
Improved Algorithmic Versions of the Lovász Local Lemma∗

Aravind Srinivasan†

Abstract

The Lovász Local Lemma is a powerful tool in combinatorics

and computer science. The original version of the lemma

was nonconstructive, and efficient algorithmic versions have

been developed by Beck, Alon, Molloy & Reed, et al. In

particular, the work of Molloy & Reed lets us automatically

extract efficient versions of essentially any application of

the symmetric version of the Local Lemma. However, with

some exceptions, there is a significant gap between what one

can prove using the original Lemma nonconstructively, and

what is possible through these efficient versions; also, some

of these algorithmic versions run in super-polynomial time.

Here, we lessen this gap, and improve the running time of

all these applications (which cover all applications in the

Molloy & Reed framework) to polynomial. We also improve

upon the parallel algorithmic version of the Local Lemma

for hypergraph coloring due to Alon, by allowing noticeably

more overlap among the edges.

1 Introduction

The Lovász Local Lemma (“LLL”) is a powerful tool
for proving the existence of discrete structures [9]; see,
e.g., [3] for several such applications. Breakthroughs in
the last two decades have led to efficient algorithms for
constructing many families of such structures that are
guaranteed to exist by the LLL [4, 2, 12, 13]. In this
work, we present further-improved algorithmic versions
of the LLL.

Notation. Let e denote the base of the natural
logarithm, and [h] denote the set {1, 2, . . . , h}. Let lg x
denote the logarithm to the base 2, and lnx denote the
logarithm to the base e.

We start by describing the basic “symmetric” ver-
sion of the LLL, which provides a sufficient condition
for simultaneously avoiding a collection of “bad” events
E1, E2, . . . , Em:

∗Supported in part by NSF ITR Award CNS-0426683 and NSF
Award CNS-0626964.

†Dept. of Computer Science and Institute for Advanced Com-
puter Studies, University of Maryland, College Park, MD 20742.
Part of this work was done while on sabbatical at the Network Dy-
namics and Simulation Science Laboratory of the Virginia Bioin-
formatics Institute, Virginia Tech. srin@cs.umd.edu.

Theorem 1.1. (LLL, Symmetric Version [9]) Let
E1, E2, . . . , Em be events with maxi Pr[Ei] ≤ p. If
there exists D ≥ 1 such that each Ei is mutually
independent of all but at most D of the other events
Ej and (1+1/D)D · p · (D+1) ≤ 1, then Pr[

∧m
i=1Ei] ≥∏m

i=1(1−e·Pr[Ei]) > 0. In particular, if e·p·(D+1) ≤ 1,
then Pr[

∧m
i=1Ei] ≥

∏m
i=1(1− e · Pr[Ei]) > 0.

Remark 1.1. Although “e · p · (D + 1) ≤ 1” is the
usual way in which the sufficient condition is stated,
it is easy to check, using the standard proof of the
LLL’s symmetric version that employs the more-general
asymmetric verson, that the condition (1 + 1/D)D · p ·
(D+1) ≤ 1 also suffices. We use the latter since it helps
improve some of our constants. Also, the actual value
of the positive probability guaranteed by the LLL is often
not used; even when used, it is typically taken to be the
lower-bound (1− ep)m on

∏m
i=1(1− e ·Pr[Ei]). The fact

that the LLL gives the probability
∏m

i=1(1 − e · Pr[Ei])
will be very useful for us.

As observed in [12, 13], most applications of the
LLL can be modeled as set-systems, whose ground-
set corresponds to a collection of independent random
variables X1, X2, . . . , Xn, and whose sets Si dictate the
subsets of the Xj on which the events Ei depend:

Definition 1.1. (Set-system model for applica-
tions of the LLL) In such a model, we have: (i) in-
dependent random variables X1, X2, . . . , Xn, (ii) a col-
lection of subsets {Si ⊆ [n] : i = 1, 2, . . . ,m}, and
(iii) a collection of (“bad”) events E1, E2, . . . , Em such
that each Ei is completely defined by the random vari-
ables (Xj : j ∈ Si). Let D denote the maximum num-
ber of other Sj with which any Si intersects, and let
p = maxi Pr[Ei].

Consider a given set-system model, and suppose
D ≥ 1 (the case D = 0 is trivial). Since the Xj

are mutually independent, the LLL implies that if
(1 + 1/D)D · p · (D + 1) ≤ 1, then Pr[

∧
iEi] > 0. As

mentioned above, such set-systems conveniently model
most applications of the LLL. A prototypical example is
hypergraph two-coloring: given a k-uniform hypergraph
(V,E) for k ≥ 2, i.e., a hypergraph with V = [n] and
subsets {Si ⊆ [n] : i = 1, 2, . . . ,m} with |Si| = k

for each i, when can we guarantee that V can be
two-colored so that each Si is bichromatic? It is a
simple exercise for the reader to consider randomly and
independently coloring the elements of [n] Red and Blue,
writing down the corresponding set-system model, and
concluding from the LLL that if D is the “maximum
overlap” of this system (i.e., each Si intersects at most
D other Sj) with D ≤ 2k/(2e)−1, then the hypergraph
is indeed two-colorable.1 This example illustrates one
extreme, where the maximum support-size γ of the Xj ’s
is “small”, i.e., just 2. At the other extreme, one
can consider very large γ (say, (n + m)Ω(1)). The set-
system model can be considered an abstract “constraint
satisfaction” problem where we need to set the variables
Xj (whose domains may have some large cardinality γ)
so that all the m constraints Ei are satisfied.

