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ABSTRACT
Given a wireless network and a collection of source-destination
pairs {(si, ti)}, what is the maximum end-to-end rate (through-
put) at which the network can transfer data from the sources
to their corresponding destinations? The problem is non-
trivial to solve in the case of wireless networks due to in-
terference. It is additionally complicated when taking into
account TCP like transport protocols.

Here, we present near-optimal provably good polynomial-
time routing and scheduling algorithms for solving these and
other throughput maximization problems in wireless ad hoc
networks. We also present distributed algorithms for si-
multaneously optimizing a large class of throughput related
objectives with fixed routes and schedules. We consider a
wide variety of conflict-graph based models with both pri-
mary and secondary wireless interference constraints. Our
techniques can accommodate a variety of routing constraints
such as low energy, low hop-count, etc. as well as incorpo-
rate wireless technologies such as multiple channels and di-
rectional antennas.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Routing Protocols; F.2.3 [Theory of Compu-
tation]: ANALYSIS OF ALGORITHMS AND PROBLEM
COMPLEXITY—Tradeoffs between Complexity Measures

General Terms

Algorithms, Theory

Keywords
Cross-layer design, interference, end-to-end scheduling, wire-
less networks, throughput maximization

1. INTRODUCTION
This paper describes algorithmic approaches for optimiz-
ing rate-related objectives in wireless ad hoc networks. In
other words, given a collection of source-destination pairs
{(si, ti)}, what is the maximum rate (throughput) at which
the network can transfer data from the sources to their cor-
responding destinations? For a wired network, some of these
constraints can be formulated easily as a simple linear pro-
gram (L), but this problem is non-trivial to solve in the case
of wireless networks due to interference. The problem is
further complicated when one tries to optimize non-linear
throughput objectives that are related to realistic transport
protocols such as TCP.

In the usual OSI protocol stack model, the above problem of
transmitting packets for each source-destination pair is bro-
ken down into sub-problems, the most important of which
are: (i) choosing routes for each such pair - a protocol like
AODV chooses some sort of (single) shortest path for each
pair, (ii) MAC scheduling of the packets along these paths -
this resolves contention, and determines who sends at which
time slot, (iii) actual transmission of the packets on the
physical channel, and (iv) choosing actual rates of trans-
mission for each pair - this is achieved dynamically by a
TCP like protocol, which uses feedback from the network to
regulate the flow. While this modularity is useful in design-
ing the network, it is almost impossible to determine the
quality of the performance of such protocols, and how to
improve the performance. In fact, there is a significant in-
teraction between protocols at different layers, and plugging
in optimal protocols for each layer does not lead to optimal
overall performance [4]. This motivates the study of unified



cross layer aware protocols and associated measures and is
currently an active topic of research [21, 34].

In this paper, we build on the recent work in [20, 14, 22,
35, 19, 17, 26] and present provably good near-optimal al-
gorithms (those that are optimal to within a small factor)
that compute end-to-end/link-level rates, routes and MAC-
layer schedules for optimizing throughput related objectives
in wireless networks. Our main contributions are the fol-
lowing three. First, Given a wireless network and a set of
k-connections and a concave utility U associated with each
end-to-end rate, we present an approximation algorithm for
jointly determining the routes, end-to-end link rates and
schedules for maximizing the sum of individual utilities sub-
ject to wireless interference. Our approach exploits geo-
metric properties of wireless interference/signal propagation
and provides first constant-factor/logarithmic approxima-
tion factor guarantees for a wide range of communication
models. These models incorporate features of realistic net-
works such as connectivity loss due to occlusions and schedul-
ing conflicts due to primary and secondary interference. Sec-
ond, we also consider centralized/distributed algorithms for
computing a fixed set of routes and a fixed schedule for si-
multaneously optimizing a large class of throughput related
objectives. From a protocol perspective, this has the desir-
able consequence that our fixed routing and scheduling al-
gorithm, in conjunction with different transport protocols,
simultaneously optimizes various aggregate utility functions
encoded by these transport protocols. Third, our approach
makes it easy to incorporate any convex/linear constraints
of end-to-end rates and link rates (e.g. low-energy, end-to-
end fairness, low hop-count) in our framework with no loss
in our approximation guarantees.

As noted above, a key feature of the our framework is the
ability to incorporate secondary interference (i.e., interfer-
ence between non-adjacent but proximate links in the net-
work). The difficulty in modeling this in optimization pro-
grams can be seen from the fact that none of the existing
utility maximization approaches provide provable approx-
imation guarantees in the presence of secondary interfer-
ence. To quote from a recent work [6], “The conflict graph
for the network with secondary interference is more compli-
cated. We can . . . formulate a utility optimization problem
for the system and carry out cross-layer design . . .... How-
ever, the scheduling problem will be much more difficult. It
can be shown that it is equivalent to a maximum weight in-
dependent set problem, which is NP-hard for general graphs.
It is easy to design some heuristic algorithm but is hard to
bound its performance. However, due to the broadcast na-
ture of wireless channel, it may be possible . . . This will be
part of our future work.” This paper takes the first step
in addressing the issue by providing polynomial time algo-
rithm with bounded worst case performance guarantees for
the joint optimization problem for a wide variety of conflict-
graph models with secondary interference, by exploiting the
geometry in wireless networks.

