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Abstract

We present provably efficient parallel algorithms for
sweep scheduling on unstructured meshes. Sweep schedul-
ing is a commonly used technique in Radiation Transport
problems, and involves inverting an operator by iteratively
sweeping across a mesh. Each sweep involves solving the
operator locally at each cell. However, each direction in-
duces a partial order in which this computation can pro-
ceed. On a distributed computing system, the goal is to
schedule the computation, so that the length of the sched-
ule is minimized.

Several heuristics have been proposed for this problem;
see [14, 15] and the references therein; but none of the
heuristics have worst case performance guarantees. Here
we present a simple, almost linear time randomized al-
gorithm which (provably) gives a schedule of length at
most O(log2 n) times the optimal schedule for instances
with n cells, when the communication cost is not con-
sidered, and a slight variant, which coupled with a much
more careful analysis, gives a schedule of (expected) length
O(log m log log log m) times the optimal schedule for m
processors. These are the first such provable guarantees
for this problem. We also design a priority based list sched-
ule using these ideas, with the same theoretical guarantee,
but much better performance in practice.

We complement our theoretical results with extensive
empirical analysis. The results show that (i) our algo-
rithm performs very well and has significantly better per-
formance guarantee in practice and (ii) the algorithmcom-
pares favorably with other natural and efficient parallel al-
gorithms proposed in the literature [14, 15].
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1. Introduction

Radiation transport methods are commonly used in
the simulation and analysis of a wide variety of physi-
cal phenomena. As described by Pautz [14], these meth-
ods often involve inverting an operator4, and a fre-
quently used technique for inverting this operator is
called sweep scheduling. During a sweep, the operator is
locally solved for each spatial cell in the mesh in a spec-
ified order for each direction from a specific set of di-
rections (see Figure 1). Thus the computation on each
cell requires knowledge of the incoming fluxes, which are
determined by either the boundary conditions, or from
upstream cells, solved in the previous iteration. From
a computational standpoint, this means that each di-
rection induces a set of precedence constraints captured
by a dependency graph. An example is shown in Fig-
ure 1(a): for instance, in direction i, we cannot start the
computation on cell 6 unless we have completed it on
cell 3. In each direction, the dependency graph is differ-
ent, but is induced on the same set of mesh elements.
As in Pautz [14], without loss of generality, we will as-
sume that the dependency graph in each direction is a
directed acyclic graph (DAG).

Thus, the sweep along any direction is essentially
the classical precedence constrained scheduling problem
(e.g. [8]), where a partial order is defined on the cells
(based on the direction), and the computation on the
cells must be performed in any order consistent with the
partial order. However, when this problem is solved in
a distributed system, a very significant constraint that
must be satisfied [14] is: each cell must be processed
on the same processor along each direction. This con-
straint makes this problem different from the standard
precedence constrained scheduling problem; we call this
problem the Sweep Scheduling Problem. This problem
does not fall into any of the categories defined by Gra-
ham et al. [2] for scheduling problems.

Designing efficient algorithms for sweep scheduling
on a set of m parallel processors is challenging because
of the constraints mentioned above. In fact, if all the

4 Referred to in [14] as the “streaming-plus-collision”



cells in some direction form a chain, the computation
has to proceed sequentially. Thus, one can never expect
to obtain linear scaling in the efficiency with increas-
ing number of processors, for arbitrary instances. There
are two important performance measures: the length of
the schedule while ignoring communication costs (the
makespan), and the total communication cost (the cost
of the messages that must be exchanged between pro-
cessors), and the goal is to obtain a schedule that min-
imizes both of these. While there are no known algo-
rithms with provable performance guarantees for the
sweep scheduling problem, a lot of empirical work has
been done. Pautz [14] describes some heuristics, such
as Depth First Descendant Seeking (DFDS), which work
very well in practice, but has no worst case guarantees.

2. Our Contributions

Analytical Results: Provable Approximation Al-
gorithms. The main focus of this paper is to develop
algorithms for sweep scheduling with provable guaran-
tees, in contrast to existing heuristics such as DFDS [14],
which work well on real meshes, but have no worst case
guarantees. For our theoretical bounds, we only focus
on the problem which ignores the communication costs
between processors - even this simplified version gener-
alizes the well known precedence constrained schedul-
ing problem [2], and is NP-complete; no provable re-
sults are known so far for this simplified case.

We design the Random Delay algorithm, and ana-
lyze it rigorously to show that it gives an O(log2 n) ap-
proximation5 (n is the number of mesh elements). We
then show that a modification of this algorithm, cou-
pled with an improved analysis actually leads to an
O(log m log log log m)–approximation, where m is the
number of processors. To our knowledge, these are the
first algorithms with provable performance guarantees;
in contrast, for all the heuristics studied by Pautz [14]
there are worst case instances, admittedly not mesh like,
where the schedule length could be Ω(m) times the op-
timal. We then modify these algorithms to an algorithm
that has the same performance guarantee in theory but
performs significantly better in practice. While the run-
ning time is usually not that crucial, it is interesting to
note that our algorithms run in time almost linear in the
length of the schedule. All the algorithms we consider
assume no relation between the DAGs in different direc-
tions, and thus are applicable even to non-geometric in-
stances. In addition, these algorithms are randomized,
suggesting the use of randomness for such scheduling
problems (for other such instances, see [5]).

