆ its maximum degree.

There are several papers describing distributed algorithms for computing (weakly)
connected dominating sets in our model. These algorithms fall into two cate-
gories. The first category consists of algorithms that are fast, but provide no
guarantee that the dominating set they return will be small. The algorithm
of [18] falls into this category. The second category consists of algorithms
that are guaranteed to compute a “smallest possible” dominating set, but
require polynomial number of rounds in the number of vertices of the net-
work (see [17] for an analysis of several known dominating set algorithms).
By “smallest possible” we mean an O(log ∆)-approximation; this is the best
one can hope for, assuming that each vertex performs a polynomial-time-
bounded computation during every communication round and that NP 6⊆
Dtime[nO(log log n)] [7,13,16]. (Logarithms in this paper are to the base two, un-
less specified otherwise.) Algorithms in this category are typically distributed
implementations of sequential approximation algorithms such as the ones in
[8]. There are also quite nice distributed algorithms for computing “best possi-
ble” dominating sets in polylogarithmically many rounds ([9] and, with some
modifications, [14]). But these dominating sets are, in general, neither con-
nected nor weakly connected.

In this paper we present several randomized distributed algorithms that com-
pute the “smallest possible” connected and weakly connected dominating set
in polylogarithmically (in n) many rounds. As above, by “smallest possible”
we mean dominating sets of size O(log ∆) · Opt. In fact, our guarantee is
in terms of the smallest, not necessarily (weakly) connected, dominating set;
since the smallest dominating set has size at most that of a smallest (weakly)
connected dominating set, this suffices.

Our results are based on a technique that might be of independent interest. We
show that given a graph G that is connected, G can be sparsified by deleting all
but a linear number of edges. Crucially, the resulting graph stays connected.
This is interesting in view of two facts. First, as shown by Proposition 1,
there is no deterministic or randomized algorithm running in o(n) rounds
that is capable of removing even one edge and preserving connectivity. In
particular, this implies that there are no o(n)-round protocols for computing
spanning or Steiner trees. Such trees are the tool of choice for connecting up a
dominating set D while at the same time introducing only linearly many (in
the size of D) new vertices. Second, the result is also interesting because real
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networks sometimes are bound to have a superlinear number of edges. Indeed,
the following model has been proposed as a cost-effective way to set up sensor
networks [19]. The sensor networks are distributed essentially at random over
the area of interest that can be assumed to be the unit square; each chip is a
radio transmitter that sets up a connection to the k nearest chips. It is known
that if one wants the network to be connected then k must be Ω(log n) [19].
Therefore the resulting network will have a superlinear number of edges and
the same might very well hold for the graphs induced by dominating sets in
the graph. Furthermore, Proposition 11 shows the running time of O(log n)
for our sparsification, to be best-possible.

In addition to domination, (weak) connectivity and small size, there is yet an-
other feature of the backbone that would be attractive. Since the vertices in the
dominating set take care of routing, it is desirable that dominators of “nearby”
vertices are “relatively nearby”. In particular, we show that our above results
can be strengthened as follows. In Section 3, we present a polylogarithmic-time
randomized distributed algorithm to construct a connected dominating set S
of size at most O(log ∆) times the optimum, with the following additional
“low stretch” property: for any pair of nodes u and v in G, the distance (in
the subgraph induced by S) between their respective dominators is at most
O(log n) times the distance between u and v in G. To our knowledge, this is
the first result of this kind in this distributed setting.

Thus we present fast distributed algorithms for constructing dominating sets
with good size, connectivity, and stretch properties; our running times are
also shown to be essentially best-possible. We remark that in the case of the
unit-disk graph, which is sometimes considered to be a good model of ad hoc
networks, our algorithms deliver essentially a 28-approximation rather than
an O(log n)-approximation (to be precise, the approximated solution is of size
at most 28 · Opt + 7). Finally, one of our algorithms (Algorithm 2 in § 2.2)
admits a straightforward asynchronous implementation. Recent experimental
work has shown that the algorithms described in this paper perform quite well
in practice for ad hoc networks [5].