In order to motivate our results, we start by pre-
senting the work of [12, 13].

The results of [12, 13]. Let C0, C1, . . . denote certain
constants. Thus, “pD ≤ C0” is a sufficient condition for
a set-system model to have some feasible solution. How
to construct such a feasible solution efficiently, ideally in
(randomized) time poly(n,m)? Molloy & Reed came up
with an algorithmic approach for this problem [12, 13].
Suppose:

(a) each Xi has support-size at most γ, and each Si

has |Si| ≤ ω;

(b) pD9 ≤ C1;

(c) each Xj can be generated from its distribution in
poly(n+m) time; and

(d) given values for all the Xj , the truth value of each
Ei can be determined in poly(n+m) time.

Then, there is an algorithm running in time
poly(γwD log log m +n+m), which sets values for the Xj

in a manner that avoids all the Ei [12, 13]. We make
four remarks about this result:

(R1) By a simple optimization of the parameters of
[12, 13], we can improve (i.e., weaken) requirement
(b) to “pD7 ≤ C2”.

(R2) An approach of [2, 12, 13] shows that the running
time of poly(γwD log log m + n+m) can be reduced
to poly(n+m) if γ and ω are bounded by poly(D).

(R3) The algorithms of [12, 13] and of the present pa-
per appear at first to also require certain condi-
tional probabilities to be efficiently evaluable. How-
ever, as mentioned in Remark 2.2, these values can

1It is also known that D ≤ c′
√

k/ ln k · 2k suffices, for some
constant c′ > 0 [15].

be approximated sufficiently well (by sampling) for
the algorithms to work, as long as the running-time
bounds (c) and (d) above hold.

(R4) For certain problems (e.g., coloring k-uniform
hypergraphs with constant k, and with a number of
colors that is a function of the maximum degree of
the hypergraph), a clever approach of [12, 13] shows
that “pD ≤ C3” suffices; however, most known
applications using the approach of [12, 13] indeed
need “pD9 ≤ C1” – more precisely, its improvement
“pD7 ≤ C2” pointed out in (R1) above. Also
see [7, 8, 16] for algorithmic versions of certain
weighted versions of the LLL.

We will pay a good deal of attention to the efficient
2-colorability of k-uniform hypergraphs, so let us sum-
marize its status. It follows from (R1) above that we
can efficiently 2-color such hypergraphs if D ≤ C42k/7;
this is the best known prior to our work. Thus, the
goal here is to get close to “D ≤ O(2k)” algorithmi-
cally. Motivated by this problem, the works [5, 6] con-
sider an important special class of the k-uniform hyper-
graphs – the almost-disjoint or linear hypergraphs in
which no two distinct edges intersect at more than one
vertex – and allow D to be up to certain values of the
form 2(1−o(1))k. In terms of parallel algorithms, there is
an NC algorithm for 2-coloring k-uniform hypergraphs
whenD ≤ 2k/500 [2]. We present our contributions next.

(i) Better upper-bound on D, polynomial-time
for all (γ, ω,D). Let c0 < 1/(8e) be any positive
constant. Given any set-system model for the LLL that
satisfies pD4 ≤ c0 as well as the standard run-time
assumptions (c) and (d) above, we present a randomized
poly(n + m)-time algorithm to construct {Xj} that
avoid all the Ei. Thus, we improve on both (R1) and
(R2): we replace “pD7” by “pD4”, and also make the
running-time polynomial irrespective of the values of
γ, ω, and D. (In particular, γ could be exp(n +m) or
even unbounded as in the case of continuous-valuedXj .)
For hypergraph 2-coloring, we improve the sufficient
condition to D ≤ 0.38 · 2k/4. Again, we find it useful
that our running-time is polynomial for all (γ, ω,D).

(ii) Hypergraph coloring in parallel. Recall there
is an NC algorithm for hypergraph 2-coloring, if D ≤
2k/500 (Alon [2]). While Alon did not attempt to
optimize the constant “500” and it can certainly be
improved, the approach of [2] will lead to a constant
that is several tens. We improve this constant to 10.34.
More precisely, let H(x) = −x lg x− (1−x) lg(1−x) be
the usual binary entropy function, defined for x ∈ (0, 1);
H(0) and H(1) are zero. Define c∗ ∼ 1/10.331 to be the
unique solution of the equation 3x + H(2x) = 1. We

prove that for any constant δ > 0, there is a constant
c1 = c1(δ) > 0 such that D ≤ c1 · 2k(c∗−δ) suffices.