5 An approximation factor of α implies that the length of the
schedule obtainedby this algorithm is atmostα times the length
of the optimal schedule, for any instance of this problem- note
that we do not know the value of the optimal solution, but our
proof will not require this knowledge.

Empirical Performance. We also study the empiri-
cal performance of our algorithms, and since communi-
cation cost is very important in practice, we consider
two extreme models of communication cost in this pa-
per; we expect the real communication cost to be in be-
tween the costs captured by these two extremes. In the
first model, we assume that it costs one unit whenever
a message has to be exchanged between two processors,
even though these messages might be exchanged in par-
allel. In the second model, we assume that after each
step of computation, the amount of time required to do
all the communication equals the maximum number of
messages any processor has to send (see Section 5 for
details). We adapt our algorithms to lower the commu-
nication cost by a suitable partitioning. We also com-
pare the performance of our algorithm with the DFDS
heuristic [14], and other natural heuristics. Our main re-
sults are the following.

1. Although the worst case guarantee we prove is only
O(log2 n), the performance of our algorithms seems
to be within a small constant (usually less than 3)
times the optimal on all the real mesh instances
we tried. The priority based implementation works
much better than the basic Random Delays algo-
rithm.

2. Our first algorithm views each cell as a separate
block, and chooses a different processor assignment
for it. The makespan for this was very low, but the
communication overhead (number of interprocessor
edges) was very high. We modified it to first com-
pute a partition of the mesh into blocks, and choose
a processor for each block; this did not increase the
makespan too much, but the communication over-
head came down significantly.

3. For all the real mesh instances we tried, with vary-
ing number of directions, block size and proces-
sors, the length of our schedule was always at most
3nk/m, where n is the number of cells, k is the
number of directions and m is the number of pro-
cessors. Since nk/m is the average load, and an ab-
solute lower bound on the length of the optimal
scaling, this observation implies that we get linear
speedup in performance for up to 128 processors
(and in some instance even more).

4. We compare the performance of our algorithm with
the DFDS heuristic of Pautz [14], and other natu-
ral heuristics. Our algorithm compares very well, in
spite of its simplicity. We also observe that combin-
ing our random delays technique with some of these
heuristics performs even better in practice.

In this work, we only focus on simulations of our al-
gorithms on real meshes, instead of actual implementa-
tion on a parallel cluster, in order to determine whether
our theoretical algorithms, with provable performance



guarantees, can be adapted to match the best heuris-
tics for this problem, and to obtain good lower bounds
on the quality of schedules. Because of space limitations,
several details and proofs are omitted; the reader is re-
ferred to [7] for the full version of the paper.

Related Work. Because of its general applicability,
there has been a lot of work on the sweep scheduling
problem. When the mesh is very regular, the KBA algo-
rithm [6] is known to be essentially optimal. However,
when the mesh is irregular, or unstructured, it is not so
easy to solve. There are a lot of heuristics, which have
worked quite well in practice for a lot of real meshes, for
instance by Pautz [14] and Plimpton et al. [15]. How-
ever, none of the heuristics has been analyzed rigor-
ously, and worst case guarantees on their performance
(relative to the optimal schedule) are not known. The
Sn-sweeps application has a very high symmetry, aris-
ing from the directions being spread out evenly, but in
other applications where this problem is relevant, such
symmetry might not exist. In such scenarios, it is not
clear how the heuristics of Pautz [14] would work.

Scheduling problems in general have a rich history
and much work has gone into theoretical algorithmic and
hardness results, as well as the design of heuristics tailor-
made for specific settings; see Karger et al. [5] for a com-
prehensive survey of the theoretical work on schedul-
ing. The precedence constrained scheduling problem was
one of the first problems for which provable approxi-
mation algorithms were designed, and is described as
P |prec, p, c|Cmax in the notation of Graham et al. [2]
who also give a simple 2− 1

m approximation algorithm,
for the case of no communication cost. Lenstra and Rin-
nooy Kan [10] showed that one cannot approximate this
problem better than 4

3 , unless P = NP . Very few re-
sults are known for the problem in the presence of com-
munication costs. Hoogeven, Lenstra and Veltman [4]
showed that it is NP-complete to get an approxima-
tion better than 5

4 . Munier and Hanen [13] give an algo-
rithm with a performance guarantee of 7

3 − 4
3m for this

version.

3. Preliminaries

We are given an unstructured meshM consisting of
a collection of n cells, a set of k directions and m proces-
sors. The mesh induces a natural graph G(V, E): cells
of the mesh correspond to the vertices and edges be-
tween vertices correspond to adjacency between mesh
elements. A direction i induces a directed graph with
the vertex set being identical to V , and a directed edge
from u to v is present iff u and v are adjacent in G and
the sweep in direction i requires u to be done before v.
Figure 1(a) illustrates how a digraph is induced in an ir-
regular, 2-dimensional mesh: for example, vertex 5 can-
not be solved before its upstream neighbor 2 is solved,
which induces a directed edge from 2 to 5 in the corre-
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Figure 1. (a) Example of mesh and digraph in-
duced by direction i. (b) Levels of the digraph
shown in (a).

sponding digraph. We assume in the following that the
induced digraphs are acyclic (otherwise we break the cy-
cles) and call them directed acyclic graphs (DAG).