2 Distributed algorithms for connected dominating sets

In this section, we describe two randomized distributed algorithms that com-
pute small connected dominating sets in graphs. These algorithms run in time
polylogarithmic in the size of the graph (we assume that all processors know
the size of the graph, or at least a reasonable upper bound on it), and pro-
duce a solution that is within a factor O(log∆) of the optimum. In fact,
both these algorithms have a common first phase, during which an O(log ∆)-
approximated dominating set is computed. (In other words, a dominating set
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whose size is at most O(log ∆) times the minimum size of a dominating set,
is computed.) This can be achieved by using existing randomized distributed
algorithms such as the one in [9] or a suitable modification of that in [14]. The
running time of both algorithms is polylogarithmic. Once an approximation
for the dominating set is found, it remains only to “connect it up”. Let u and
v be two vertices in the dominating set at distance at most 3 and let Puv be a
shortest path connecting them. A connected dominating set can be obtained
by inserting all vertices lying on all such paths (see Proposition 5 below for
a formal proof). However, this method will not preserve the approximation
guarantee, for the number of vertices inserted can be quadratic in the size
of the original dominating set. The problem then is how to insert vertices
without destroying the approximation guarantee. Sequentially this is easy: a
dominating set of size ℓ can be connected up as a tree by adding at most
2(ℓ − 1) more vertices. This gives a connected dominating set of size within
a factor of O(log ∆) of the optimum dominating set. Guha and Khuller [8]
showed that one can connect the dominating set somewhat more efficiently,
for example, by using an approximation to the Steiner tree to connect up.

However we are interested in fast distributed algorithms and in this setting
the following impossibility result applies; this shows that a (Steiner) tree-based
approach will not lead to efficient algorithms.

Proposition 1 There is no deterministic distributed algorithm that in o(n)
time is able to remove at least one edge and preserve connectivity, whenever
this is possible. For any constant ǫ > 0, there is no randomized algorithm that
runs in o(n) time for this task, with a success probability of at least 1/2 + ǫ.

Clearly, it suffices to show the lower bound for randomized algorithms. Con-
sider the following argument.

Input: The simple cycle C on the vertex set [n] = {0, 1, . . . , n−1} with edge
set {(i, (i + 1) mod n) : i ∈ [n]}, or the path Pi obtained by deleting the
edge (i, (i + 1) mod n) from the cycle C.

Claim 2 Suppose there is a randomized distributed algorithm that runs in
time t, such that

(i) on input C, with probability at least 1/2 + ǫ, the final graph has at least
one edge missing;

(ii) on input Pi (for each i), with probability at least 1/2 + ǫ, the final graph
is the same as Pi.

Then, t ≥ 2nǫ
1+2ǫ
− 3/2.

Note that there is a trivial randomized algorithm (with no communication)
for ǫ = 0: the edge (0, 1) drops out with probability 1

2
(except in P0, where
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this edge does not exist and nothing is done). Our claim says that if we want
to improve this to any positive constant ǫ, we need linear time. For the rest
of the proof, when we mention vertices i − 1, i + 1, i + 2 etc., the addition is
meant modulo n.

PROOF. Pick i ∈ [n] randomly, and let I be the set of edges in C that
are a distance at least t + 2 away from the edge (i, i + 1) (for example, edges
(i+1, i+2) and (i−1, i) are at distance 1 from (i, i+1)). Then, |I| = n−2t−3.
Now, run the algorithm on C and observe the probability of the event E(I) ≡
“some edge in I is deleted by the algorithm”. Then, one can use part (i) of
the claim and an averaging argument to show that

Pr[E(I)] ≥ (1/2 + ǫ) ·
n− 2t− 3

n
,

where the probability is over the internal coin tosses of the algorithm and the
random choice of i. So we can fix ı̂, Î so that

Pr[E(Î)] ≥ (1/2 + ǫ) ·
n− 2t− 3

n
.

