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Abstract

We present improved approximation algorithms in stochastic

optimization. We prove that the multi-stage stochastic

versions of covering integer programs (such as set cover

and vertex cover) admit essentially the same approximation

algorithms as their standard (non-stochastic) counterparts;

this improves upon work of Swamy & Shmoys that shows

an approximability which depends multiplicatively on the

number of stages. We also present approximation algorithms

for facility location and some of its variants in the 2-

stage recourse model, improving on previous approximation

guarantees.

1 Introduction.

Stochastic optimization attempts to model uncertainty
in the input data via probabilistic modeling of future
information. It originated in the work of Beale [1] and
Dantzig [4] five decades ago, and has found application
in several areas of optimization. There has been a flurry
of algorithmic activity over the last five years in this
field, especially from the viewpoint of approximation
algorithms. See the survey [33] for a thorough discussion
of this area.

In this work, we present improved approximation
algorithms for various basic problems in stochastic
optimization. We start by recalling the widely-used 2-
stage recourse model [33]. Information about the input
instance is revealed in two stages here. In the first,
we are given access to a distribution D over possible
realizations of future data, each such realization called
a scenario; given D, we can commit to an anticipatory
part x of the total solution, which costs us c(x). In
the second stage, a scenario A is sampled from D and
given to us, specifying the complete instance. We may
then augment x by taking recourse actions yA that
cost us the additional amount of fA(x, yA) in order to
construct a feasible solution for the complete instance.
The algorithmic goal is to construct x efficiently, as
well as yA efficiently (precomputed for all A if possible,
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or computed when A is revealed to us), in order to
minimize the total expected cost, c(x) + EA[fA(x, yA)].
(In the case of randomized algorithms, we further
take the expectation over the random choices of the
algorithm.) This is the basic cost-model. We will
also study “risk-averse” relatives of this expectation-
minimization version. There is a natural extension of
the above to k ≥ 2 stages; see [32] for a nice motivating
example for the case where k > 2, and for the precise
model. We present just those details of this model that
are relevant for our discussion, in § 2.

As an example, the 2-stage version of set cover is
as follows. As usual, we have a finite ground set X
and a given family of subsets S1, S2, . . . , Sm of X; the
stochasticity comes from the fact that the actual set of
elements to be covered could be a subset of X, about
which we only have probabilistic information. As above,
we can sample D to get an idea of this subset in stage I;
we can also buy each Sj for some given cost cj in stage
I. Of course, the catch is that future costs are typically
more: i.e., for all j and A, the cost cA,j of buying Sj
under scenario A in stage II, could be much more than
cj . This reflects the increased cost of rapid-response, as
opposed to the advance provisioning of any set Sj . As
in set cover, a feasible solution is a collection of Sj that
covers all of the finally-revealed elements A. Thus, we
will choose some collection x of Sj in stage I by using the
distributional information about A, and then augment
x by further sets Sj in stage II when we know A. One
basic goal is to minimize the total expected cost of the
two stages.

How is D specified? As mentioned in [33], there
has been recent work in algorithms where the data
(e.g., demands) come from a product of independent,
explicitly-given distributions (see, e.g., the discussions
in [18, 13, 5]). One major advantage here is that it can
succinctly capture even exponentially many scenarios.
However, just as in [22, 10, 24, 11, 32, 33], we are
interested in dealing with correlations that arise in the
data (e.g., correlations due to geographic proximity of
clients), and hence will not deal with such independent
activation models here. So, our general definition is
where we are given access to a black-box which can
generate samples according to D. Alternatively, we
could be explicitly given the list of scenarios and their



respective probabilities. In this case, algorithms that
run in time polynomial in the other input parameters
naturally require that the total number of scenarios
be polynomially bounded. A natural question to ask
is: can we “reduce” the former model to the latter,
by taking some polynomial number of scenarios from
the black box, and constructing an explicit list of
scenarios using their empirical probabilities? Indeed,
this sample-average approximation method is widely
used in practice: see, e.g., [16, 34]. The work of
[24, 2, 26] has shown that we can indeed reduce the
black-box model to the polynomial-scenario model for
the case of k = 2 stages, by a careful usage of sampling
for the problems we study here: the error introduced by
the sampling will translate to a multiplicative (1 + ε)
factor in the approximation guarantee, where ε can be
made as small as any desired inverse-polynomial of the
input size. Therefore, we will define the k-stage model
using the details relevant to us in § 2; in § 3, where
we only deal with k = 2 stages, we will assume the
polynomial-scenario model.