Thus, there is a copy of each vertex v for each di-
rection; we will denote the copy of vertex v in direc-
tion i by (v, i) and call this (cell,direction) pair a task.
The DAG in direction i will be denoted by Gi(Vi, Ei),
where Vi = {(v, i) | v ∈ V }.

An instance of a sweep scheduling problem is given
by a vertex set V (the cells), k DAGs Gi(Vi, Ei), i =
1, . . . , k (the precedence constraints), and m processors.
A feasible solution to the sweep scheduling problem is
a schedule that processes all the DAGs, so that the fol-
lowing constraints are satisfied.

1. The precedence constraints for each DAG
Gi(Vi, Ei) must be satisfied. That is, if
((u, i), (v, i)) ∈ Ei, then task (u, i) must be
processed before task (v, i) can be started.

2. Each processor can process one task at a time and
a task cannot be pre-empted.

3. Every copy of vertex v must be processed on the
same processor for each direction i.

Our overall objective is to minimize the computa-



tion time of all sweeps subject to the above constraints.
We will assume that each task takes uniform time p
to be processed, and there exists a communication cost
of uniform time c between processors. In reality, inter-
processor communication will increase the time until all
tasks are processed in a way that is hard to model. We
will therefore consider the following two objectives sep-
arately: (i) the makespan of the schedule assuming no
communication cost, that is, the time it takes to pro-
cess all tasks on m processors according to a certain
schedule without taking communication cost into ac-
count, and, (ii) the communication cost. For the com-
munication cost, we consider two measures, which rep-
resent two extremes (see also Section 5 for details)- the
first is the number of interprocessor edges, which is the
number of edges ((u, i), (v, i)) in all digraphs, for which
the tasks (u, i) and (v, i) are scheduled on different pro-
cessors, and the second is the communication delay in-
curred if after each step of computation, all the proces-
sors exchange the messages needed to finish all the com-
munication (this is elaborated in Section 5). Also, note
that this model assumes that communication and com-
putation do not overlap, which is clearly a simplifying
assumption.
Levels. Given k DAGs Gi(Vi, Ei), i = 1, . . . , k, we can
form levels (also called layers) as follows: for DAG
Gi(Vi, Ei), layer Li,j is the set of vertices with no prede-
cessors after vertices Li,1∪· · ·∪Li,j−1 have been deleted.
We define D as the maximum number of layers in any di-
rection. In Figure 1(b) we show how levels are formed for
the example in Figure 1(a). Note that if we completely
process all the cells in one level in arbitrary order be-
fore we start processing cells in the next level, we have
processed the cells in an order that satisfies the prece-
dence constraints. We will sometimes call a vertex (u, i)
a leaf (or a sink) if the out-degree is 0. Similarly a node
with in-degree 0 is called root (or a source).
List Scheduling. Throughout the paper, we will use list
scheduling at various places. In list scheduling, we may
assign a priority to each task. If no priorities are as-
signed to the tasks, all tasks are assumed to have the
same priority. List scheduling can be used after tasks
have been assigned to processors or without such an as-
signment.

A task is said to be ready, if it has not been pro-
cessed yet, but all its ancestors in the dependence graph
have been processed. At each timestep t, let us denote
by R(t) ⊂ V × {1, . . . , k} the subset of tasks that are
ready. We further denote by RP (t) ⊂ R(t) the subset
of tasks that are ready and allowed to be processed by
processor P . If nodes have been assigned to certain pro-
cessors, the subsets RP (t) will contain the ready tasks
that are assigned to processor P . If tasks can be pro-
cessed by an arbitrary processor, RP (t) will be equal to
R(t) for all processor P . The list scheduling algorithm
now proceeds such that for each timestep t, it assigns

to each processor P the task of highest (or lowest) pri-
ority in RP (t). Ties are broken arbitrarily. If RP (t) is
empty, processor P will be idle at time t.

4. Provable Approximation Algorithms

In this section, we will assume that all processing
costs are uniform and there are no communication costs
(i.e., p = 1 and c = 0). We first present two random-
ized approximation algorithms, both with an approx-
imation guarantee of O(log2 n). The underlying intu-
ition behind both these algorithms is simple and is as
follows. We first combine all the DAGs Gi into a single
DAG G using the “random delays” technique. Next, we
assign each vertex to a random processor. Each random-
ization serves to do contention resolution: the random
assignment ensures that each processor roughly gets the
same number of mesh elements, the random delay en-
sures that at each layer of the combined DAG, we do
not have too many tasks corresponding to any given
cell. Thus the two randomized steps taken together en-
sure the following property: at a particular level l of
the combined DAG G, there are “relatively few” tasks
to be scheduled in a particular processor. We now ex-
pand each level into appropriate time slots to obtain a
valid sub-schedule for this level. The final schedule can
be constructed by merging the sub-schedules for each of
the levels.

In Section 4.3 we present a slightly modified algo-
rithm and a much more careful analysis, which gives an
approximation guarantee of O(log m log log log m).

In Section 5.1, we outline an approach for relaxing
the second assumption about the communication costs
and obtaining schedules which trade-off communication
and processing costs. We note that although our theo-
retical analysis yields the same approximation guaran-
tee for the first two algorithms presented here, experi-
mental studies indicate that the second algorithm per-
forms significantly better than the first (see Section 5).