Now, one can verify easily that whenever the deleted edge is in Î, neither
endpoint of that edge has received any communication emanating from vertices
ı̂ or ı̂+1. So, the probability of E(Î) when the input graph is Pı̂ is also at least
(1/2 + ǫ) · n−2t−3

n
. But, whenever this happens in Pı̂, there is an error. Hence,

(1/2 + ǫ) · n−2t−3
n
≤ 1/2 − ǫ. Our claim (as well as Proposition 1) follows by

rearranging this inequality. 2

Thus, it is impossible to connect up a given dominating set as a tree in time
significantly better than the diameter of the graph, and since we want poly-
logarithmic running time we cannot afford this. To get around this difficulty,
we will give up the idea of connecting the given dominating set D using a
tree, but will, instead, be satisfied as long as the final connected graph has
a linear number of edges in the size of D. In this section, we present two
distributed algorithms, with polylogarithmic running time, for producing a
connected spanning subgraph with a linear number (in the number of ver-
tices) of edges. Note that this does not contradict Proposition 1. We then
show that our O(logn) running time is best-possible.

The first algorithm is randomized. It may (very rarely) fail to have a linear
number of edges, but the resulting graph is always connected and spanning. As
a consequence, the solution produced by our randomized algorithm for the con-
nected dominating set problem is always a connected dominating set, but with
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negligibly small probability, its size may not be within our targeted O(log∆)
factor of the optimal solution. The second algorithm is a deterministic ver-
sion of the randomized algorithm and never fails. Note that, in the sequel, we
give algorithms for computing connected dominating sets. The straightforward
modifications for computing weakly connected dominating sets are omitted.

We start with a useful definition and a simple proposition.

Definition 3 (Powers of Graphs) Given a graph G = (V, E) and a positive
integer d, the graph Gd has vertex-set V , and two vertices u and v are connected
by an edge in Gd iff they are distinct and are connected by a path of length at
most d in G. Also, given a set V ′ ⊆ V , let Gd[V ′] denote the subgraph of Gd

induced by V ′.

Proposition 4 Suppose a distributed algorithm A(H) for a synchronous net-
work H = (V, E) runs in at most T (|V |) rounds, where T (·) is a non-decreasing
function. Then, given a network G = (V, E), a set V ′ ⊆ V , and a positive in-
teger d, we can run A(Gd[V ′]) in our network G in at most d · T (|V |) rounds.
(This is so, since we can simulate one round in Gd[V ′] by d rounds in our
network G.)

From now on, let S denote the O(log∆)–approximated dominating set pro-
duced by one of the algorithms in [9,14]. Let G′ denote G3[S] (i.e., the graph
with vertex-set S, where two distinct vertices are connected by an edge iff
their distance in G is at most 3). In different language, the following result
has also been proved earlier in [8].

Proposition 5 If G is connected then G′ is also connected.

PROOF. Suppose G′ is not connected. Let v and w be vertices in different
components of G′ whose distance in G, dG(v, w), is shortest. Clearly, d(v, w) ≥
4, for otherwise, {v, w} would be an edge of G′, and v and w would not be
in different components. Let v = v0, v1, v2, v3, . . . , vd = w be a shortest path
from v to w in G. Let u be the vertex of S that is closest in G to v2; since
S is a dominating set, we have dG(u, v2) ≤ 1. So, dG(u, v) ≤ 3, and hence
u and v are in the same component of G′. But then, u and w must be in
different components, and d(u, w) ≤ d(v, w) − 1, contradicting the choice of
(v, w). Hence, G′ must be connected. 2

Our goal now is to find a spanning subgraph H of G′ of linear size. The
subgraph H we obtain will have at most 3|S| edges, each edge corresponding
to a path of length at most 3 in G. By adding the intermediate vertices on
each such path (at most 2) to S, we get a connected dominating set of size at
most 6|S| + |S| = 7|S|, giving us a solution within a factor O(log ∆) of the

7



optimum. It is straightforward to see that once H has been found, the rest of
the work can be done in a constant number of deterministic steps performed
in a distributed fashion. So, it remains only to show a randomized distributed
algorithm for constructing a connected spanning subgraph H of G′ with at
most 3|V (G′)| edges. The following lemma is central to all our algorithms: to
ensure that H is sparse, it is enough to ensure that H has no small cycles.
Recall that the girth of a graph is the length of the shortest cycle in it.