Our results are as follows. We consider the k-stage
model in § 2; all the problems and results here, as well
as earlier work on these problems, is for arbitrary con-
stants k. The boosted sampling approach of [11] leads
to approximation guarantees that are exponential for k
for problems such as vertex cover (and better approxi-
mations for the k-stage Steiner tree problem). This was
improved in [32], leading to approximation guarantees
for vertex cover, set cover, and facility location that are
k times their standard (non-stochastic) threshold: e.g.,
approximation guarantees of 2k + ε and k lnn for ver-
tex cover and set cover respectively are developed in
[32]. Removing this dependence on k is mentioned as
an open problem in [33]. We resolve this by develop-
ing simple randomized approximation algorithms that
yield, for the family of covering integer programs, es-
sentially the same approximation algorithms as for their
non-stochastic counterparts. In particular, we get guar-
antees of 2 + ε and (1 + o(1)) lnn respectively, for ver-
tex cover and set cover. Except for a somewhat non-
standard version of vertex cover studied in [22], these
are improvements even for the case of k = 2. Chai-
tanya Swamy (personal communication, June 2006) has
informed us that Kamesh Munagala has independently
obtained the result for k-stage vertex cover.

Our next object of study is the classical facility
location problem. Recall that in the standard (non-
stochastic) version of the facility location problem, we
are given a set of clients D and a set of facilities F . The
distance from client j to facility i is cij , and these values
form a metric. Given a cost fi for opening each facility
i, we want to open some of the facilities, so that the

sum of the opening costs and the distances traveled by
each client to its closest open facility, is minimized. (As
usual, all results and approximations translate without
any loss to the case where each client i has a demand
di ≥ 0 indicating the number of customers at i, so we
just discuss the case di ∈ {0, 1} here.) Starting with
[25], there has been a steady stream of constant-factor
approximation algorithms for the problem, drawing
from and contributing to techniques in LP rounding,
primal-dual methods, local search, greedy algorithms
etc. The current-best lower and upper bounds on
the problem’s approximability are 1.46 · · · [9] and 1.52
[17]. The stochastic version of the facility location
problem has also received a good deal of attention
in the case of k = 2 stages [22, 31, 24]. In the 2-
stage stochastic version, the results of [24, 2, 26] let
us assume the polynomial-scenario model as mentioned
above. Here, each facility i can be opened at cost
f Ii in stage I, and at a cost fAi when a scenario A
materializes in stage II; each scenario A is simply a
subset of D, indicating the actual set of clients that
need to be served under this scenario. The goal is to
open some facilities in stage I and then some in stage
II; we develop improved approximation algorithms in
two settings here, as discussed next.

Our first setting is the basic one of minimizing the
total expected cost, just as for covering problems. That
is, we aim to minimize the expected “client-connection
costs + facility-opening cost”, where the expectation
is both over the random emergence of scenarios, and
internal random choices of our algorithm. We develop
a 2.369-approximation in § 3.1, improving upon the
current-best value of 3 [24, 33]. Our approach here
crucially exploits an asymmetry in the facility-location
algorithms of [14, 15].

Our second setting involves an additional ingredient
of “risk-aversion”, various facets of which have been
studied in works including [12, 7, 26]. The motivation
here is that a user may be risk-averse, and may not
want to end up paying much if (what was perceived to
be) a low-probability scenario emerges: minimizing the
overall expectation alone may not suffice. Therefore,
as in [12], we aim for “local” algorithms: those where
for each scenario A, its expected final (rounded) cost
is at most some guaranteed (constant) factor times
its fractional counterpart V alA. Such a result is very
useful since it allows the inclusion of budgets to the
various scenarios, and to either prove that these are
infeasible, or to come within a constant factor of each
particular budget in expectation [12]. In § 3.2, we prove
that a randomized rounding scheme of [31] actually
guarantees that for each scenario A, its expected final
(rounded) cost is at most 3.25 · V alA, improving on the



3.378 · V alA bound of [31]. (In the previous version of
this paper, these values 3.25 and 3.378 were 3.095 and
3.225 respectively. However, as pointed out to us by
Chaitanya Swamy in September 2006, there is a small
error in the original thesis [30] which is fixed in [31];
the value 3.225 and the corresponding proof of [30], are
revised to 3.378 with a corrected proof in [31]. This
necessitates the change in our paper as well.) Our
improvement comes by an improved analysis of a key
inequality of [31] (bound (3.16) of this paper). The r.h.s.
of this inequality is upper-bounded in [31] by bounding
the two summands separately. See also [29] for a similar
approach. We are able to bound this term altogether,
leading to our improvement: the supporting intuition
is that the bounds for the two summands from [31] are
tight in two distinct regimes.

Thus, we present improved approximation algo-
rithms in stochastic optimization, both for two stages
and multiple stages, based on LP-rounding. Our main
results are presented in Theorem 2.1, Theorem 3.1, and
Theorem 3.2.