4.1. Random Delays Algorithm

We now present our first algorithm for the sweep
scheduling problem, called “Random Delay” (see Algo-
rithm 1). In the first step, we choose a random delay
Xi for each DAG Gi. In the second step, we combine
all the DAGs Gi into a single DAG G using the ran-
dom delays chosen in first step. Recall that Li,j denotes
the set of tasks which belong to the level j of the DAG
Gi. Specifically, for any i and j, the tasks in Li,j belong
to the level r in G, where r = j+Xi. The edges in G be-
tween two tasks are induced by the edges in the original
DAGs Gi: if the edge ((u, i), (v, i)) exists in Gi then it
also exists in the combined DAG G. It is easy to see that
all the edges in G are between successive levels, and all
the original precedence constraints are captured by the
new DAG G. The third step involves assigning a proces-



Algorithm 1 Random Delay
1: For all i ∈ [1, . . . , k], choose Xi ∈ {0, . . . , k−1} uni-

formly at random.
2: Form a combined DAG G as follows: ∀r ∈
{1, . . . , D + k − 1}, define Lr =

⋃
{i:Xi<r} Li,r−Xi .

The edge ((u, i), (v, i))) is present in G, if and only
if there exists an edge ((u, i), (v, i)) in Gi.

3: For each vertex v ∈ V , choose a processor uniformly
at random from {1, . . . , m}.

4: Construct a schedule by processing layers L1, L2, . . .
sequentially in that order:

• Layer Lr+1 is processed only after all tasks in
Lr have been processed.

• Within each layer Lr, process the tasks assigned
to each processor in any arbitrary order.

sor chosen uniformly at random for each vertex v (and
hence for all its copies in G). The fourth and the fi-
nal step involves computing the schedule. This is done
by computing a sub-schedule for each of the layers sep-
arately and merging these schedules. Within each layer,
the tasks are scheduled using a greedy approach: tasks
assigned a particular processor are scheduled in an ar-
bitrary sequence. In the final schedule, all tasks in level
Lr are processed before any task in level Lr+1 is pro-
cessed.

We now analyze the performance of the above algo-
rithm. We first state the following basic facts from prob-
ability theory.

Lemma 1. (The Chernoff-Hoeffding Bound
and its variants [1, 3]) Given independent r.v.s
X1, . . . , Xt ∈ [0, 1], let X =

∑t
i=1 Xi and µ = E[X ].

a. For any δ > 0, Pr[X ≥ µ(1 + δ)] ≤ G(µ, δ), where

G(µ, δ) =
(

eδ

(1+δ)1+δ

)µ

. In particular, for any suffi-
ciently large c ≥ 0,

Pr[X > c log n(max{µ, 1})] <
1

nO(1)
. (1)

b. There exists a constant a > 0 such that the following
holds. Given µ > 0 and p ∈ (0, 1), suppose a function
F (µ, p) ≥ µ is defined as follows:

F (µ, p) =




a · ln(p−1)
ln(ln(p−1)/µ) if µ ≤ ln(p−1)/e

µ + a ·
√

ln(p−1)
µ otherwise

(2)
Then, defining δ = F (µ, p)/µ − 1 ≥ 0, we have
G(µ, δ) ≤ p; in particular, Pr[X ≥ F (µ, p)] ≤ p.

Let S be the schedule produced by our algorithm. In
the following analysis, unless otherwise specified, level
Lr refers to level r of DAG G.

Lemma 2. For all v ∈ V , and for each layer Lr, with
high probability, the number of copies of v in Lr is at most
α log n with high probability, where α > 0 is a constant.

Specifically, this probability is at least 1 − 1
nβ , where β is

a constant which can be made suitably large by choosing α
appropriately.

Proof. Let Yr,v,i be the indicator random variable which
is 1 if task (v, i) is in layer Lr and 0 otherwise. Since
we choose Xi randomly from {0, . . . , k − 1}, we have
Pr[Yr,v,i = 1] ≤ 1

k . Let Nr,v =
∑k

i Yr,v,i be the ran-
dom variable that denotes the number of copies of v in
layer Lr. By linearity of expectation, we have E[Nr,v] =∑k

i E[Yr,v,i] =
∑k

i Pr[Yr,v,i = 1] ≤ k
k = 1. Applying

Lemma 1(a), we have Pr[Nr,v > c log n] < 1
nO(1) . Let E

denote the event that there exists a vertex u and a layer
l such that the number of copies of u in l is > c log n.
By the union bound, we have Pr[E ] ≤ ∑

v,r Pr[Nr,v >

c log n] <
∑

v,r
1

nO(1) ≤ n2

nO(1) ≤ 1
nβ , by choosing c suit-

ably large.

For each layer Lr, define the set Vr =
{v | ∃i such that (v, i) ∈ Lr}. The following lemma
holds.

Lemma 3. For any level Lr and any processor P , the
number of tasks that are assigned to P from Lr is at most
α′ max{ |Vr|

m , 1} log2 nwith high probability where α′ > 0 is
a constant. Specifically, this probability is at least 1− 1

nβ′ ,
where β′ is a constant which can be made suitably large by
choosing α′ appropriately.