Lemma 6 (see, e.g., [10, Lemma 15.3.1]) A graph on n vertices with girth g

has at most n1+ 2

g−1 + n edges.

This theorem suggests the following strategy. Consider the graph G′. Keep
deleting edges that appear in cycles of length less than 1 + 2 log n until no
such cycles remain. In the end, we will be left with at most 3n edges. While
implementing this strategy using a distributed algorithm, we must ensure that
the graph remains connected when we delete edges in parallel. We now present
two algorithms achieving this. For notational convenience, we present these
two algorithms as removing all cycles of length less than 1 + 2 log n from an
n-vertex network G = (V, E); note that in our application, these algorithms
will be run on G′. In view of Proposition 4, there is a blow-up of a constant
factor (three) in running the algorithms on G′.

2.1 Algorithm 1

1. We start with the graph G and delete edges in order to remove all short
cycles. For g = 3, 4, . . . , ⌊1 + 2 log n⌋, destroy cycles of length g from G
by deleting edges.
1.1. Repeat the following steps 10 log n times.

a. Mark each edge with probability 1
g

independently.
b. If the edge e is the only marked edge in some cycle of length g,

then delete e.
c. Remove the marks on all the surviving edges.

Correctness: We show that after the first execution of the outer loop (cor-
responding to g = 3), with high probability, there are no triangles in the
remaining graph. In general, after execution of the outer loop corresponding
to g = i, with high probability, there are no cycles of length i in the remaining
graph. To show this, we need two observations.

Claim 7 The probability that a cycle C of length ℓ survives at the end of the
iteration of the outer loop corresponding to g = ℓ is at most 1

n5 .

PROOF. The probability that the cycle C of length ℓ is removed in one
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iteration of the inner loop is at least

∑

e∈C

Pr[e is the only marked edge of C];

i.e., at least

ℓ ·
1

ℓ

(

1−
1

ℓ

)ℓ−1

≥
1

3
.

Thus, the probability that the cycle survives after one iteration of the inner
loop is at most 2

3
; the probability that it survives after 10 log n iterations is at

most 1
n5 . 2

Claim 8 (Folklore) The number of cycles in G of length girth(G) is at most
(

n

3

)

if girth(G) 6= 4. (For girth(G) = 4, there are clearly at most n4 such

cycles.)

PROOF. Pick three vertices on a cycle of length girth(G) as equally spaced
as possible. This set uniquely determines the cycle. If there were two cycles
of length girth(G) associated to the same set of three vertices, then we would
find a cycle strictly shorter than girth(G). 2

The rest of the argument is straightforward. After the first iteration of the
outer loop the probability that any cycle of length 3 remains is at most 1

n2 .
Assuming that we did succeed in destroying all cycles of length 3 in the first
iteration of the outer loop, the probability that some cycle of length 4 remains
after the next iteration is at most 1

n
. Proceeding in this manner, we see that

the probability that some cycle of length less than 1 + 2 log n survives at the
end is at most 1+2 log n

n
.

2.2 Algorithm 2

Consider the following deterministic, distributed algorithm for removing all
cycles of length at most 1+2 log n, while preserving connectivity. It is assumed
that each edge has a unique ID (if not a simple distributed way of achieving
this is to make each edge choose a random real in [0, 1] as its ID).

Algorithm 2: Each edge, in parallel, drops out if it is the edge with the
smallest ID in a cycle of length less than 1 + 2 log n.
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The algorithm admits a straightforward, O(log n)-time distributed implemen-
tation and it clearly breaks all cycles of the required length. We now prove
that it preserves connectivity.

Lemma 9 Algorithm 2 preserves connectivity.

PROOF. Consider the following sequential process. Order the edges accord-
ing to their ID number. Consider the edges one-by-one from this list and delete
them if they are currently in a cycle of length less than 1 + 2 log n. Clearly,
when an edge is deleted it is in a cycle, so its deletion cannot disconnect the
graph. Thus, in the end we will be left with a connected graph of girth at least
1 + 2 log n.