2 Multi-stage covering problems.

We show that general stochastic k-stage covering integer
programs (those with all coefficients being non-negative,
and with the variables xj allowed to be arbitrary non-
negative integers) admit essentially the same approxi-
mation ratios as their usual (non-stochastic) counter-
parts. The model is that we can “buy” each xj in k
stages: the final value of xj is the sum of all values
bought for it. We also show that k-stage vertex cover
can be approximated to within 2 + ε; similarly, k-stage
set cover with each element of the universe contained
in at most b of the given sets, can be approximated to
within b+ ε.
Model: Given the results of [32], we can model a k-
stage covering integer program (CIP) for our purposes
as follows; viewing the problem thus gives a clean “on-
line” framework within which to develop our algorithms.
(The actual model allows the algorithm-designer further
leeway, but it suffices to develop an algorithm under
the constraints given next. There is a hidden covering
problem “minimize cT · x subject to Ax ≥ b and all
variables in x being non-negative integers”. For nota-
tional convenience for the set-cover problem, we let n
be the number of rows of A; also, the variables in x
are indexed as xj,`, where 1 ≤ j ≤ m and 1 ≤ ` ≤ k.
This program, as well as a feasible fractional solution
x∗ for it, are revealed to us in k stages as follows. In
each stage ` (1 ≤ ` ≤ k), we are given the `th-stage
fractional values {x∗j,` : 1 ≤ j ≤ m} of the vari-
ables, along with their columns in the coefficient ma-
trix A, and their coefficient in the objective function

c. Given some values like this, we need to round them
right away at stage ` using randomization if necessary,
irrevocably. The goal is to develop such a rounded vec-
tor {yj,` : 1 ≤ j ≤ m, 1 ≤ ` ≤ k} that satisfies the
constraints Ay ≥ b, and whose (expected) approxima-
tion ratio cT · y/cT · x∗ is small. Our results here are
summarized as follows:

Theorem 2.1. We obtain randomized λ-
approximation algorithms for k-stage stochastic
CIPs for arbitrary fixed k, with values of λ as follows.
(The running time is polynomial for any fixed k,
and λ is independent of k.) (i) For general CIPs,
with the linear system scaled so that all entries of
the matrix A lie in [0, 1] and mini bi = B, we have
λ = 1 + O(min{(lnn)/B,

√
(lnn)/B}). (ii) For set

cover with element-degree (maximum number of given
sets containing any element of the ground set) at most
b, we have λ = b+ ε, where ε can be N−C with N being
the input-size and C > 0 being any constant. (For
instance, b = 2 for vertex cover, where an edge can be
covered only by its two end-points.)

The “+ε” term appears in part (ii) since the fractional
solution obtained by [32] is an (1 + ε)–approximation to
the actual LP. We do not mention this term in part (i),
by absorbing it into the big-Oh notation. The two parts
of this theorem are proved next.

2.1 A simple scheme for general CIPs. We use
our k-stage model to prove Theorem 2.1(i). We show
that a simple randomized rounding approach along the
lines of [21] works here: for a suitable λ ≥ 1 and
independently for all (j, `), set x′j,` = λ ·x∗j,`, and define
the rounded value yj,` to be dx′j,`e with probability
x′j,` − bx′j,`c, and to be bx′j,`c with the complementary
probability of 1−(x′j,`−bx′j,`c). Note that E[yj,`] = x′j,`.
We will now show that for a suitable, “not very large”
choice of λ, with high probability, all constraints will be
satisfied and cT · y is about λ · (cT · x∗).

The proof is standard, and we will illustrate it
for set cover. Note that in this case, a set of at
most n elements need to be covered in the end. Set
λ = lnn + ψ(n) for any arbitrarily slowly growing
function ψ(n) of n such that limn→∞ ψ(n) =∞; run the
randomized rounding scheme described in the previous
paragraph. Consider any finally revealed element i, and
let Ei be the event that our rounding leaves this element
uncovered. Let Ai be the family of sets in the given set-
cover instance that contain i; note that the fractional
solution satisfies

∑
j∈Ai,` x

∗
j,` ≥ 1. Now, if x′j,` ≥ 1

for some pair (j ∈ Ai, `), then yj,` ≥ 1, and so, i is



guaranteed to be covered. Otherwise,

Pr[Ei] =
∏

j∈Ai,`

Pr[yj,` = 0]

=
∏

j∈Ai,`

(1− x′j,`)

≤ exp(−
∑
j∈Ai,`

λ · x∗j,`)

≤ exp(−λ)
= exp(−ψ(n))/n = o(1/n).

Thus, applying a union bound over the (at most n)
finally-revealed elements i, we see that Pr[

∧
iEi] =

1− o(1). So,

E[cT · y
∣∣ ∧
i

Ei] ≤
E[cT · y]
Pr[
∧
iEi]

=
λ · (cT · x∗)
Pr[
∧
iEi]

=
λ · (cT · x∗)

1− o(1)

= (1 + o(1)) · λ · (cT · x∗);

i.e., we get an (1 + o(1)) · lnn–approximation. Alter-
natively, since cT · y is a sum of independent random
variables, we can show that it is not much more than
its mean, λ · (cT · x∗), with high probability.