Proof. Consider any level Lr and a processor P . Let YP,v

be the indicator variable which is one if vertex v is as-
signed to processor P and zero otherwise. Due to the
random assignment, we have Pr[YP,v = 1] = 1

m . Let
NP,r =

∑
v∈Vr

YP,v be the random variable which de-
notes the number of vertices in Vr that are assigned to P .
By linearity of expectation, we have E[NP,r] = |Vr|

m . By
Lemma 1(a), we have Pr[NP,r > c log n(max{ |Vr|

m , 1})] <
1

nO(1) , for a sufficiently large c. By Lemma 2, with high
probability, there are at most α log n copies of any ver-
tex v in Lr, where α is a constant.

Let FP,r denote the event that the total number of
tasks assigned to processor P from level Lr is greater
than c′ ·max{ |Vr|

m , 1} · log2 n, where c′ is a constant. The
above two arguments imply that

Pr[FP,r > c′ max{ |Vr|
m

, 1} log2 n] <
1
nγ

,

where γ is a constant which can be made sufficiently
large by choosing the value of c′ appropriately. Let F de-
note the event that there exists a processor P and level
Lr such that event FP,r holds. By the union bound, we
have

Pr[F ] =
∑
P,r

Pr[FP,r] ≤
∑
P,r

1
nγ
≤ n2

nγ
≤ 1

nγ−2
,

where γ can be made suitably large. Hence, the lemma
follows.



Lemma 4. Let OPT denote the length of the optimal
schedule. Schedule S has length O(OPT log2 n) with high
probability.

Proof. Let R be the number of levels in G. Lemma
3 implies that any level Lr has a processing time of
O(max{ |Vr|

m , 1} log2 n) with high probability. Hence, the
total length of schedule S is at most

R∑
r=1

O((max{ |Vr|
m

, 1} log2 n)) ≤
R∑

r=1

O((
|Lr |
m

+ 1) log2 n),

which is O((nk
m + R) log2 n), where R ≤ k + D. We ob-

serve that OPT ≥ max{nk
m , k, D}. Hence the length of

schedule S is O(OPT log2 n).

Theorem 1. Algorithm 1 computes in polynomial time
a schedule S which has an approximation guarantee of
O(log2 n) with high probability.

Proof. The approximation guarantee follows from
Lemma 4. It is easy to see that the algorithm runs
in time O(k + kn2 + n + mnk). Since k = O(n) and
m = O(n), the algorithm runs in polynomial time of
the input size n.

In a schedule produced by Algorithm 1, each layer in
G is processed sequentially. This might result in the fol-
lowing scenario: there may be time instants t during
which a processor P remains idle, even though there are
ready tasks assigned to processor P . Clearly, idle times
needlessly increase the makespan of the schedule. One
way to eliminate idle times is to “compact” the sched-
ule obtained through Algorithm 1. We now describe this
approach in detail.

4.2. Random Delays with Compaction: A
Priority based List Schedule

Motivated by the need to eliminate idle times from
the schedule, we present Algorithm 2, which is called
“Random Delays with Priorities”. Algorithm 2 first de-
fines a priority Γ(v, i) for each task (v, i) and uses these
priorities to create a schedule by list scheduling, as fol-
lows: at any given time t, for any processor P , among
the set of all yet to be processed tasks which are ready
and which are assigned to P , Algorithm 2 schedules the
task with the least Γ value. It is easy to see that this al-
gorithm results in a schedule such that there are no idle
times. Let S ′ denote the schedule produced by this al-
gorithm. The following theorem gives the performance
guarantees on Algorithm 2; its proof is omitted here.

Theorem 2. Let G(V, E) be an unstructured mesh, with
|V | = n and D1, . . .Dk be the sweep directions. Let OPT
be the length of the optimal schedule and m be the total
number of processors. Algorithm 2 runs in time O((mk +
nk) log nk) and produces an assignment of mesh elements

Algorithm 2 Random Delays with Priorities
1: For all i ∈ [1, . . . , k], choose Xi ∈ {0, . . . , k−1} uni-

formly at random.
2: For each task (v, i), if it lies in level r in Gi, define

Γ(v, i) = r+Xi. Γ(v, i) is the priority for task (v, i).
3: For each vertex v ∈ V , choose a processor uniformly

at random from {1, . . . , m}.
4: t = 1.
5: while not all tasks have been processed do
6: for all processors P = 1, . . . , m do
7: (i) Let (v, i) be the task with lowest priority as-

signed to P (i.e., Γ(v, i) is the smallest) that is
ready to be processed (with ties broken arbi-
trarily).

8: (ii) Schedule (v, i) on P at time t.
9: end for

10: t← t + 1.
11: end while

to the m processors and a schedule S′ whose makespan is
at most O(OPT log2 n) with high probability.

4.3. An Improved Analysis: An
O(log m log log log m)-Approximation

We now show that a slight modification of the earlier
algorithm, along with a more careful analysis leads to a
O(log m log log log m)-approximation of the makespan.
The new algorithm is called ”Improved Random Delay”
and is presented in Algorithm 3. In contrast with The-
orem 1, which shows a high probability bound, we will
only bound the expected length of the schedule. The ba-
sic intuition for the improved analysis comes from corol-
lary 2 below: if we consider the standard “balls-in-bins”
experiment, the maximum number of balls in any bin
is at most the average, plus a logarithmic quantity. The
idea now is to consider the scheduling of each layer in
the combined DAG as such an experiment. One com-
plication comes from the dependencies - the events that
tasks (v, i) and (w, i) end up in the same layer in the
combined DAG are not independent. This can be mit-
igated by the preprocessing step, which informally re-
duces the “width” of the layers, i.e., modifies each DAG
such that there are at most m nodes in each layer.
Analysis. For the tighter analysis, we need to look at
the time taken to process all the tasks in any layer L′′

t .
Due to space limitations, we omit several proofs, and
sketch some of them; the full details are available in [7].
Let Yt denote the time required to process the tasks in
L′′

t . Our main result will be the following.