We start by describing our models and notation and survey
related work in Section 2. We follow this with our algo-
rithm for utility maximization which achieves in wireless
network with multi-path routing under a variety of commu-
nication/interference models (Section 3). We then describe

our centralized and distributed algorithms for simultaneous
utility maximization (Sections 4 and 4.1). Due to lack of
space we omit the proofs of some of our claims.

2. BACKGROUND
Physical & MAC layers: Our physical+MAC layer
wireless model consists of two parts: (i) a radio-propagation
model and (ii) an interference model. The radio-propagation
model determines which (ordered) pairs of nodes in the net-
work can form a communication link and hence, specifies
the directed communication graph G = (V, E). Links are
rate-limited and a link e ∈ E has a fixed maximum channel-
capacity of c(e) bits/second. Time is synchronized and slot-
ted; without loss of generality (w.l.o.g.), we assume that the
duration of a time slot is one second.

Since the medium of transmission is wireless, simultaneous
transmissions on proximate links may interfere with each
other resulting in collisions. Formally, we say that links
e1, e2 ∈ E interfere with each other if e1 and e2 cannot
both transmit successfully during the same time slot. No-
tice that, as per our definition, interference is a symmetric
relation between links (i.e., e1 interferes with e2 also im-
plies that e2 interferes with e1). Let I(e1) denote the set
of links which interfere with e1. An interference model de-
fines the set I(e1) for each link e1 in the network. As in
[29], we will think of the the interference model as a conflict
graph H = (E, R) which specifies the interference relation
between pairs of links in G: an undirected edge between two
vertices in H implies that the corresponding links in G inter-
fere with each other. Several such interference models have
been studied, because of variations in physical-layer tech-
nologies and protocols. In some models, such as the protocol
model or the Tx-model (discussed below), the interference
constraints are specified using geometric constraints; these
can easily be formulated in terms of the conflict graph. Also,
in some models, communication can happen only on a sub-
set of the edges, e.g., in the Tx-Rx model, communication
happens only on bidirected links – this captures features of
the 802.11 class of protocols and each packet from node u to
node v needs to be acknowledged. We consider four classes
of interference models; in the first two, ∆ ≥ 0 is a constant
that is a parameter of the models.

We model wireless networks as geometric intersection graphs.
Specifically, we consider three graph-classes: disk graphs,
quasi unit-disk graphs, and (r, s)-civilized graphs. A disk
graph [23] is specified by a set of points V , with a disk
D(v) of radius r(v) centered at each v ∈ V . The directed
graph G = (V, E) induced by these disks is the following:
the set of nodes is V and a (directed) link (u, v) is present
if v ∈ D(u). A unit disk graph is a restriction of the disk
graph wherein all disks have the same radii. An undirected
graph G = (V, E) is a quasi unit-disk graph [24, 25] parame-
terized by value ρ ∈ [0, 1], if the vertices of G can be laid out
in R2 such that the following conditions hold: (i) every pair
of points with distance at most ρ has a link between them;
(ii) no pair of points with distance greater than 1 has a link
between them. Notice that if the distance is strictly between
ρ and 1, then the link may or may not exist. An undirected
graph G = (V, E) is said to be (r, s)-civilized [23] (where,
the parameters r, s > 0 with r < s), if it can be embedded
in R2 such that for any pair of points u, v, their distance



d(u, v) ≥ s, and for any link (u, v) ∈ E, d(u, v) ≤ r. Disk
graphs allow for unidirectional edges and varying transmis-
sion radii but do not model loss of links due to occlusions.
Both quasi unit-disk graphs and (r, s)-civilized graphs allow
for loss of links due to occlusions in a controlled manner. All
three models generalize the standard unit-disk graph model
in different ways. Finally, we note that while we described
the graph models in terms of their two-dimensional layouts,
the models and our results naturally generalize to three-
dimensions as well.