Three ideas underlie our results. First, we make use
of the explicit lower-bound

∏m
i=1(1 − e · Pr[Ei]) that

the LLL places on the probability of avoiding all the
events Ei. While this value is typically too low when
we start, we use it fruitfully after running the first
phase of [12, 13]. Second, a fundamental idea used
in [4, 2, 12, 13] is that of constructing certain 2-3
trees to show that after an initial phase, the residual
problem decomposes into “small” components that can
be handled independently of each other. In order
to obtain our improvements, we augment these trees
with certain additional nodes, which turns out to be
crucial. This augmentation is much more involved
in our parallel hypergraph-coloring as compared to
our sequential improvement over [12, 13]. Our third
contribution is this augmentation approach for parallel
hypergraph-coloring. In particular, Lemma 3.1 shows
that any vertex-weighted graph has an independent set
I such that: (i) the total weight of I is “large”, and
(ii) the average weight of the vertices in I is almost as
large as that of the vertices of the graph (set ε → 0 in
Lemma 3.1, so that 1 − ε/2 → 1). It is critical for our
results that the former be tunable to within any desired
factor smaller than one (such as our “1 − ε/2” term),
of the latter. To our knowledge, standard schemes such
as probabilistic ones, can get the former only to within
(1 − Ω(1)) of the latter, especially when d is very close
to N and/or when the values vi are disparate.

The next two sections describe our two main results.
We conclude in Section 4.

2 The improved sequential version

We now present our improved sequential algorithm for
set-system models of LLL applications. Our main
theorem here is Theorem 2.1. A previous version of this
paper had the stronger requirement in condition (P1) of
the theorem – that pD4 ≤ c0, where c0 is any constant
strictly smaller than 1/(8e). We have now included
the better (i.e., weaker) but more-complicated-looking
“pD4 ≤ (1 − ε) · (2e(1 + 1/D)D+1)−1” in (P1) in order
to get slightly-better constants in typical applications
where D is “large” – note that (1 + 1/D)D+1 decreases
from the value 4 at D = 1, to an asymptotic value of e.
See also Remark 2.1.

Theorem 2.1. Let ε be any constant in (0, 1). Sup-
pose we have a collection of events E1, E2, . . . , Em con-
forming to Definition 1.1, such that the following three
conditions hold:

(P1) pD4 ≤ (1− ε) · (2e(1 + 1/D)D+1)−1;

(P2) each Xj can be generated from its distribution in
poly(n+m) time; and

(P3) given values for all the Xj, the truth value of each
Ei can be determined in poly(n+m) time.

Then, there is a randomized poly(n+m)-time algorithm
that with high probability sets values for the Xj in a
manner that avoids all the Ei; the exponent in the
running time depends on ε.

Remark 2.1. Since (1+1/D)D+1 is a decreasing func-
tion of D starting from D = 1, we can take (P1) to be
“pD4 ≤ c0, where c0 is some constant strictly smaller
than 1/(8e)”. In fact, it is left as an easy exercise for
the reader that as long as p is smaller than and bounded
away from 1/2, there is a simple and efficient algorith-
mic version for the case D = 1. Thus, we may assume
that D ≥ 2, in which case a sufficient condition for (P1)
to hold is that “pD4 ≤ c0, where c0 is some constant
strictly smaller than 4/(27e)”.

We now present the algorithm and its proof of
correctness. Define

c0 = c0(ε,D) .= (1− ε) · (2e(1 + 1/D)D+1)−1.

Although ε is viewed as a fixed constant but D is not,
we can still essentially take c0 to be a constant, since it
lies between 1−ε

8e and 1
2e2 . Also define

K0
.= ((1 + 1/D)D+1 · c1/4

0)−1.(2.1)

Thus we have from (P1) that

(1 + 1/D)D ·K0p
1/4 · (D + 1) ≤ 1.(2.2)

Note that K0 is also lower- and upper-bounded by
constants that depend only on ε.

Our algorithm has two phases discussed next; the
complete algorithm is summarized in § 2.3.

2.1 Phase I We proceed as in the first phase of
[12, 13]. Initially, all of the Xj are unfrozen. We
process the Xj in the order X1, X2, . . . , Xn. When we
come to Xj , if it is frozen now, we skip over it (i.e.,
do nothing and go to the next iteration, wherein we
will process Xj+1). Suppose Xj is not frozen now.
Then, we generate a random value, say vj , for Xj from
Xj ’s distribution. Let Aj denote the assignment of all
values to the variables among {X1, X2, . . . , Xj} that are
currently unfrozen. We check, for each Ei that depends
on Xj , whether Pr[Ei

∣∣ Aj] ≤ K0p
1/4 or not. (In the

calculation of this conditional probability, all variables
not included in Aj are viewed as yet-unassigned, and in

particular as mutually independent of the assignment
Aj .) If any such Ei has

Pr[Ei

∣∣ Aj] ≥ K0p
1/4,(2.3)

we label each such Ei “bad”, and freeze all yet-
unassigned variables in each such Ei, and also freeze
Xj . Thus, we “undo” the assignment vj we made for
Xj ; so, the assignment Aj now has Xj removed from
it. A moment’s reflection shows that since Xj was not
frozen when we came to consider it, we have ensured the
property “Pr[Ei

∣∣ Aj] < K0p
1/4 for all i”, by conducting

such a freezing.