Theorem 3. For any t, E[Yt] ≤ O(µt/m +
(log m) log log log m), where µt = E[|L′′

t |].
Let ρ = (log m) log log log m. Theorem 3 implies that

we get an O(ρ)–approximation in expectation, by ob-
serving that the makespan T after the preprocessing
step is within a small factor of the optimal.



Algorithm 3 Improved Random Delay
1: Preprocessing: Construct a new set of levels L′

i for
each direction i in the following manner.

• First construct a new DAG H(∪iVi,∪iEi) by
combining all the Gi’s, and viewing all the
copies (v, i) of a vertex v as distinct.

• Run the standard greedy list scheduling algo-
rithm on H with m identical parallel machines
[2]; let T be the makespan of this schedule.

• Let L′
ij = {(v, i) ∈

Vi|(v, i) done at step j of above schedule}.
2: For all i ∈ [1, . . . , k], choose Xi ∈ {0, . . . , k−1} uni-

formly at random.
3: Form a combined DAG G′′ as follows: ∀r ∈
{1, . . . , T + k − 1}, define L′′

r =
⋃

{i:Xi<r} L′
i,r−Xi

.
The edge ((u, i), (v, i))) is present in G′′, if and only
if there exists an edge ((u, i), (v, i)) in Gi.

4: For each vertex v ∈ V , choose a processor uniformly
at random from {1, . . . , m}.

5: Construct a schedule by processing layers L′′
1 , L′′

2 , . . .
sequentially in that order:

• Layer L′′
r+1 is processed only after all tasks in

L′′
r have been processed.

• Within each layer L′′
r , process the tasks as-

signed to each processor in any arbitrary or-
der.

Corollary 1. Algorithm 3 gives a schedule of expected
length O(ρ) times the optimal.

We start with some observations on the expected
maximum load in a balls–in–bins experiment. Motivated
by Lemma 1, we define a function H(µ, p), for µ > 0 and
p ∈ (0, 1) as follows; the constant C will be chosen large
enough.

H(µ, p) =

{
C · ln(p−1)

ln(ln(p−1)/µ) if µ ≤ ln(p−1)/e;
Ceµ otherwise.

(3)

Note that for any fixed p, H is continuous and has a
valid first derivative for all values of µ – to see this, we
just need to check these conditions for µ = ln(p−1)/e.

Corollary 2. (a) If we fix p, then H(µ, p) is a concave
function of µ. (b) Suppose the constant C in the defini-
tion of H is chosen large enough. Then, if we assign some
number t of objects at random tom bins, the expected max-
imum load on any bin is at most H(t/m, 1/m2) + t/m.

Lemma 5. For any constant a ≥ 3, the function φa(x) =
xae−x is convex in the range 0 ≤ x ≤ 1.

Proof of Theorem 3: Fix t arbitrarily. For j ≥ 0, let Zj =
{v| |{(v, i) ∈ L′′

t }| ∈ [2j , 2j+1)}, i.e., Zj is the set of
nodes v such that the number of copies of v that end up
in layer L′′

t lies in the range [2j, 2j+1). We first present

some useful bounds on E[|Zj |] and on µt, whose proofs
are omitted.

Lemma 6. (a)
∑

j≥0 2jE[|Zj |] ≤ µt; and (b) µt ≤ m.

Lemma 7. For j ≥ 2, E[Zj ] ≤ (e/2j)2
j · µt.

Now, consider step (3) of Algorithm 3, and fix
Zj for some time t. Next, schedule the jobs in Zj

in the following manner in step (5) of the algo-
rithm: we first run all nodes in Z0 to completion,
then run all nodes in Z1 to completion, then run all
nodes in Z2 to completion, . . .. Clearly, our actual al-
gorithm does no worse than this. Recall that we con-
dition on some given values Zj . We now bound the
expected time to process all jobs in Zj , in two differ-
ent ways (this expectation is only w.r.t. the random
choices made by P1): (a) first, by Corollary 2, this ex-
pectation is at most 2j+1 · (H(|Zj |/m, 1/m2)+ |Zj|/m);
and (b) trivially, this expectation is at most
2j+1 · |Zj |. Thus, conditional on the values Zj ,
the expected makespan for level t is: E[Yt

∣∣
(Z0, Z1, . . .)] ≤ [

∑ln ln m
j=0 2j+1 · (H(|Zj |/m, 1/m2) +

|Zj|/m)] + [
∑

j>ln ln m 2j+1 · |Zj |], and therefore,

E[Yt] ≤ [
∑ln ln m

j=0 2j+1 · (E[H(|Zj |/m, 1/m2)] +
E[|Zj |]/m)]+ [

∑
j>ln ln m 2j+1 ·E[|Zj |]] ≤ [

∑ln ln m
j=0 2j+1 ·

(H(E[|Zj |]/m, 1/m2) + E[|Zj|]/m)] + [
∑

j>ln ln m 2j+1 ·
E[|Zj |]], since H is concave by Corollary 2(a). (We
are using Jensen’s inequality: for any concave func-
tion f of a random variable T , E[f(T )] ≤ f(E[T ]).)
Consider the first sum in the last inequality above.
By Lemma 6(a), the term “