The claim follows by observing that this sequential process and Algorithm 2
remove exactly the same set of edges. To see this, observe that when an edge e
is discarded by the sequential process, there is a cycle in which it is the lowest
ID edge. 2

Thus we obtain the following.

Theorem 10 There is a distributed algorithm that, given an n-vertex con-
nected graph G, computes in time O(log n) a connected subgraph H of G with
a linear number of edges.

This result can be shown to be time-optimal, as described in the following
proposition.

Proposition 11 For constants C and ǫ > 0, suppose there is a randomized
distributed algorithm with the following property. Given any connected graph
G on n vertices, it produces a subgraph whose expected number of edges is
at most Cn. Also, with probability one it terminates within T (n) steps; with
probability at least ǫ, it returns a connected subgraph. Then, we must have
T (n) = Ω(log n).

PROOF. Suppose for a contradiction, there exist constants C, ǫ, as well as
an algorithm with T (n) = o(log n), which satisfy the conditions of the propo-
sition. Take a graph G on n vertices with girth 10 · T (n) and a superlinear
number of edges (the existence of such a graph can be shown by standard
probabilistic arguments). We can show that when G is fed to the algorithm,
some edge e = (a, b) must have a deletion probability of 1−o(1). In the graph
G − e, let A be the set of vertices at distance at most 2 · T (n) from a, and
B the set of vertices at distance at most 2 · T (n) from b. Consider a minimal
cut (set of edges) C of G− e that separates A and B (note that A and B are
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disjoint). Run the algorithm on the connected graph G−C. With probability
1 − o(1), the algorithm will delete e and thus disconnect G − C, because in
time T (n), the edge e does not know what has happened to edges at distance
2T (n) or more. This leads to a contradiction. 2

Remark on asynchronous implementation. Let H be the graph obtained
after running Algorithm 2 on the input graph G. Since the set of edges deleted
by Algorithm 2 only depends on G and the distribution of ID’s, the edges can
be deleted in any order to obtain the same H . Therefore, Algorithm 2 admits a
straightforward asynchronous implementation. This property might be useful
from a practical point of view.

3 Dominating sets with low stretch

The algorithms in the previous section relied on the observation that if a graph
has no cycles of length less than 1+2 logn, then it must have at most 3n edges.
From this observation, one can infer the following stronger statement, which
is a well-known property of spanners.

Proposition 12 (see, e.g., [2]) For every graph G on n vertices, there is a
subgraph H with V (H) = V (G) and with a linear number of edges, such that
for every two vertices v, w ∈ V (G), dH(v, w) ≤ dG(v, w) · (1 + 2 log n).

PROOF. Start from the empty graph H . Consider the edges of G in some
order. If the edge closes a cycle of length less than 1 + 2 log n in H , then
discard it, otherwise add it to H . Clearly, the resulting graph H satisfies
dH(v, w) ≤ dG(v, w) · (1 + 2 log n). Since H has no cycle of length less than
1 + 2 log n, it has at most 3n edges. 2

This proposition and its sequential algorithmic proof lead us to the following
question.

Question: Is there an efficient distributed algorithm for generating a (weakly)
connected dominating set whose induced subgraph H has the “spanning”
property guaranteed by the above proposition? (Note: Algorithms 1 and 2
are not guaranteed to produce such a solution.)

Answer: Yes! Algorithm 3 below does precisely this.

We will make use of the following graph decomposition theorem of Linial and
Saks [11] (see also [3]).
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Theorem 13 [11] There is a randomized distributed algorithm that with high
probability, in O(log2 n) time, partitions the vertices of a graph G into O(log n)
color classes, such that in the subgraph induced by any color class, every two
vertices in the same connected component have distance O(log n) in G. (The
shortest path need not be confined to the connected component. Also, both the
running time and correctness of this algorithm hold with high probability.)

Our algorithm:

(1) Apply the Linial-Saks decomposition algorithm to the graph Gd, where
d , ⌊1

2
(1 + 2 log n)⌋. Let C1, C2, . . . , Ck be the color classes, where k =

O(log n). For brevity, we call the connected components of the graph
induced by the color classes blocks.