In the transmitter model (Tx-model) a transmission
from u is successful (i.e., received correctly by the intended
recipient of the transmission) if and only if any other trans-
mitter w is such that d(u, w) > (1+∆)·(range(u)+range(w)).
This model was introduced by Yi et al. [37] to analyze the
capacity of random ad hoc networks. For this model, we can
define I(e) for an edge e = (u, v) as I(e) = {e′ = (u′, v′) :
d(u, u′) ≤ (1 + ∆) · (range(u) + range(u′))}. Throughout
this work, we illustrate the analytical performance guaran-
tees provided by our algorithms using the Tx-model. The
transmitter-receiver model (Tx-Rx model) [3, 18] is
defined as follows: let e = (u, v) ∈ E be a link along which
there is a transmission. Let D denote the network distance
(in terms of hop-count) between the links and nodes in the
network. Specifically, for any two links e and e′, D(e, e′)
is defined as the least hop-count distance between an inci-
dent node of e and an incident node of e′. The transmission
along e is successful if and only if any other transmission
along a link e′ ∈ E is such that D(e, e′) ≥ 2. Therefore,
for e = (u, v), we have I(e) = {e′ = (u′, v′) : D(e, e′) ≤ 1}.
Finally, we consider the unified framework for interfer-
ence modeling introduced by Ramanathan [29] for study-
ing resource assignment problems in wireless networks. In
all the four classes of models described above, a node can ei-
ther receive a message or transmit a message (and not both)
at the same time. Thus for any link e = (u, v), w.l.o.g., all
other links which are incident on u or v are also included in
the set I(e).

Given the network G and the associated conflict graph H,
a feasible schedule S specifies a binary variable X(e, t) such
that (i) X(e, t) = 1 if and only if link e is active at time t, and
(ii) if X(e, t) = 1, then, for all other edges e′ conflicting with
e, X(e′, t) = 0. A link-utilization vector ~x for a schedule
specifies a value x(e) for each link e; this is the fraction of
time for which link e is active during the schedule. The
link-utilization vector ~x is feasible if and only if there is a
feasible schedule S such that every link e is active for x(e)
fraction of the slots in S.

Network & Transport layer: We use a multi-commodity
flow model for network traffic: we have a set of k connec-
tions (possibly routed through multiple paths). The pair
(si, ti) represents the (source, sink) nodes of connection i.
Let Pi denote the set of all paths between si and ti in G. For
connection i, and a path pi ∈ Pi, f(pi) denotes the rate at
which data is routed across pi by connection i. Thus, the to-
tal end-to-end rate fi for connection i equals

P
pi∈Pi

f(pi).

The data routed through pi induces data-rate f(pi) on all
the links in pi. Thus, for any link e ∈ E, the total link-rate
l(e) =

P
i

P
(pi∈Pi)&(e∈pi)

f(pi). We model the transport

layer using the utility maximization framework of [22]. The

intuition underlying this framework is that TCP congestion
control algorithms can be viewed as distributed primal-dual
algorithms which implicitly maximize the aggregate concave
utility functions of the network connections. The concave
utility function U(fi) for each connection i is specified (im-
plicitly) by the TCP algorithm and the function value de-
pends only on the end-to-end data-rate fi.

Thus, the cross-layer network utility maximization prob-
lem can now be formally stated as follows. Given a com-
munication graph G = (V, E) the associated conflict-graph
H = (E, R), and a set of k connections, let Π denote the set
of all feasible link-utilization vectors. The joint utility maxi-
mization problem seeks the optimal solution to the following
(convex) program.

max
X

i

U(fi) (1)

∀i ∈ {1, . . . , k}, fi =
X
p∈Pi

f(p) (2)

∀e ∈ E, x(e) =

P
i

P
(p∈Pi)&(p3e) f(p)

c(e)
(3)

~x ∈ Π (4)

∀p ∈
[
i

Pi, f(p) ≥ 0 (5)

The first two constraints connect the end-to-end rates with
the link utilization vector x and the third constraint requires
that ~x ∈ Π. Unfortunately, for most network/interference
models, it is not possible to exactly characterize the link-
utilization region Π using a polynomial sized convex pro-
gram (unless P=NP). One of the main goals of this work is
to obtain approximate, but provably good characterizations
of the region Π using linear constraints in polynomial time.

There has been much work in recent years on various aspects
of cross layer design and analysis in wire line and wireless
networks. The seminal work by Kelly et al. [22] showed that
in a wire line network, TCP congestion control algorithms
can be viewed as distributed primal-dual algorithms that
seek to maximize sum of aggregate concave utilities. Re-
cently, extensions of this basic idea have been considered in
the context of several applications including cross-layer op-
timization for wire line and wireless ad hoc networks, anal-
ysis of stability and optimality as a function of time-varying
network conditions, etc (including loads, link capacity, etc.):
see [20, 6, 15, 26, 15, 7, 16, 22, 35] and the references therein.
However, with the exception of Chen et al. [6], and Lin and
Shroff [26], none of these consider the joint optimization
of MAC, routing and transport layers together. Both [6]
and [26] consider conflict-graph models with primary inter-
ference in their optimization framework. Further, Lin and
Shroff [26] study the impact of suboptimal scheduling poli-
cies on the performance and distributed convergence of the
joint optimization problem. However, both of these do not
address the issue of obtaining provably good performance
guarantees under more general conflict-graph models with
secondary interference.