∑ln ln m
j=0 2j+1 · E[|Zj |]/m”

is O(µt/m). Next, we can see from (3) that if p is
fixed, then H(µ, p) is a non-decreasing function of µ.
So, Lemmas 6 and 7 show that there is a value α ≤
O((ln m)/ ln lnm) such that H(E[|Zj |]/m, 1/m2) ≤ α

for j = 0, 1. So,
∑ln ln m

j=0 2j+1 · H(E[|Zj |]/m, 1/m2) ≤
O(α) +

∑ln ln m
j=2 2j+1 · H(E[|Zj |]/m, 1/m2) ≤

O(α) +
∑ln ln m

j=2 2j+1 · H((e/2j)2
j

, 1/m2) ≤
O(α) + O

(∑ln ln m
j=2 2j+1 · ln m

ln ln m+j2j

)
. The sec-

ond inequality above follows from Lemmas 6(b)
and 7. We split this sum into two parts. As long as
2j ≤ ln lnm/ ln ln lnm, the term “ lnm

ln ln m+j2j ” above is
Θ( ln m

ln ln m ); for larger j, it is Θ( ln m
j2j ). Thus, the sum in

the first part is dominated by its last term, and hence
equals O((log m)/ log log log m). The sum in the sec-
ond part is bounded by

O


ln ln m∑

j=2

(lnm)/j


 = O((log m) · log log log m).

Summarizing, the first sum above is O(µt/m +
(log m) log log log m). Now consider the second sum



above. Recalling Lemma 7, we get∑
j>ln lnm

2j+1·E[|Zj |] ≤ µt·
∑

j>ln ln m

2j+1·(e/2j)2
j

= O(µt/m),

(4)
since the second sum in the earlier expression for E[Yt]
is basically dominated by its first term. This completes
the proof of Theorem 3.

5. Experiments with Random Delay Al-
gorithms

We implemented the algorithms described in Section
4.1 and 4.2 and tested them on various meshes. All of
the meshes used were unstructured tetrahedral meshes,
varying in form and size. The smallest mesh, called
tetonly, has 31481 cells, the mesh called well logging
has 43012 cells, the mesh called long has 61737 cells,
and the largest mesh, called prismtet, has 118211
cells. Throughout our experiments, the qualitative re-
sults have been very similar across the different meshes.
We therefore usually show plots for one mesh only.
Objective functions. As mentioned earlier, we will sim-
ulate the sweeps, instead of actually running them on a
distributed machine, and identify machine independent
optimizations. For the makespan, we only compute the
number of steps taken, in the absence of communication.
For the communication cost, we consider two different
measures. The first (denoted by C1) is a static measure
of the communication cost: the total number of edges
that go across processors, for the given processor as-
signment. For the second measure (denoted by C2), we
assume that after each step of computation, there is a
round of communication, and the amount of time taken
for this equals the maximum number of messages any
processor has to send (or, the maximum degree). Per-
forming all the communication within this time is not
trivial, and requires some extra coordination. One way
this can be done in a distributed manner is to use an
edge coloring algorithm, such as [11]. Note that C2 is a
very optimistic measure- in reality, it might take much
more time to perform the communication than the max-
imum degree.
Lower Bound of theMakespan. The makespan cannot be
lower than nk

m , the number of tasks divided by the num-
ber of processors. In most of our experiments, we com-
pare the makespan to this lower bound.

5.1. Approximation Guarantees in Practice

In Section 4 we showed that the random delays ap-
proach can be shown to yield an O(log2 n) approxima-
tion guarantee. We now study its performance in prac-
tice. We implemented the initial random delays heuris-
tic, and ran it on the tetrahedral meshes described
above. Our main observations are:

1. The random delays algorithm gives a much better
performance guarantee than O(log2 n), when com-
pared to the lower bound (Figure 2(a)). But the
communication cost turns out to be very high: the
fraction of edges that are on different processors is
more than m−1

m .
2. Instead of choosing a processor for each cell, if we

first partition into blocks, and choose a processor
for each block, the number of interprocessor edges,
C1, comes down significantly, while the makespan
does not increase too much (Figure 2(b)); also cost
C2 seems to behave differently- it seems to be much
smaller than C1, and does not seem to be affected
significantly with the block partitioning.

3. In practice, the “Random Delays with Priorities”
algorithm performs much better than the original
“Random Delays” algorithm, especially when we
use a higher number of processors, giving an im-
provement of up to a factor of 4 (Figure 2(c)). Also,
in all our runs, the total makespan was at most
3nk/m. Since nk/m is a lower bound on the opti-
mal makespan, this shows a good scaling with the
number of processors, even up to 500 processors.