The analysis for general CIPs is similar; we observe
that for any row i of the constraint system, E[(Ay)i] =
λbi, use a Chernoff lower-tail bound to show that the
“bad” event Ei that (Ay)i < bi happens with proba-
bility noticeably smaller than 1/n, and apply a union
bound over all n. Choosing λ as in Theorem 2.1(i) suf-
fices for such an analysis; see, e.g., [19]. See [6] for
randomized-rounding approaches for a different model
of stochastic packing problems. Also, note that there
is a small probability (which may be made any de-
sired inverse-polynomial of the input-size N) that not
all constraints are satisfied by our algorithm. While
such a Monte Carlo algorithm with a very small proba-
bility of failure is often sufficient, it is not clear how to
completely eliminate such a possibility of failure in our
stochastic setting, without losing much in the approx-
imation guarantee. While a natural greedy approach
can be used to satisfy the unsatisfied constraints in the
non-stochastic case [28], it appears that we may need
bounds on the rate by which the entries of the matrix
A grow as we move to further stages, in order to bound
the performance of such (say, greedy) approaches.

2.2 Vertex cover, and set cover with small de-
gree. We now use a type of dependent rounding to

prove Theorem 2.1(ii). We present the case of vertex
cover (b = 2), and then note the small modification
needed for the case of general b. Note that our model be-
comes the following for (weighted) vertex cover. There
is a hidden undirected graph G = (V,E). The follow-
ing happens for each vertex v ∈ V . We are revealed
k fractional values x∗v,1, x

∗
v,2, . . . , x

∗
v,k for v one-by-one,

along with the corresponding weights for v (in the objec-
tive function), cv,1, cv,2, . . . , cv,k. We aim for a round-
ing {yv,`} that covers all edges in E, whose objective-
function value

∑
`,v cv,`yv,` is at most twice its fractional

counterpart,
∑
`,v cv,`x

∗
v,`. Note that the fractional so-

lution satisfies

∀(u, v) ∈ E, (
k∑
`=1

x∗u,`) + (
k∑
`=1

x∗v,`) ≥ 1.(2.1)

Now, given a sequence z = (z1, z2, . . . , zk) of values
that lie in [0, 1] and arrive online, suppose we can define
an efficient randomized procedure R, which has the
following properties:

(P1) as soon as R gets a value zi, it rounds it to some
Zi ∈ {0, 1} (R may use the knowledge of the values
{zj , Zj : j < i} in this process);

(P2) E[Zi] ≤ zi; and

(P3) if
∑
i zi ≥ 1, then at least one Zi is one with

probability one.

Then, we can simply apply procedure R independently
for each vertex v, to the vector z(v) of scaled values
(min{2 · x∗v,1, 1},min{2 · x∗v,2, 1}, . . . ,min{2 · x∗v,k, 1}).
Property (P2) shows that the expected value of the
final solution is at most 2 ·

∑
`,v cv,`x

∗
v,`; also, since (2.1)

shows that for any edge (u, v), at least one of the two
sums 2 ·

∑
` x
∗
u,` and 2 ·

∑
` x
∗
v,` is at least 1, property

(P3) guarantees that each edge (u, v) is covered with
probability one. So, the only task is to define function
R.

For a sequence z = (z1, z2, . . . , zk) arriving online,
R proceeds as follows. Given z1, it rounds z1 to Z1 = 1
with probability z1, and to Z1 = 0 with probability
1− z1. Next, given zi for i > 1:
Case I: Zj = 1 for some j < i. In this case, just set
Zi to 0.
Case II(a): Zj = 0 for all j < i, and

∑i
`=1 z` ≥ 1.

In this case, just set Zi to 1.
Case II(b): Zj = 0 for all j < i, and

∑i
`=1 z` < 1. In

this case, set Zi = 1 with probability zi/(1−
∑i−1
j=1 zj),

and set Zi = 0 with the complementary probability.
It is clear that property (P1) of R holds. Let us

next prove property (P3). Assume that for some t,



∑t
i=1 zi ≥ 1 and

∑t−1
i=1 zi < 1. It suffices to prove that

Pr[∃i ≤ t : Zi = 1] = 1. Note that Pr[∃i ≤ t : Zi = 1]
is the sum of Pr[∃i < t : Zi = 1] and Pr[6 ∃i < t : Zi =
1] · Pr[(Zt = 1)

∣∣ (Z1 = Z2 = · · ·Zt−1 = 0)], which is
at least Pr[(Zt = 1)

∣∣ (Z1 = Z2 = · · ·Zt−1 = 0)], which
in turn equals 1 from case II(a). This proves property
(P3).