Remark 2.2. It appears at first sight from the test
(2.3), that we will need to be able to compute condi-
tional probabilities such as Pr[Ei

∣∣ Aj]. However, we
only need to estimate such terms to within (1 ± ψ) for
some sufficiently-small constant ψ > 0, say; further-
more, the target of comparison “K0p

1/4” in (2.3) is
at least inverse-polynomial, Ω(m−1/4), without loss of
generality. Hence, approximate versions of tests such
as (2.3) can be done in polynomial time by sampling
multiple times (i.e., by randomly generating the vari-
ables not assigned by Aj). We will present the details
of this simple scheme in the full version, and establish
that conditions (P1), (P2) and (P3) are indeed suffi-
cient. We assume here for convenience that terms such
as Pr[Ei

∣∣ Aj] can be computed efficiently.

Thus, at the end of n steps, we arrive at a partial
assignment A = An of the variables. All notions of
being frozen will from now on be w.r.t. A.

2.2 Phase II Before giving the basic idea of the
algorithm of Phase II, we start with a definition of
“weight”, and of an intersection-graph G.

Definition 2.1. (Weights wi) For all i ∈ [m], the
weight wi is Pr[Ei

∣∣ A].

Importantly, our freezing process ensures that

∀i ∈ [m], wi < K0p
1/4.(2.4)

Let F = {j : Xj is frozen}. The already-set variables
will not be changed; our goal is to assign values to the
frozen variables so that all the Ei are avoided. Let us
formalize the remaining problem.

Define R = {i ∈ [m] : ∃j ∈
Si such that Xj is frozen}. Note that for any Ei

such that i 6∈ R, its truth-value is completely deter-
mined now (since all Xj on which Ei depends, have
been fixed); thus, wi = 0 or 1 for such an i. We have
from (2.4) and (2.2) that wi < K0p

1/4 < 1, so since

wi ∈ {0, 1}, wi = 0. Thus, we do not have to worry
about those Ei for which i 6∈ R. Define a set B ⊆ [m]
by setting i ∈ B iff Ei was declared “bad” at some
point; note that B ⊆ R. (B denotes “bad” and R
denotes “remaining”.) Construct an intersection-graph
G on vertex-set R as follows:

• first put an edge between distinct vertices i, j ∈ R
iff (Si ∩ F) ∩ (Sj ∩ F) 6= ∅. That is, i and j are
made adjacent if the restrictions of Si and Sj to F ,
intersect each other;

• next, within each connected component of G, add
an edge between distinct i and j if Si ∩ Sj 6= ∅ (if
they were not already adjacent); we emphasize that
no edges are added between different connected
components here.

Algorithm: basic idea. Since the Xj ’s are all in-
dependent, it is easy to see that all connected compo-
nents in G can be handled separately. Consider any
one such component C. By an abuse of notation, we
will use “i ∈ C” to mean “i lies in the vertex-set of
C”. The basic algorithmic idea is to generate all Xj

such that j ∈ F ∩ (
⋃

i∈C Si) independently from their
distributions. We next develop an analysis of this al-
gorithm (specifically, what happens when we repeat it
sufficiently many times), a key part of which is Theo-
rem 2.2.

It is still true that the “dependency” among the
events in C is at most D; it is also apparent from (2.4)
and (2.2) that for any Ei such that i ∈ C,

(1 + 1/D)D · Pr[Ei

∣∣ A] · (D + 1) ≤ 1.

So, we have from Theorem 1.1 that with positive prob-
ability, all events Ei such that i ∈ C will be avoided,
by the basic algorithm of the previous paragraph. How-
ever, we can go further, and make use of the explicit
probability-lower-bound given by Theorem 1.1: the
probability that all bad events in C are avoided is at
least ∏

i∈C
(1− e · wi) ≥ exp(−

∑
i∈C

2e · wi),(2.5)

where exp(x) denotes ex. The inequality here follows
from basic calculus since, by (2.4) and (2.2), wi ≤ 1/4
for all i ∈ C. (That is, we are using the fact that
1 − x ≥ exp(−2x) for x ∈ [0, e/4].) Define w(C) =∑

i∈C wi. Thus, our goal will be to show that for a
constant K = K(ε), we have with high probability that
for all components C of G, w(C) ≤ K lnm. In this case,
(2.5) guarantees that each C has at least an inverse-
polynomial (i.e., m−2eK) probability of success, which
can be boosted appropriately by repeating polynomially

many times; and, as mentioned above, the different
components can be dealt with separately. Directly
employing (2.5) and upper-bounding the total weight of
any component, is the first key to our improved results.

Thus, proving Theorem 2.2 will help complete the
proof of Theorem 2.1 as seen a few lines above; we will
also set the value of K0 during the course of proving
Theorem 2.2.