(2) Let H be the empty graph with vertex set V (G).
(3) Cycle through the color classes sequentially. In the ith iteration, consider

the edges of G incident on vertices in Ci, and add them to H so that no
cycles of length less than 1 + 2 log n are formed, and yet every edge that
is not included closes a cycle of length less than 1 + 2 log n in H . Stated
formally,
a. In parallel for each block B of color class Ci, consider the set EB of

all edges of E(G) with at least one end-point in B.
b. Compute a maximal subset FB ⊆ EB such that there are no cycles of

length less than 1+2 log n in E(H)∪FB. This can be done as follows.
Assume that the decomposition of Step 1 satisfies the guarantees of
Theorem 13 (which is the case with high probability, by Theorem 13).
Then, every pair of vertices in B is at a distance of at most O(d ·
log n) = O(log2 n). So, this step can be performed in O(log2 n) time,
for example, by collecting the required information at one node in
each block, computing FB locally, and transmitting this information
back to all nodes in B.

c. Set E(H)← E(H) ∪ FB and E(G)← E(G)− EB.

Correctness: Since FB is chosen to be maximal in Step 3(b), when an edge
e of G is excluded from E(G), there is a cycle of length less than 1 + 2 logn
in H that e closes. Thus, for every edge of G, its end points are at distance
less than 1 + 2 log n in H . Now, to show that H has a linear number of edges,
we claim that in the end H has no cycles of length less than 1 + 2 log n. For,
suppose a cycle was created for the first time in the iteration corresponding
to color class Ci. Let Hi−1 be the value of H at the beginning of the iteration.
Since E(Hi−1)∪FB does not have any such cycle (by the definition of FB), the
cycle must have edges from FB1

and FB2
, for distinct blocks B1 and B2 of Ci.

But this means that there are vertices in B1 and B2 that are within distance
⌊1

2
(1 + 2 log n)⌋ of each other in G. This is not possible because each block is

a connected component of Ci in Gd, where d = ⌊1
2
(1 + 2 log n)⌋.
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Running time: The Linial-Saks algorithm takes time O(log2 n); thus, since
d = Θ(log n), we see by Proposition 4 that Step 1 can be run in O(log3 n)
time. The remaining steps are deterministic, and there is no further scope for
error. There are, with high probability, only O(log n) color classes. Each class
is processed in O(log2 n) time with high probability, as seen above. Thus, the
overall running time of our algorithm is O(log3 n).

Theorem 14 Suppose we are given a distributed network G. There is a ran-
domized distributed algorithm that in polylogarithmic time computes a span-
ning subgraph H of the graph G, such that

(a) H has no cycles of length 1 + 2 log n, and consequently, H has a linear
number of edges; and

(b) for every edge of G, there is a path in H of length at most 1 + 2 log n.

Corollary 15 Suppose we are given a distributed network G = (V, E). There
is a randomized distributed algorithm that in polylogarithmic time computes a
subset V ′ of V , such that

(1) V ′ is a connected dominating set, and has size O(log ∆) times the size of
a minimum-sized dominating set;

(2) for every pair of adjacent vertices in G, there is a path connecting them
with all internal vertices lying in V ′, with the path-length being O(log n).
(Thus, for any pair of vertices v, w in G, there is a path with all inter-
nal vertices lying in V ′, with the path-length being at most O((log n) ·
dG(v, w)).)

PROOF. As in Section 2, let S denote an O(log ∆)–approximated dominat-
ing set, and let G′ denote G3[S]. Run the algorithm guaranteed by Theorem 14
on the graph G′; by Proposition 4 and Theorem 14, this requires only poly-
logarithmic time, with high probability. The resulting spanning subgraph H
of G′ has at most 3|V (G′)| edges. As in Section 2, the edges of H correspond
to paths of length at most three in G; we add to the dominating set S, at
most two intermediate vertices for each edge of H . This yields a connected
dominating set of size at most 7|S|. What about the “spanner” property (ii)?
If (u, v) is an edge in G, then it is easy to check that the dominators u′ ∈ S
and v′ ∈ S of u and v respectively, are adjacent in G′. By property (b) of
Theorem 14, we know that there is a path of length O(log n) connecting u′

and v′ in H . Finally, since each edge in H corresponds to a path of length at
most 3 in G, property (ii) follows. 2
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4 Constant-factor approximations for unit-disk graphs