Chiang [7] studies the joint optimization of Transport+MAC



layers, with aggregate concave utilities modeling the Trans-
port layer objective and link-level power allocation vector
being the optimization variable which determines maximum
link capacities through SIR constraints. However, [7] does
not consider the effect of MAC layer scheduling. Yi and
Shakkottai [36] study joint optimization of Transport+MAC
under primary interference. The work of Chen, Low and
Doyle [20] studies the joint optimization of Transport+MAC
layer scheduling with rate-limited channels and conflict-graphs
involving secondary interference, and is more closely related
to our work. However, [20] does not consider routing and
does not provide provably good performance guarantees for
various conflict-graph models. Characterizing the achievable-
rate regions (either exactly or approximately) is closely re-
lated to cross-layer optimization of throughput objectives
in ad hoc networks. The first attempt toward this can be
be traced back to [13, 2]. Several results have emerged re-
cently for characterizing achievable rate regions using lin-
ear/convex programming techniques under various commu-
nication and conflict graph assumptions [19, 33, 14, 17]. Our
results in Section 3 make use of linear constraints for the Tx,
Protocol, and D2 interference models from [19] which yield
approximate but provably good characterizations of rate-
regions in the presence of secondary interference. Charac-
terizations of rate-regions in other generalized network- and
interference-models are also obtained.

3. INTERFERENCE MODELING FOR UTIL-
ITY MAXIMIZATION

Given a communication graph G = (V, E), an associated
conflict graph H = (E, R), a set of k connections, and a con-
cave utility U for each connection which is a function of the
end-to-end data rate, our goal is to jointly route and sched-
ule these connections such that the aggregate utilities of all
the connections is maximized. In this section, we present
our solution to this problem for settings with multi-path
routing. Our broad approach is to model this problem as a
mathematical program, where the objective function is the
aggregate utility and the constraints are the feasibility of
link-flows. Define the feasible link-utilization region Π for
a given graph G and an associated conflict graph H as the
set of all feasible link-utilization vectors. The main question
which we need to address is the following: how do we ex-
press the feasible link-utilization region Π efficiently so that
it can be incorporated in the mathematical program. The
key driver for us is the observation that for a wide class
of radio-propagation and interference models, the associated
link-utilization region can be modeled (approximately) using
necessary and sufficient conditions that are linear. This ob-
servation enables us to formulate and solve the network op-
timization problem approximately, but with provably-good
performance guarantees. Of course, these geometric mod-
eling assumptions result in a loss of generality to certain
extent but the models presented below capture several im-
portant features of real-world scenarios. In particular, we
note that physical obstructions that prevent communication
along links in G, can be modeled by setting the link capacity
of the obstructed links as zero.

3.1 Basic Approach
We illustrate our basic approach using the Tx-model. Let
I≥(e = (u, v))

.
= {e′ = (p, q) : (e′ ∈ I(e)) & (r(p) ≥ r(u))}

(i.e., e′ conflicts with e and the source node of e′ has a range
greater than or equal to the range of source of e). Let ~x be
a link-utilization vector. Kumar et al. [19] showed the fol-
lowing necessary and sufficient conditions for the feasibility
of the link-utilization vector ~x under the Tx-model:

∀e ∈ E, x(e) +
X

e′∈I≥(e)

x(e′) ≤ 5 (necess. cond.) (6)

∀e ∈ E, x(e) +
X

e′∈I≥(e)

x(e′) ≤ 1 (suff. cond.) (7)

Inductive Scheduling: For the sake of completeness,
we also present the inductive scheduling algorithm from [19]
which schedules any feasible vector ~x satisfying (7). Con-
sider a time window with W slots such that x(e) · W is
integral for all links e. Process the links in the decreasing
order of the range of their source nodes. Let the current link
being processed be e. Allocate any set of x(e) · W slots in
the time window which have not already been allocated to
any of the links in I≥(e). This schedule can now be repeated
periodically, with a period of W time slots. Since ~x satisfies
(7), it is easy to see that this algorithm yields a conflict-free
schedule with the desired link-rates.

We now formulate the joint network optimization problem
for the Tx-model as follows:

max
X

i

U(fi)

∀i ∈ {1, . . . , k}, fi =
X
p∈Pi

f(p)

∀e ∈ E, x(e) =

P
i

P
(p∈Pi)&(p3e) f(p)

c(e)

∀e ∈ E, x(e) +
X

e′∈I≥(e)

x(e′) ≤ 1

∀e ∈ E, x(e) ∈ [0, 1]

∀p ∈
[
i

Pi, f(p) ≥ 0

Since the utility function is concave, the joint optimization
problem is a convex program and can be solved optimally
in polynomial time1. Let OPT denote the optimal solution
value of the convex program. Let OPT ∗ denote the optimal
value of

P
i U(fi) when it is maximized over the space of

all the feasible link-utilization vectors under Tx-model (and
not just the space of vectors which satisfy (7)). We have:

Lemma 1. OPT ≥ OPT ∗/5.