Theorem 2.2. There is an explicitly-computable con-
stant K = K(ε) such that with high probability, w(C) ≤
K lnm holds simultaneously for all components C of G.

Proof. As witnesses for some component C having large
weight, we will construct 2-3 trees as in [4, 2, 12, 13], but
will critically augment these with certain other nodes.

Let BC denote the set of vertices of C that lie in B,
and let BC denote all the other vertices in C. Given C,
we will construct a tree T ′ whose vertices are a subset
of those of C. First, let T be a maximal 2-3 tree for C
as defined in [4, 2, 12, 13]. That is: (i) each vertex of
T lies in BC ; (ii) the distance between any two of these
vertices in G is at least two, and (iii) if we connect
each pair of these vertices whose distance in G is either
two or three, we get a connected graph. Further, this
structure is maximal in the sense that no further vertex
from BC can be added to it while preserving these three
properties. T is obtained by arbitrarily deleting edges
in cycles from this connected graph, to obtain a tree.

We now augment T with some vertices from BC , in
order to obtain T ′. Given a vertex i ∈ BC , call i “heavy”
if wi ≥ 4c0/D2, and “light” otherwise. Let S denote the
set of heavy vertices that are not adjacent in C to any
node of T , and let ` = |S|. Since the maximum degree of
C is at most D, there exists some independent set of the
heavy vertices, with cardinality d`/(D+ 1)e; call this I.
A moment’s reflection about out freezing process shows
that every vertex of BC is adjacent to some vertex of
BC in C. As proved in [4], this property can be used to
show that since T is a maximal 2-3 tree, every vertex
in BC that does not lie in T , has some neighbor in T .
Next, these two properties together imply:

Proposition 2.1. Every vertex i ∈ S is at distance
two from some vertex h(i) in T .

Augment T with the vertices I and edges {(i, h(i)) : i ∈
I}. This yields T ′.

We first count the number of ways in which we can
construct T ′ from the given set-system, and then bound
its probability. Fix t, the number of nodes in T , and
r = d`/(D + 1)e. It is known that choosing the shape,
root, and remaining nodes of T can be done in at most
m · (eD3)t ways: see, e.g., the proof of Lemma 2.1 in
[2]. Fix a choice for T . Next, let us choose how many

augmenting edges of the form (i, h(i)) we will add to
each node of T . A standard combinatorial argument
shows that the number of ways of making this choice is(
t+r−1

t−1

)
≤ 2t+r. Finally, given this sequence of numbers,

the actual choice of added nodes can be done in (D2)r

ways: an added edge to some u ∈ T can be selected in at
most D2 ways, since the dependency graph has degree
at most D, and from Proposition 2.1. Thus, the total
number of ways of constructing (T, T ′) with parameters
t and r = d`/(D + 1)e, is at most

m · (2eD3)t · (2D2)r.(2.6)

Note that this is a “global” count, given by the original
collection of events E1, E2, . . . , Em, and is not derived
from some particular choice of C.

Next, given such a choice of (T, T ′), we will bound
its probability of appearance. The inequality Pr[U

∣∣
V] ≤ Pr[U]/Pr[V] has two consequences: (i) for all
i, Pr[i ∈ B] is at most p/(K0p

1/4) = p3/4/K0, and
similarly (ii) for all i, the probability that i is heavy is
at most p/(4c0/D2) ≤ 1/(4D2), where the inequality
follows from (P1). We note that by construction,
all events Ei corresponding to the nodes i in T ′ are
mutually independent. Thus, our bounds (i) and (ii)
here show that the probability of a given pair (T, T ′)
emerging, is at most (p3/4/K0)t · (4D2)−r. Combining
with (2.6) and simplifying, we get from a union bound
that Pr[∃ (T, T ′) with parameters (t, `)] is at most

m · (2eD3p3/4/K0)t · (1/2)`/(D+1) ≤
m · (2ec3/4

0 /K0)t · (1/2)`/(D+1) =

m · (2e(1 + 1/D)D+1c0)t · (1/2)`/(D+1) ≤
m · (1− ε)t · (1/2)`/(D+1).(2.7)

Now let us derive some necessary conditions on t
and ` in order for some component C to have “large”
total weight. Recall from (2.4) and (2.2) that wi ≤
((1+1/D)D ·(D+1))−1 for all i with probability one, and
hence in particular that wi ≤ 1/(2(D+1)). Given (t, `),
how large a weight can C have? Since the maximum
degree in C is at most D (with probability one), the
total weight of the nodes in T and their adjacent nodes,
is at most t(D + 1) · ((1 + 1/D)D · (D + 1))−1 ≤ t/2.
Our discussion above (e.g., the argument that led to
Proposition 2.1) shows that all nodes of C that are not
adjacent to T , are at distance at most two from T ;
further, all of these lie in BC . These nodes are either
heavy or light. The light nodes are at most tD2 in
number, and thus contribute a total weight of at most
tD2 · (4c0/D2) = 4c0t. Each heavy node has weight at
most 1/(2(D + 1)), and so the total weight of these is
at most `/(2(D + 1)). Thus, w(C) ≤ t(1/2 + 4c0) +

`/(2(D + 1)) ≤ tλ+ `/(2(D + 1)), where λ denotes the
constant 1/2 + 2/e2.