Partitioning into Blocks. In an attempt to bring down
the number of interprocessor edges (C1), we partition
the cells of the mesh into blocks, using METIS, which
is a popular freely available graph partitioning software
[12]. Instead of choosing a processor for each individ-
ual cell (as in Algorithm 2), we choose the processor for
each block. METIS forms these blocks so that the num-
ber of crossing edges is small; this automatically reduces
C1. Also, with increasing block size, C1 decreases. When
we assign blocks of cells randomly to processors, the
proof of our theoretical approximation guarantee does
not hold anymore. However, in practice we observed
that the makespan increases only slightly (Figure 2(a)),
while the number of interprocessor edges decreases sig-
nificantly (Figure 2(b)); also, the cost C2 seems to be
much smaller than the cost C1, and does not seem to re-
duce too much with the block partitioning.

5.2. Comparison of Different Algorithms

In this section, we compare the empirical perfor-
mance of the algorithm “Random Delays with Priori-
ties” with several different heuristics. We show that we
get even better performance by combining ideas from
these different heuristics. In all of these implementa-
tions, we first do the same block assignment (which gives
the same number of interprocessor edges, or communi-
cation cost (C1)); therefore we will compare only the
makespans of all the heuristics. We have not yet stud-
ied the behavior of the cost C2 for these instances.

The heuristics consist of different prioritizations of
the tasks and optionally giving random delays to direc-
tions.
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Figure 2. (a)&(b) Random delay scheduling on
the mesh tetonly with 24 directions. Plotted is
(a) the makespan, and (b) the number of inter-
processor edges C1, and the cost C2 (labeled as
Max Off-Proc-Outdegree in the plots), for a regu-
lar assignment of cells to processors aswell as for a
block assignment of cells to processors. (c) “Ran-
dom Delays” versus “Random Delays with Prior-
ities” for different numbers of directions and in-
creasing numbers of processors formeshlong.

Priorities. A priority is given to each task (v, i). The
schedule will then be computed by using prioritized list
scheduling. Examples of different priorities are:

• Level Priorities: Let task (v, i) belong to level Li,j

in DAG Gi. Then this task will get priority j.
Smaller priorities will be preferred over higher pri-
orities.

• Descendant Priorities: This priority scheme is cho-
sen since it is very similar to the one suggested in
[15]. Every task (v, i) gets as its priority the num-
ber of descendants it has in DAG Gi. Higher prior-
ities will be preferred over smaller priorities.

• Depth-First Descendant-Seeking (DFDS) Priorities:
This prioritization was introduced by Pautz [14]. In
his paper, the b-level of a task (v, i) is the num-
ber of nodes in the longest path from (v, i) to a
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Figure 3. Approximation Ratios for various algo-
rithms: (a) The effect of the random delays. (b)
Randomdelaysalgorithmcomparedtodescendant
prioritieswithoutandwithrandomdelays.(c)Ran-
domdelaysalgorithmcomparedtoDFDSpriorities
without andwith randomdelays.

leaf, so the levels are numbered from bottom up in-
stead of top down as we do it. In the DFDS priori-
tization, a priority equal to the highest b-level of its
children plus some constant greater than or equal
to the numbers of levels in the graph is first as-
signed to each task with off-processor children. To
each task with no off-processor children a priority
one unit less than the highest priority of its chil-
dren is assigned. If a task has no off-processor de-
scendants, it is assigned a priority of zero. Here also
higher priorities will be preferred over smaller ones.

Performance of Level Priorities. In the bar chart shown
in Figure 3(a) we compared our random delays algo-
rithm to the algorithm where we just give level prior-
ities to the tasks, without adding random delays, and
then perform list scheduling. We plotted the ratio of
the makespan to the lower bound for the mesh long
with a block partitioning of block size 64. While the al-
gorithms perform equally well for a small numbers of
processors independent of the number of directions, the
random delays improve the makespan for higher num-



ber of processors.

Performance of Descendant Priorities. In the bar chart
shown in Figure 3(b) we compared our random delay al-
gorithm to the algorithm where we give descendant pri-
orities to the tasks (green) and to the algorithm where
we give descendant priorities to the tasks and in ad-
dition randomly delay directions (brown). We plotted
the ratio of the makespan to the lower bound for the
tetonly mesh with a block partitioning of block size
256. Also here the random delays algorithm and the de-
scendant priorities algorithm perform equally well for a
small numbers of processors independent of the num-
ber of directions. For a higher number of processors and
a small number of directions, the descendant priorities
seem to do better than the random delay algorithm.
However, even for a high number of processors, if we
use a higher number of directions, the algorithms per-
form equally well again. Adding a random delay to direc-
tions improves the performance of the descendant pri-
orities for a very high number of processors and a low
number of directions.

Performance ofDFDSPriorities. In the bar chart shown
in Figure 3(c) we compared our random delay algorithm
to the algorithm where we give DFDS priorities to the
tasks (red) and in addition to DFDS priorities add ran-
dom delays (pink). We plotted the ratio of the makespan
to the lower bound for the mesh well logging with a
block partitioning of block size 128. Once again, our al-
gorithms performs equally well as the DFDS priorities
algorithm for a small number of processors. Once we in-
crease the number of processors, the DFDS algorithm
has a lower makespan than the random delay algorithm
for a low number of directions. For a higher number of
directions, they produce the same makespan even for a
high number of processors. We can further observe that
the random delays do not improve the performance of
DFDS priorities except for a high number of processors
and a low number of directions.
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