Proof. Let ~x∗ be the link-utilization vector and ~f∗ be
the end-to-end rate vector which achieve the solution value
OPT ∗. Let ~y = ~x∗

5
and ~g =

~f∗

5
(i.e., each component of

~y and ~g is one-fifth of the corresponding components in ~x∗

and ~f∗). For commodity i, let f∗i =
P

p∈Pi
f∗(p) and gi =P

p∈Pi
g(p). Observe that, for all i, gi =

f∗i
5

. Crucially, since

1While the convex program as presented could be exponen-
tial in size, the program can be expressed in polynomial size
using standard flow-conservation constraints and the added
link feasibility conditions. We ignore the additive error ε in
the solution of the convex program: ε can be made arbitrar-
ily small.



the utility function U is concave, U(gi) = U(
f∗i
5

) ≥ U(f∗i )

5
.

Since x∗ is a feasible link-utilization vector, it satisfies (6)
and y satisfies (7). Hence, (~y, ~g) represents a feasible solu-
tion for the convex program. The proof can be concluded

by noting that OPT ≥
P

i U(gi) ≥
P

i

U(f∗i )

5
≥ OPT∗

5
.

Kumar et al. [19] also provide necessary and sufficient con-
straints for link-utilization similar to (6) and (7) for the
Protocol model [12] and Distance-2 model [18] of interfer-
ence, while Alicherry et al. [1] provide such conditions for
a combined Tx and Distance-2 type conflict model. Hence,
the sufficient conditions for link-utilization feasibility from
all of these models can be incorporated into the convex pro-
gram to obtain a constant factor performance guarantee for
the joint network optimization problem. Note also that fair-
ness constraints such as end-to-end rates of each pair of con-
nections is at least α (where α ≤ 1 is the end-to-end fair-
ness index), can be easily expressed using linear constraints;
Such constraints can directly be accommodated in our above
framework. In general, other linear constraints (average
energy consumed by a connection, average hop-length for
a connection) can also be incorporated above, leading to
constant-factor approximations for the energy/fairness/hop-
count constrained optimization problems.

3.2 The q-inductive Transmission Model
All the transmission models discussed above share a gen-
eral property which allows their link-utilization regions to
be expressed (approximately) using a small set of linear in-
equalities. We now identify this key property and show how
to approximately express the link-utilization region for any
transmission model which satisfies this property. This en-
ables us to (approximately) characterize the link-utilization
region for a very wide class of transmission models as shown
later in this section.

Given the communication graph G and the conflict graph
H, we say that the pair (G, H) satisfies the q-induction
property if there exists a total ordering � on the links of
the graph such that for all e ∈ E, the maximum number of
links in I�(e) which can be active simultaneously is at most
q. Here I�(e) denotes the set of edges e′ such that e′ ∈ I(e)
and e′ � e.

By abstracting the proof in the preceding subsection, we get
the following general theorem.

Theorem 1. Suppose a given graph G = (V, E) and its
associated conflict graph H = (E, I) have a q-inductive total
ordering � on E. For any feasible link-utilization vector ~x,
the following necessary condition must be satisfied.

∀e ∈ E, x(e) +
X

e′∈I�(e)

x(e′) ≤ q (8)

On the other hand, any vector ~x satisfying the following con-
dition:

∀e ∈ E, x(e) +
X

e′∈I�(e)

x(e′) ≤ 1 (9)

can be scheduled. Hence, the joint optimization problem for
any instance with the q-inductive property can be solved in

polynomial time with a performance guarantee of O(q) for
any concave utility function U .

Proof. Assume that the link rate vector ~y is stable: i.e.,
there exists a stable schedule S which achieves the link rates
specified by ~y. Clearly, ~x is the link-utilization vector for this
schedule: i.e., schedule S keeps link e active for x(e) fraction
of the time. Let Xe,t be the binary transmission indicator
variable for this schedule for link e and time t; X(e, t) = 1 if
and only if link e transmits successfully at time t, otherwise,
X(e, t) = 0. Recall (8). Further, as a consequence of the
q-induction property, we have:

∀e ∈ E, ∀t, X(e, t) +
X

f∈I�(e)

X(f, t) ≤ q (10)

Bound (10) simply expresses the q-induction property that
at any time t, either link e can transmit successfully or at
most q links in the set I�(e) can transmit successfully. The
necessary condition of the lemma now follows by averaging
bound (10) over all times t and by combining it with (10).
The inductive scheduling algorithm presented earlier can be
used to produce a feasible schedule which satisfies all the
link-utilization demands, whenever condition (9) holds.