Thus, a necessary condition for w(C) > K lnm to
hold is that (t, `) lies in the set

U
.= {(t, `) : tλ+ `/(2(D + 1)) ≥ K lnm}.

Let α = α(ε) be given by (1 − ε)1/λ; note that for any
fixed ε ∈ (0, 1), α also lies in (0, 1). Therefore, bound
(2.7) shows that Pr[∃ comp. C with w(C) > K lnm] is
at most

m ·
∑

(t,`): (t,`)∈U

(1− ε)t · (1/2)`/(D+1) =

m ·
∑

(t,`): (t,`)∈U

αtλ · (1/4)`/(2(D+1)) ≤

m ·
∑

(t,`): (t,`)∈U

(max{α, 1/4})tλ+`/(2(D+1)).(2.8)

For any i ≥ K lnm, there are at most O(i) pairs (t, `)
lying in U that satisfy tλ+ `/(2(D + 1)) = i. So, (2.8)
gives that Pr[∃ comp. C with w(C) > K lnm] is at most

m ·
∑

i≥K ln m

O(i) · (max{α, 1/4})i;

we can take K = K(ε) large enough so that this bound
is at most 1/3.

Thus, with probability at least 2/3, all components
will have weight at most K lnm. This probability can
be amplified by repetition.

2.3 Algorithm summary Thus, the complete algo-
rithm has two basic phases:

1. Repeat Phase I – i.e., generate the partial assignment
A = An – until all the components C defined by A have
w(C) ≤ K lnm.

2. For each component C separately: repeat

generate all Xj such that j ∈ F ∩ (
⋃

i∈C Si)
independently

until no Ei such that i ∈ C is true.

As discussed above, the expected running-time is
poly(n,m).

An additional sample improvement follows from
the work of [10]: given any undirected graph with δ
and ∆ denoting its minimum and maximum degrees
respectively, we can efficiently construct a domatic
partition for it (see [10]) with at least (1/4−o(1))δ/ ln∆
blocks in the partition, where the “o(1)” term is a
function of ∆ that tends to zero as ∆ →∞.

3 Hypergraph-coloring in parallel

Recall that c∗ ∼ 1/10.331 is the unique solution of the
equation 3x + H(2x) = 1. We are given a k-uniform
hypergraph (V,E) with V = [n], E = {S1, S2, . . . , Sm},
and overlap at most D = c1 · 2kc, where c1 = c1(δ) and
c = c∗−δ for some positive constant δ. We now present
an RNC algorithm to two-color H if the positive value
c1(δ) is small enough.

We can make the following assumptions w.l.o.g.:
c1 ≤ 1/8, k ≥ 3/c, and D ≥ 2. We will choose c1(δ)
small enough (and at most 1/8). Now if k < 3/c or
D < 2, then D < 2, which means that the overlap
among the Si is at most one, in which case it is easy to
2-color H in NC; so we may assume that k ≥ 3/c and
D ≥ 2.

The following combinatorial lemma will be useful:

Lemma 3.1. Suppose we are given a graph with vertex-
set N of cardinality N , maximum degree at most d, and
with a value vi ≥ 0 for each vertex i. Then, for any
parameter ε ∈ (0, 1], the graph has an independent set
I of cardinality at most dNε/de such that

∑
i∈I vi ≥

ε(1− ε/2) · (
∑

i∈N vi)/d.

Proof. We employ an approach of [17] to generate a
random bit Xi for each vertex i of N such that:

(i) Pr[Xi = 1] = ε/d for each i;

(ii) With probability one,
∑

iXi lies in
{bNε/dc, dNε/de}; and

(iii) theXi are negatively correlated with each other: in
particular, for any distinct i and j, Pr[Xi = Xj =
1] ≤ (ε/d)2.

(Such a distribution can also be obtained as a convex
combination of two hypergeometric distributions.) See
[1, 11] for related ideas. In addition, following [14], we
generate a random permutation π of the vertices, and
let Yuv be the indicator random variable for vertex u
appearing before vertex v in π.

We construct an independent set by the following
alteration process:

(a) tentatively select each i with Xi = 1; and

(b) unselect each such selected i for which some neigh-
bor j that precedes i in π was also selected in step
(a).

Clearly, the finally-selected vertices constitute an inde-
pendent set I, and it easily follows from property (ii)
above that |I| ≤ dNε/de with probability one (note that
while we may unselect some selected vertices, we do not
add any further to the set of selected vertices). Next, let

Zi be the indicator random variable for i finally getting
selected, and let Γi denote the set of neighbors of i. We
have

E[Zi] ≥ E[Xi]−
∑
j∈Γi

E[Yji] ·E[XiXj]

≥ ε/d−
∑
j∈Γi

(1/2) · (ε/d)2

≥ ε(1− ε/2)/d,

where the second inequality follows from (iii). Thus
we have that the expected total value of I is at least
ε(1− ε/2) · (

∑
i∈N vi)/d. Since the bound |I| ≤ dNε/de

holds with probability one, we are done.