Unit-disk graphs can in some cases be taken as good models for radio networks,
including ad hoc networks. Given a set of points in the plane, the graph is
obtained by having a vertex for each point and by connecting any two points
at Euclidean distance one or less. In [17] the following result is proven: if I is a
maximal independent set (MIS) in a unit-disk graph G, then |I| is at most one
more than four times the smallest dominating set size. Since an MIS is also
a dominating set, we can, use Algorithm 1 or Algorithm 2 to connect it up
efficiently. This gives us a connected dominating set of size at most 7·|I|, which
is at most 28 ·Opt+7, where Opt is the size of the smallest dominating set in
G. It is well known that an MIS can be computed in O(logn) communication
rounds in our distributed model using randomization [1,12].

5 Open Problems and Summary of results

It would be nice to develop a more direct and computationally simpler method
to obtain connected dominating sets with good stretch properties. One way
to achieve this would be to solve the following problem. Let G = (A, B, E) be
a bipartite network. A subset A′ ⊆ A is a cover if N(A′), the set of neighbors
of A′, is the whole of B. We want a fast distributed algorithm that finds a
minimal such A′. In essence, this is the unweighted set cover problem where
the input instance is represented as a bipartite graph, and where one is to
find a minimal, as opposed to a small, cover. Besides being an interesting
symmetry-breaking problem per se, finding a fast distributed algorithm would
give as a by-product a way to compute a sparse, connected subgraph with low
stretch. This follows from the following discussion.

Definition 16 Given an input graph G, a cycle is small if its length is a at
most c log n, for some arbitrary, but fixed, parameter c. Let C be the collection
of small cycles (these are those that we want to break). A set A of edges is a
cover if G[V, E − A] has no C-cycles.

Claim 17 Let A be a minimal cover with respect to C. Then, for each a ∈ A
there is a ca ∈ C such that ca is broken by a and only by a.

PROOF. If a ∈ A does not have a corresponding ca, it can be removed from
A. This would violate the minimality assumption. 2

Claim 18 Let A be a minimal cover with respect to the set of small cycles C.
Then, G[V, E − A] has stretch O(log n).

14



PROOF. Given any uv-path p of G, every edge e of p either is present in
G[V, E − A] or, if removed, can be bypassed by means of the corresponding
ce ∈ C. 2

The problem of finding a minimal set of edges to break all small cycles reduces
to that of computing a minimal cover in a bipartite graph, according to the
definition above. The two sides of the bipartition are edges on the B-side and
small cycles on the A-side. A cycle and an edge are connected in the bipartite
graph if the edge belongs to the cycle. An algorithm for finding a minimal
set of B-vertices covering all the A-vertices can be simulated in logarithmic
time in the bipartite edge-cycle graph. Thus, a fast distributed solution to
the minimal (as opposed to small) set cover problem would yield an efficient
algorithm for computing sparse, spanning subgraphs with low stretch.

We now summarize the results contained in this paper.

Result 1 (based on Algorithms 1 and 2): There is a randomized dis-
tributed algorithm for computing a O(log ∆) approximation to the minimal
connected dominating set in time O((log n)2).

Result 2 (based on Algorithm 3): There is a randomized distributed
algorithm, that given a graph G on n vertices, computes a connected subgraph
H of G, with the following properties:

Domination. H is dominating: every vertex in G−H has a neighbor in H .
Sparsity. The number of vertices in H is within a factor O(log ∆) of the

minimum size of a dominating set in G.
Stretch (or dilation). For every pair of vertices (v, w) in G, there is a path

using H (that is, with all internal vertices belonging to H) of length at most
O((logn) · dG(v, w)).

(Note: the approximation factor is O(log ∆) for the size of the dominating set,
but O(log n) for the stretch.)
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