3.3 Unified framework for conflict modeling
Ramanathan [29] introduced a unified framework for the
study of resource assignment problems in wireless networks
under a wide-variety of graph-theoretic conflict graph mod-
els (the resources to be assigned being time-slots, frequen-
cies, or codes). This framework identifies eleven atomic con-
flicts underlying most assignment problems, and an assign-
ment problem is characterized by a combination of these
conflicts. We now describe this unified framework for conflict-
modeling briefly and show how to express the link-utilization
regions for all assignment problems that are characterized by
a combination of these conflicts models.

A conflict is a symmetric relation between two vertices or
two links in a graph. A conflict imposes a restriction that
the entities (nodes/links) which conflict with each can not
be active during the same time slot in any schedule. In
Ramanathan’s framework, the constraints are classified ac-
cording to whether they are between vertices or edges, the
graph-theoretic separation between them, and whether it is
a transmitter and/or a receiver based constraint. Specifi-
cally, constraint c is denoted using the syntax c =< ε ><s>

<d>,
where ε ∈ {V, E}, s ∈ {0, 1}, and d ∈ {tr, tt, rr, rt}. Here, ε
is the entity (node (V ) or link (E)) being constrained, s is
the forbidden separation between two nodes or edges, and
d qualifies the separation by specifying its direction with
respect to transmitter (t) or receiver (r).

Assignment problems are characterized by a combination of
conflicts, i.e., a conflict set; e.g., C = {E0

rr, E
0
tt, E

0
tr, E

1
tr}

characterizes a half-duplex TDMA link scheduling problem,
where two links can be simultaneously active implies that,
there is no link from the transmitter of one link to the re-
ceiver of the other link (E1

tr), and the two active links are
not incident on the same node (E0

tt, E
0
rr, E

0
tr). If the nodes

are capable of full duplex communications (i.e., can trans-
mit and receive simultaneously), then E0

tr constraint can be
removed. In this paper, we will restrict our attention only to



edge based constraints as above. We can prove the following
theorem whose proof is omitted due to lack of space.

Theorem 2. Let G denote one of the graph classes: disk,
quasi unit disk or (r, s)-civilized and let I denote one of fol-
lowing interference models: (T/F)-DMA broadcast, Distance-
2matching, Cellular, (T/F)-DMA link and handshake. Then
for each tuple (g, i) such that g ∈ G and i ∈ I, there exists
a constant q(g, i) such that (g, i) is q(g, i) inductive. The
specific values are summarized in Table 2.

Table 1: The approximation factors for different
combinations of Interference models and different
conflict graph models of the physical layer

Distance-2 (T/F)-DMA Handshake
matching ∀x, y link ∀x, y

(E0
xy, E1

xy (E0
rr, E

0
tr (E1

tt, E0
xy)

E0
tt, E

1
tr)

Disk O(1) ∆ O(1)
Quasi ( 4

d
+ 1)2 ∆ O(1)

unit disk
(r, s)-civilized ( 4s

r
+ 1)2 ∆ O(1)

Remark: While it is intuitively obvious that interference
constraints can be expressed as node- and edge-coloring con-
straints, it is not at all obvious if these constraints can be
linearized. Theorem 2 does precisely this, and shows that in
most cases, the approximation factor for the coloring prob-
lem translates to similar bounds for utility maximization.
Also, while our constants in the approximation guarantees
are not very close to one, they are the only known rigor-
ous performance guarantees that hold for the wide variety
of models considered here.

4. SIMULTANEOUS UTILITY MAXIMIZA-
TION

So far we have studied the optimization of a specific utility
function and have described algorithms to compute rates
which approximate the objective within an constant factor.
The specific utility functions of most interest are naturally
the ones that model TCP. However, as many papers [21, 20,
34, 27] show, different variants of TCP can be modeled by
different utility functions. In this context, Cho and Goel
[8] raise the following important question: is it possible to
obtain a rate vector that is good with respect to all these
variants? By extending the results of [8, 10] on wire line
networks, we show in this section that such simultaneous
approximations are indeed possible for wireless networks,
and for a large class of utility functions, called the canonical
utility functions, which are defined below. From a practi-
cal viewpoint, computing such a rate vector in a distributed
manner is a very important issue, and again, we extend the
results of [8] and describe a distributed algorithm for com-
puting the rates.

We first recall the following definitions and notation from
Goel and Meyerson [10]. For any end-to-end flow vector
~f = 〈f1, f2, . . . , fk〉, denote the i-th smallest component of
~f by f(i). Define Pj(~f) =

Pj
i=1 f(i). This is the j-th prefix

of vector ~f , the sum of its j smallest coordinates.