Choice of constants. We will pick five positive
constants in the following order (thus, each choice may
depend on the choices made already): a sufficiently-
large absolute constant K1, a sufficiently small ε = ε(δ),
a sufficiently small c1 = c1(δ) (our main constant), a
sufficiently large K2 = K2(δ), and a sufficiently large
K3 = K3(δ).

Our RNC algorithm conceptually consists of two
phases, and is as follows.

Phase I. This phase is basically the same as in [2], but
with a different choice of a constant. Color the vertices
Red or Blue uniformly at random and independently.
Call i ∈ [m] bad if at most ck of Si’s vertices are of
any one color (Red or Blue). Freeze (i.e., uncolor) all
vertices in all Si for which i is bad. Let A denote
this partial coloring, and let F denote the set of frozen
vertices.

Phase II. The already-colored vertices will not be
recolored; we will now color the vertices in F . The
algorithm will basically be a parallelization of that
of Phase II of § 2; the analysis will be substantially
different. Given the coloring A from Phase I, we define
the weights wi just as in Definition 2.1, where Ei is
the bad event that edge Si becomes monochromatic (if
all vertices in F get colored randomly). Call i ∈ [m]
dangerous iff:

(Q1) all of Si’s already-colored vertices (if any) have
the same color, and

(Q2) Si has at least ck frozen vertices.

Condition (Q2) is as in [2]; Condition (Q1) is an
addition that will be crucial to our analysis. Note that
if i is bad, then it is also dangerous. Also, the reader
can verify that if i is not dangerous, then Si will remain
bichromatic under any coloring of F . Thus, we need
only focus on the dangerous i. Analogously to § 2, let

R be the set of dangerous i, and define a graph G with
vertex-set R just as in § 2. Consider any component C
of G. It is easy to check the following two inequalities:

∀i ∈ C, wi ≤ max{2−kc, 21−k} = 2−kc;(3.9)
e · 2−kc · (D + 1) ≤ 1,(3.10)

where (3.10) holds since c1 ≤ 1/8 and k ≥ 3/c. Thus,
by Theorem 1.1, there exists some way of coloring the
frozen vertices corresponding to C, so that all edges
corresponding to C become two-colored. Our key result
will be, just as in Theorem 2.2, that all components C
of G simultaneously have weight at most K3 lnm with
high probability; hence, (2.5) helps show that each C has
a probability at least m−2eK3 of becoming successful in
one random coloring of F in Phase II.

Overall algorithm. The algorithm is a natural par-
allelization of that of § 2.3. We repeat Phase I in par-
allel until all components have weight at most K3 lnm.
Then, we handle each component C in parallel, and ran-
domly color its frozen vertices separately m2eK3 ln(2m)
times in parallel; if there is some C on which none of
these m2eK3 ln(2m) independent attempts was success-
ful, we again handle all such unsuccessful components.
The expected running time is polylogarithmic, and the
number of processors needed is polynomial.

Analysis. We now show that for an appropriate
choice of (K1, ε, c1,K2,K3), all components resulting
from Phase I have weight at most K3 lnm, with high
probability. Let B be the set of bad indices. Given
a component C, we define the 2-3 tree T (with some t
nodes) just as in § 2. For all i,

Pr[i ∈ B] = 2 ·
∑
j≤kc

(
k

j

)
2−k ≤ p0

.= 2 · 2−k(1−H(c)).

By the argument of § 2, we have the following proposi-
tion:

Proposition 3.1. Let t denote the size of a possible 2-
3 tree T . Then, (a) the number of choices for T is at
most m · (eD3)t, and (b) the probability that a specific
T0 of size t becomes a 2-3 tree is at most pt

0.

Note that if there is a 2-3 tree of size t2, then there is
also one of any size t1 ≤ t2. Thus, there is an absolute
constant K1 such that the probability of existence of
some 2-3 tree of size more than K1(lnm)/k, is at most

m · (2ec312−k(1−H(c)−3c))dK1(ln m)/ke ≤ 1/m;(3.11)

the inequality follows from the fact that 1−H(c)−3c is
lower-bounded by the positive constant H(2c∗)−H(c∗)

for c ≤ c∗ (recall that c∗ is the unique solution of the
equation 3x + H(2x) = 1, and note that the function
x 7→ 3x+H(x) increases for x ≤ c∗).