We next consider property (P2), which is immediate
for i = 1. If there is some t such that

∑t
i=1 zi ≥ 1, take

t to be the smallest such index; if there is no such t,
define t = k. The required bound of (P2), E[Zi] ≤ zi,
clearly holds for all i > t, since by (P3) and Case I, we
have E[Zi] = 0 for all such i. So suppose i ≤ t. We
have from case II(a) that for all j < t,

Pr[(Zj = 1)
∣∣ (Z1 = Z2 = · · ·Zj−1 = 0)]

equals
zj

1− (z1 + z2 + · · ·+ zj−1)
.

Note from Case I that no two Zj can both be 1. Thus,
for 1 < i ≤ t,

Pr[Zi = 1] = Pr[(Z1 = Z2 = · · ·Zi−1 = 0) ∧ (Zi = 1)]
= Pr[Z1 = Z2 = · · ·Zi−1 = 0] ·

Pr[(Zi = 1)
∣∣ (Z1 = Z2 = · · ·Zi−1 = 0)]

= (
i−1∏
j=1

(1− zj
1− (z1 + z2 + · · ·+ zj−1)

)) ·

Pr[(Zi = 1)
∣∣ (Z1 = Z2 = · · ·Zi−1 = 0)]

= (1− (z1 + z2 + · · ·+ zi−1)) ·
Pr[(Zi = 1)

∣∣ (Z1 = Z2 = · · ·Zi−1 = 0)].(2.2)

From Cases II(a) and II(b), Pr[(Zi = 1)
∣∣ (Z1 = Z2 =

· · ·Zi−1 = 0)] is 1 if i = t and z1 + z2 + · · · + zt ≥ 1,
and is

zi
1− (z1 + z2 + · · ·+ zi−1)

otherwise; in either case, we can verify from (2.2) that
Pr[Zi = 1] ≤ zi, proving (P2).

Similarly, for k-stage set cover with each element
of the universe contained in at most b of the given
sets, we construct z′(v) = (min{b · x∗v,1, 1},min{b ·
x∗v,2, 1}, . . . ,min{b · x∗v,k, 1}) and apply R. By the
same analysis as above, all elements are covered with
probability 1, and the expected objective function value
is at most b ·

∑
`,v cv,`x

∗
v,`.

Tail bounds: It is also easy to show using [20] that
in addition to its expectation being at most b times the
fractional value, cT ·y has a Chernoff-type upper bound
on deviations above its mean.

3 Facility Location Problems.

We consider two variants of facility location in this
section. We will consider just the case of 0−1 demands.
As usual, our algorithms directly generalize to the case
of arbitrary demands with no loss in approximation
guarantee. Also, as mentioned in § 1, we assume the
polynomial-scenario model w.l.o.g.

3.1 Minimizing expected cost. We study stochas-
tic uncapacitated facility location for k = 2 stages, and
develop a 2.369–approximation algorithm for minimiz-
ing the expected total cost. Let the set of facilities be
F , and the set of all possible clients be D. From the re-
sults of [24, 2, 32, 26], we may assume that we are given:
(i) m scenarios (indexed by A), each being a subset of
D, and (ii) an (1 + ε)-approximate solution (x, y) to the
following standard LP relaxation of the problem (as in
Theorem 2.1, ε can be made inverse-polynomially small,
and will henceforth be ignored):

minimize
∑
i∈F

f Ii yi+
∑
A

pA(
∑
i

fAi yA,i+
∑
j∈A

∑
i

cijxA,ij)

subject to:∑
i

xA,ij ≥ 1 ∀A ∀j ∈ A;(3.3)

xA,ij ≤ yi + yA,i ∀i ∀A ∀j ∈ A;(3.4)
xA,ij , yi, yA,i ≥ 0 ∀i ∀A ∀j ∈ A.

Here, f Ii and fAi are the costs of opening facility i in
stage I and in stage-II scenario A, respectively; cij is the
cost of connecting client j to i. Each given scenario A
materializes with probability pA. Variables yi and yA,i
are the extents to which facility i is opened in stage
I and in stage-II scenario A, respectively; xA,ij is the
extent to which j is connected to i in scenario A.

The idea is, as in [24], to satisfy some client-scenario
pairs (j, A) in Stage I; the rest will be handled in Stage
II. The crucial difference is that instead of a “determin-
istic thresholding” to choose such Stage-I pairs as in [24],
we will employ a carefully-chosen randomized threshold-
ing. As we will see, this randomized scheme also fits well
with a basic asymmetry in many known facility-location
algorithms (in our case, the ones in [14, 15]).

For all i, A, and j ∈ A such that xA,ij > 0, write
xA,ij = x

(1)
A,ij + x

(2)
A,ij , where

x
(1)
A,ij = xA,ij ·

yi
yi + yA,i

;

x
(2)
A,ij = xA,ij ·

yA,i
yi + yA,i

.