Definition 1. [10] Given two k-dimensional vectors ~f and

~g, ~f is said to be α-supermajorized by ~g if αPj(~f) ≥ Pj(~g)

for all j ≤ k. This is denoted by ~f ≺α ~g. A vector is said
to be globally α-fair if it is α-supermajorized by any other
feasible vector.

We omit the adjective “global” for the sake of brevity. We
will be considering concave utility functions; we will say that
a concave utility function U is canonical if U(0) = 0, it is
symmetric and non-decreasing in any argument. A resource
allocation problem is one that involves maximizing a canoni-
cal utility function over a convex set. The following Theorem
from [10] establishes the significance of Definition 1.

Theorem 3. [10] A feasible solution ~f is a simultane-
ous α-approximation for a resource allocation problem if and

only if ~f is α-fair.

Given a convex set of k-dimensional vectors Π, the above
theorem implies that it suffices to find a fair vector, in order
to simultaneously optimize all canonical utility functions.
However, it is not even obvious that such globally fair so-
lutions exist for small values of α. The following surprising
result from [10] gives a non-trivial bound on α for which
such approximations exist for any convex set Π. Define
P ∗

j = maxx∈Π Pj(x).

Theorem 4. ([10]) For any nonnegative convex program,

there exists an O(log
P∗n

nP∗1
)-fair solution. Moreover, such a

solution can be computed in polynomial time by solving n
convex programs.

We now show how the above result yields a logarithmic
approximation to the utility maximization problem. Let

R = maxe c(e)
mine c(e)

.

Theorem 5. Given a graph G = (V, E), an associated
conflict graph H = (E, I) which has a q-inductive ordering
on the edge set E, and a set of k connections, there exists

a link-utilization vector ~x and end-to-end rate vector ~f such

that (~x, ~f) is feasible and simultaneously approximates any
canonical utility function to within a factor of O(q log knR).

Proof. We start with the convex program in Theorem
1 with the necessary conditions (8), and consider the con-
vex set consisting of feasible end-to-end rate vectors for that
program. Applying Theorem 4 on this convex set, we get

a solution ~f that is globally O(log
P∗k

kP∗1
)-fair. First, ob-

serve that P ∗
k = maxx{

P
i xi}, which is simply the maxi-

mum total end-to-end throughput. Trivially, we have P ∗
k ≤

n2(maxe c(e)). To lower bound P ∗
1 , consider any feasible

flow that sends fi = (mine c(e))/kn2 on each connection i.
Let x(e) =

P
i

P
(p∈Pi)&(p3e) f(p)/c(e) be the link-utilization

defined by such a flow. Then, x(e) ≤ 1/n2, since there are
k flows, and therefore, the vector ~x will satisfy the neces-

sary conditions for feasibility for all links. Since P1(~f) =



(mine c(e))/kn2 for this flow, we have P ∗
1 ≥ (mine c(e))/kn2,

and therefore, Theorem 4 implies that there is a solution

(~x, ~f) that satisfies all the feasibility conditions (8), and is
O(log knR)-fair. By Theorem 1, it follows that the link-
utilization vector ~x

q
satisfies the sufficient condition for schedul-

ing: in this case, for any j, Pj(
~x
q
) =

Pj(~x)

q
; therefore, the

vector (~x
q
,

~f
q
) is a simultaneous O(q log knR)-approximation

for any canonical utility function.

4.1 Distributed Algorithms
From an algorithmic point of view, a more important ques-
tion is to compute the rate vector in Theorem 5. In the
case where the feasible solutions satisfy some set of linear
constraints, denoted by Ax ≤ c, Goel and Meyerson [10]
showed that P ∗

s can be computed by the following linear
program: minimize λs subject to: (i) Af ≤ λsc, and (ii)
∀S ⊆ {1, . . . , k} such that |S| = s,

P
i∈S fi ≥ 1. If λ∗s is the

optimum for this program, it can be shown that λ∗s = 1/P ∗
s .

By solving n such programs, it is possible to find a solution
that gives the bounds of Theorem 4. However, this is not
feasible in practice. Cho and Goel [8] develop a much more
efficient algorithm for the simultaneous optimization prob-
lem in the context of bandwidth optimization in wire line
networks - they develop a dual-update algorithm for com-
puting the solution to any individual LP, and then show how
to combine all the n different dual-update algorithms into a
single one. We show how their framework can be modified
to compute the rate vector of Section 4 in the presence of
wireless interference constraints.