Extending this definition, if j ∈ A and xA,ij = 0, we
define x(1)

A,ij = x
(2)
A,ij = 0. Note from (3.4) that x(1)

A,ij ≤ yi



and x
(2)
A,ij ≤ yA,i. Let α ∈ (0, 1/2) be a constant that

will be chosen later. Pick a single random real Z using
the following distribution that is a mixture of continuous
and discrete:

• with probability α/(1− α), let Z := 1/2;

• with the complementary probability of (1−2α)/(1−
α), let Z be a random real chosen from the uniform
distribution on [α, 1− α].

The rounding for Stage I is as follows. For any pair
(j, A) with j ∈ A, define r(1)

A,j (the extent to which (j, A)
is satisfied in Stage I) to be

r
(1)
A,j =

∑
i

x
(1)
A,ij ;(3.5)

the pair (j, A) is declared selected iff

Z ≤ r(1)
A,j .(3.6)

For the Stage I decisions, construct a facility-location
instance I with each selected pair (j, A) having demand
pA and each facility i having cost f Ii , and solve it
using the approximation algorithm of [14, 15], which
is described in [17] and called the JMS Algorithm in
[17]. (The non-selected pairs are not considered in
the instance I.) In Stage II, we round separately for
each scenario A as follows. Construct a facility-location
instance IA with a unit-demand client for each j ∈ A
such that (j, A) was not selected in Stage I; each facility
i has cost fAi . Again use the JMS algorithm as described
in [17] to get an approximately optimal solution for IA.
Analysis: It is clear that in every scenario A, we
satisfy all of its demands. To analyze the expected
cost of this solution (with the only randomness being
in the choice of Z), we start by constructing feasible
fractional solutions for the facility-location instances I
and IA (for all A). Condition on a fixed value for Z.
Let us first construct a feasible fractional solution (x̂, ŷ)
for the stage-I instance I: ŷi = min{yi/Z, 1} for all i,
and x̂A,ij = x

(1)
A,ij/r

(1)
A,j for all selected (j, A) and all i.

This is feasible since r(1)
A,j ≥ Z. Thus, letting Sj,A be

the indicator variable for (j, A) being selected (which
is a function of Z) and recalling that each selected
(j, A) has demand pA in I, the total “facility cost” and
“connection cost” of (x̂, ŷ) are∑

i

yi
Z

and
∑
j,A

pA ·
Sj,A

r
(1)
A,j

·
∑
i

cijx
(1)
A,ij ,(3.7)

respectively. Next consider any scenario A, and let us
construct a feasible fractional solution (x′, y′) for IA.

Define r(2)
A,j =

∑
i x

(2)
A,ij . We may assume w.l.o.g. that

equality holds in (3.3); so, r(2)
A,j = 1 − r

(1)
A,j . Thus, a

necessary condition for (j, A) to not be selected in Stage
I is

(1− Z) ≤ r(2)
A,j .(3.8)

This is analogous to (3.6), with Z being replaced by
1−Z. Thus, we can argue similarly as we did for (x̂, ŷ)
that y′i = yA,i/(1 − Z), x′A,ij = x

(2)
A,ij/r

(2)
A,j for all (j, A)

not selected in Stage I, is a feasible fractional solution
for IA. Since all demands here are one, the total facility
cost and connection cost of (x′, y′) are∑

i

yA,i
1− Z

and
∑
j,A

1− Sj,A
r

(2)
A,j

·
∑
i

cijx
(2)
A,ij(3.9)

respectively.
Now, the key “asymmetry” property of the JMS

algorithm is, as proven in [17], that it is a (1.11, 1.78)-
bifactor approximation algorithm: given an instance for
which there is a fractional solution with facility cost F
and connection cost C, it produces an integral solution
of cost at most 1.11F + 1.78C. Therefore, from (3.7)
and (3.9), and weighting the latter by pA, we see that
given Z, the total final cost is at most 1.11 times[∑

i

(
yi
Z

+
∑
A

pA ·
yA,i

1− Z

)]

plus 1.78 times

∑
j,A

pA·

[(
Sj,A

r
(1)
A,j

·
∑
i

cijx
(1)
A,ij

)
+

(
1− Sj,A
r

(2)
A,j

·
∑
i

cijx
(2)
A,ij

)]
;

so, the expected final cost is at most the following sum
of three terms:

1.11 · [
∑
i(yi ·E[1/Z] +

∑
A pAyA,i ·E[1/(1− Z)])] +

1.78 ·
∑
j,A pA ·

E[Sj,A]

r
(1)
A,j

·
∑
i cijx

(1)
A,ij+

1.78 ·
∑
j,A pA ·

E[1−Sj,A]

r
(2)
A,j

·
∑
i cijx

(2)
A,ij .(3.10)

Since Z and 1− Z have identical distributions,

E[1/(1− Z)] = E[1/Z]
= (α/(1− α)) · 2 +

1− 2α
1− α

· 1
1− 2α

·
∫ 1−α

z=α

dz/z

=
2α+ ln((1− α)/α)

1− α
.(3.11)

Let us next bound E[Sj,A]. Recall (3.6), and let r denote
r

(1)
A,j . If r < α, then Sj,A = 0; if r ≥ 1 − α, then



Sj,A = 1. Next suppose α ≤ r < 1/2. Then Sj,A
can hold only if we chose to pick Z at random from
[α, 1−α], and got Z ≤ r; this happens with probability
((1−2α)/(1−α)) · (r−α)/(1−2α) = (r−α)/(1−α) ≤
r/(1− α). Finally, if 1/2 ≤ r < (1− α),

E[Sj,A] = α/(1− α) +
((1− 2α)/(1− α)) · (r − α)/(1− 2α)

= r/(1− α).

Thus, in all cases we saw here,

E[Sj,A] ≤ r(1)
A,j/(1− α).(3.12)

Similarly, recalling (3.8) and the fact that Z and 1− Z
have identical distributions, we get

E[1− Sj,A] ≤ r(2)
A,j/(1− α).(3.13)

Plugging (3.11), (3.12), and (3.13) into (3.10) and
using the fact that xA,ij = x

(1)
A,ij +x

(2)
A,ij , we see that our

expected approximation ratio is

max
{

1.78
1− α

,
1.11(2α+ ln((1− α)/α))

1− α

}
.

A good choice of α is 0.2485, leading to an expected
approximation ratio less than 2.369. Thus we get

Theorem 3.1. Two-stage stochastic facility location
can be approximated to within a certain value ρ, whose
expected value is at most 2.369.

3.2 Facility location with per-scenario bounds.
Consider again the 2-stage facility location problem, and
a corresponding optimal fractional solution. We now
describe a randomized rounding scheme so that for each
scenario A, its expected final (rounded) cost is at most
3.25 times its fractional counterpart V alA, improving
on the 3.378 · V alA bound of [31].

Our algorithm is essentially the same as that of Sec-
tions 2.4 and 4.3 in [31], with an improved analysis. As
in Section 2.4 of [31], we start with a randomized al-
gorithm for standard (non-stochastic) facility location,
and will then use it for stochastic facility location. So,
suppose we are given a facility location instance with
facilities F and clients D, as well as an optimal1 solu-
tion (x∗, y∗) to its standard LP relaxation: minimize
(
∑
i,j cijxij +

∑
i fiyi) subject to: (i) ∀j,

∑
i xij = 1;

(ii) ∀(i, j), xij ≤ yi; (iii) ∀(i, j), xij , yi ≥ 0. We con-
sider the randomized algorithm of [31] to round (x∗, y∗)

1Actually an (1 + ε)-approximation, but we will ignore this by

absorbing it into the approximation ratio.

to a pair (X,Y ); we will show

E[
∑
i

fiYi] ≤ 1.73 ·
∑
i

fiy
∗
i ; and(3.14)

∀j, E[
∑
i

cijXij ] ≤ 1.73 ·
∑
i

cijx
∗
ij .(3.15)

Let us present the algorithm of Section 2.4 of [31].
Let γ ∈ (0, 1) be a constant parameter to be chosen
later. By a natural “facility cloning” approach of [3, 29],
we first transform (x∗, y∗) into (x, y) such that:

(A1) ∀j,
∑
i cijxij =

∑
i cijx

∗
ij ;

(A2)
∑
i fiyi =

∑
i fiy

∗
i ;

(A3) ∀(i, j), xij > 0⇒ xij = yi;

(A4) ∀i, yi ≤ γ; and

(A5) Fix any j ∈ D. Let Fj = {i : xij > 0}
with |Fj | = m = m(j), and let πj be some fixed
permutation of Fj such that cπj(1)j ≤ cπj(2)j ≤
· · · ≤ cπj(m)j . Then there exists some v = v(j)
such that

∑v
i=1 xπj(i)j = γ.

(The above transformation makes copies of some
facilities, but we still refer to the new set of facilities as
F for simplicity.)

Notation. For any j, let v = v(j) be as in (A5). De-
fine Cj =

∑m
i=1 cijx

∗
ij , Cj(γ) =

∑v
i=1 cπj(i)jxπj(i)j/γ,

Rj(γ) = cπj(v)j , and Nj = {πj(1), πj(2), . . . , πj(v)}.
Order the clients j in non-decreasing order of Rj(γ).