In this section, we assume that we are given a fixed path
pi corresponding to connection i. We also assume the unit
disk model here. We can simplify the formulation in Section
3 to one using just the variables f(pi). The Cho and Goel
result uses the framework of Plotkin, Shmoys and Tardos
(PST) [28] to solve the above LP combinatorially. Using
the PST framework requires making repeated calls to the
following program: βs(y) = max Ps(x), subject to Cx = 1
and x ≥ 0, where C = ytA represents the dual costs: the
cost Ci of flow on pi is defined as

P
e:N≥(e)∩pi 6=φ y(e). We

briefly discuss how this dual program can be solved in a dis-
tributed manner in a wireless setting. For any s, optimal
solutions to this program can be characterized very easily
[8]: ∀i, j, Ci ≤ Cj ⇒ xi ≥ xj , and there is a value γ such
that ∀i, xi ∈ {0, γ}. Clearly, finding the optimum solution
x requires finding the index i0 such that xi = γ, ∀i ≤ i0 and
xi = 0, ∀i > i0. Given the dual edge costs, y(e), the quanti-
ties Ci are easy to compute locally - since we have assumed
a unit disk graph model, every edge e ∈ pi can collect this
information from all edges e′ ∈ N(e), where N(e) is the set
of edges interfering with e. While the optimum solution xs

for the dual program for each s is different, Cho and Goel
show that one can instead use the solution x̄ that domi-
nates all the xs’s, i.e., x̄i = maxs{xs

i}, with a small penalty.
By scaling the solution appropriately, we will assume that
we have an approximate solution such that for each edge e,P

pi:e∈pi
x(pi) ≤ c(e), and there exists an edge e ∈ E s.t.P

pi:e∈pi
x(pi) = c(e).

We now describe how to modify the algorithm of [8] for
computing the rates f . We are given a parameter ε, which

can be a constant. We maintain dual variables yt(e) for
each edge e, and each iteration t; initially, y0(e) = δ/c(e),

where δ = m−1/ε, m being the number of edges. In phase
t, we keep track of D(t) =

P
e yt(e)c(e), and the phases

are performed while D(t) < 1. The three steps in one such
phase t are: (i) using the dual edge-length function, yt, we
compute the scaled dual solution x(t) as described above;
(ii) x := x+x(t); and (iii) for each edge e, update its length
as yt+1(e) := yt(e)(1 + ε

P
i:N(e)∩pi 6=φ x(pi)/c(e)) Step (iii)

is the only difference from [8], who only consider the flow
through edge e, and not the flow on all interfering edges. The
above algorithm is clearly local and distributed in the sense
described earlier - each flow agent only needs information
from edge agents on edges close to the path, and from other
flow agents. Let T be the final iteration when this procedure
stops. The arguments of [8] give us

Lemma 2. Let G be a unit-disk graph with n nodes and
m edges. Let there be k connections, with path pi specified
for connection i. Then: the flow x(T )/ log1+ε 1/δ is feasi-
ble ,i.e., it satisfies all the feasibility conditions of Section 3,
the number of iterations of the algorithm is T = O(m log m),
and the final solution is an O(log n + log R)-majorized solu-

tion, where R = maxe c(e)
mine c(e)

. So, these flow rates approximate

any canonical utility function to within O(logO(1) n).
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approximation algorithms for fractional packing and
covering problems. Math. Oper. Res., pages 257–301,
1994.

[29] S. Ramanathan. A unified framework and algorithm
for channel assignment in wireless networks. Wireless
Networks, 5(2):81–94, 1999.

[30] A. Sen and M. L. Huson. A new model for scheduling
packet radio networks. Wireless Networks, 3:71–82,
1997.

[31] P.-J. Wan, K. M. Alzoubi, O. Frieder, Distributed
Construction of Connected Dominating Set in Wireless
Ad Hoc Networks, In Proc. IEEE INFOCOM, 2002.

[32] A. Srinivas and E. Modiano. Minimum energy disjoint
path routing in wireless ad-hoc networks. In
Proceedings of the 9th annual international conference
on Mobile computing and networking, pages 122–133,
2003.

[33] S. Toumpis and A. J. Goldsmith. Capacity regions for
wireless ad hoc networks. IEEE Trans. on Wireless
Communications, pages 736–748, July 2003.

[34] J. Wang, L. Li, S. H. Low and J. C. Doyle. Cross-layer
Optimization in TCP/IP Networks IEEE/ACM
Trans. on Networking, 13(3):582-568, June 2005.

[35] L. Xiao, M. Johansson, and S. Boyd. Simultaneous
routing and resource allocation via dual
decomposition. IEEE Transactions on
Communications, 52(7):1136-1144, July 2004.

[36] Y. Yi and S. Shakkottai. Hop-by-hop congestion
control over a wireless multi-hop network. In IEEE
Infocom, 2004.

[37] S. Yi, Y. Pei and S. Kalyanaraman. On the capacity
improvement of ad hoc wireless networks using
directional antennas. In Proceedings of the 4th ACM
International Symposium on Mobile ad hoc networking
& computing, pp. 108–116, 2003.