Repeat the following step until no clients are left:
“choose the next remaining client j in our order, call j
clustered, and delete all remaining clients j′ (including
j) for which Nj′ ∩ Nj 6= ∅”. At the end, if j was not
declared clustered, we will call it “unclustered”. Recall
that Yi is the indicator random variable for opening
facility i. Independently for each clustered j, round
exactly one Yi, for i ∈ Nj , to one: for each i ∈ Nj ,
Pr[Yi = 1] = yi/γ. (This is possible since, by (A3)
and (A5),

∑
i∈Nj yi = γ.) For all remaining facilities

i – those that do not lie in Nj for any clustered j –
independently round them such that Pr[Yi = 1] = yi/γ.
We then connect each j to its closest open facility; this
final connection vector is denoted X = (Xij). The
following lemma is not hard to see:

Lemma 3.1. ([31]) E[
∑
i fiYi] =

∑
i fiy

∗
i /γ; also, for

all clustered j, E[
∑
i cijXij ] = Cj(γ) ≤ Cj.

As in [31], the interesting case is that of unclustered
j; our main result here is



Lemma 3.2. For all unclustered j, E[
∑
i cijXij ] is at

most

max
{

1
γ
,
e−1 + 2e−1/γ

1− γ
, 1 + 2e−1/γ

}
· Cj .

Proof. We provide a proof sketch. Fix any unclustered
j. If Rj(γ) = 0, it is easy to show that E[

∑
i cijXij ] =

0, so we will assume that Rj(γ) is positive. Recall
the definitions of Fj , m, and πj from (A5). Fix
an unclustered j, and renumber the facilities so that
πj(1) = 1, πj(2) = 2, . . . , πj(m) = m. For i =
1, 2, . . . ,m, let

qi = Pr[Yi = 1
∣∣ Y1 = Y2 = · · · = Yi−1 = 0].

Note that qi is not necessarily yi/γ: if k and i lie in
Nj′ for some clustered j′, then Yi and Yk are negatively
correlated. We will employ the following result of [31]:

E[
∑
i

cijXij ] ≤

(
m∑
i=1

cijqi
∏
k<i

(1− qk)

)
+(

m∏
k=1

(1− qk)

)
· 3Rj(γ).(3.16)

Our plan is to bound this term altogether, rather than
bounding the two summands separately as in [31].

Recall properties (A1)-(A5). Now, view v, Rj(γ),
and all the x∗ij , xij , yi etc. as fixed, with only the cij
being variables subject to

0 ≤ c1j ≤ · · · ≤ cvj = Rj(γ);
Rj(γ) ≤ c(v+1)j ≤ · · · ≤ cmj .

Then, we have from (3.16) that E[
∑
i cijXij ]/Cj =

E[
∑
i cijXij ]/

∑m
i=1 cijx

∗
ij is bounded by a rational func-

tion h of the cij with the denominator being non-
negative. Subject to the given constraints, it can be
shown that this function h is maximized when there ex-
ists an u (0 ≤ u ≤ m − 1) such that c1j = c2j = · · · =
cuj = 0, and c(u+1)j = c(u+2)j = · · · = cmj = Rj(γ).
This simplifies our calculations and lets us complete the
proof, using the definition of Rj(γ) and the negative cor-
relation among the random variables Yi. We will present
the complete proof of Lemma 3.2 in the full version of
this work.

Setting γ = 0.58, we get (3.14) and (3.15). Next,
we proceed as in Section 4.3 of [31] to use such a
result for non-stochastic facility location, for two-stage
stochastic facility location. Briefly, we start with the
LP-relaxation of § 3.1. Recall the definition of r(1)

A,j from

(3.5). All pairs (j, A) with r(1)
A,j ≥ 1.73/(1.73 + 1.52) are

declared selected in Stage I. For the Stage I decisions,
we construct the facility-location instance I described
immediately following (3.6), and solve it using our
non-stochastic facility location algorithm above. (In
contrast, the Stage-I problem is solved using the JMS
algorithm in § 3.1.) In Stage II, we round separately for
each scenario A as follows, just as in § 3.1. Construct a
facility-location instance IA with a unit-demand client
for each j ∈ A such that (j, A) was not selected in
Stage I; each facility i has cost fAi . Now use the JMS
algorithm as described in [17] to get an approximately
optimal solution for IA. Just as in [31], it is easy to show
that this new algorithm has a per-scenario expected
approximation ratio of 1.73 + 1.52 = 3.25.

Our discussion here is summarized by the following
theorem:

Theorem 3.2. There is a randomized polynomial-time
approximation algorithm A for two-stage stochastic fa-
cility location, with the following properties. A takes as
input an instance I of two-stage stochastic facility lo-
cation and any feasible solution S to the LP-relaxation
of I; A outputs a feasible solution for I in which the
expected cost of any scenario A is at most 3.25 times
the cost of A in S.
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