Thus, we need only focus on the case t ≤
K1(lnm)/k. Fix such a t, and a 2-3 tree T of size t.
Let us bound w(C). The weight of T and its neigh-
boring nodes in C is, by (3.9) and (3.10), at most
t(D + 1)2−kc ≤ t/e. As in § 2, the set of other nodes
S0 in C has all its elements at distance 2 from T . We
now use much more care in partitioning S0 into “heavy”
and “light” nodes. Let j0 be the largest integer such
that 2−j0 ≥ 1/(e(D + 1)), and j1 be the largest integer
such that 2−j1−1 ≥ 1/(5D2). Since D ≥ 2, we have
1/(2.5D2) ≤ 1/(e(D + 1)), and so j0 ≤ j1. For integers
j ∈ [j0, j1], let fj denote the interval (2−j−1, 2−j]; also
define fj1+1 = [0, 2−j1−1]. For integers j ∈ [j0, j1 + 1],
let Fj = {i ∈ S0 : wi ∈ fj}. It follows from (3.9) and
(3.10) that these sets Fj partition S0. We declare i ∈ S0

to be “light” if i ∈ Fj1+1, or if (i ∈ Fj for j ≤ j1, and
|Fj | ≤ t2j+1). All other elements of S0 define the set
S of heavy elements. Now, since |S0| ≤ tD2, the total
weight of the elements in Fj1+1 is at most 2t; and more
importantly, the definition of “light” and the fact that
the number of integers in [j0, j1] is at most lgD+O(1),
imply that the total weight of the remaining light el-
ements is at most 2t(lgD + O(1)), which is at most
2.5K1 lnm for large enough K1, since t ≤ K1(lnm)/k.
And since T and its neighbors add at most t/e weight
as seen above, we get the following:

Proposition 3.2. The vertices of C that lie outside S,
contribute a total weight of at most 3K1 lnm.

Bounding the total weight of S is more involved. As
in § 2, we will augment T with some nodes from S in
order to get a tree T ′, and argue that if w(C) is “large”,
then the probability of obtaining a corresponding T ′

is very small. Suppose |S| = `, and that the range
of weights of its elements is [a0, a1], where 1/(5D2) ≤
a0 ≤ a1 ≤ 1/(e(D + 1)). Note that each element of
S is dangerous but not bad, and recall conditions (Q1)
and (Q2) for becoming dangerous; suppose that for each
i ∈ S, Si has kxi frozen vertices, for xi ≥ c. Define
vi = k(1−xi −H(xi)). Construct an independent set I
of S by using Lemma 3.1 on the subgraph of C induced
by S, and with parameter ε = ε(δ); we get

Proposition 3.3. r = |I| is at most d`ε/De; also,∑
i∈I vi is at least ε(1− ε/2) · (

∑
i∈S vi)/D.

As in § 2, we obtain T ′ by augmenting T with the
vertices I and edges {(i, h(i)) : i ∈ I}, where each
h(i) lies in T and is at distance two from i in C. We
will now count the number of choices for (T, T ′) with
parameters t and r = |I| more carefully than in (2.6).

Recall that T has been fixed. Suppose node #j of T
connects to yj nodes of I in our augmentation, where∑

j yj = r. As in § 2, this sequence 〈yj〉 can be chosen
in at most 2t+r ways. Fix this sequence, and suppose
s ≤ min{t, r} nodes of T actually connect to S in our
augmentation, i.e., have yj ≥ 1. Then, given these s
nodes of T , their augmenting edges can be chosen in at
most s∏

j=1

(
D2

yj

) ≤ (
s∏

j=1

(D2e/yj)yj) ≤ et(D2s/r)r

ways, where the last inequality is shown using the
convexity of the function x 7→ x lnx for x > 0.
Combining with Propositions 3.1 and 3.3, the number
of choices of (T, T ′) with parameters t and ` is at most
the following, for some r ≤ d`ε/De:

m · (2e2D3)t · (2D2 min{t, r}/r)r.(3.12)

Since vi = k(1− xi −H(xi)), we have for all i and
for any given xi ≥ c that the probability of i being
dangerous with |Si ∩ F | = kxi, is at most

2 ·
(
k

kxi

)
2−k(1−xi) ≤ 21−vi ;

we remind the reader that this probability is taken over
the random choices made in Phase I. Recall Propositions
3.1 and 3.3. Since all nodes of T ’ form an independent
set, the probability of getting a particular (T, T ′) with
parameters t, ` and {xi}, is at most

pt
0 · (

∏
i∈I

21−vi) ≤ pt
02

d`ε/De · 2−ε(1−ε/2)·(
∑

i∈S
vi)/D

≤ 2pt
0 · 2`ε/D · 2−ε(1−ε/2)·(

∑
i∈S

vi)/D
.(3.13)

Now, if i ∈ S is dangerous and Si has kxi frozen
vertices, then since wi ≤ 1/(e(D + 1)), we can verify
that xi < 1; therefore, wi = 2−kxi . Let Φ(a0, a1, `;W)
denote the minimum possible value of

∑
i∈S vi for given

(a0, a1, `), assuming W =
∑

i∈S 2−kxi . (The variables
in this minimization are the xi, which are constrained
by a0 ≤ wi ≤ a1.) Combining (3.11), Proposition 3.2,
(3.12) and (3.13), Pr[w(C) ≥ 3K1 lnm + K2 lnm] is at
most the following, for some r ≤ d`ε/De: 1/m plus the
sum, over all t ≤ K1(lnm)/k, of

2m · (2e2D3p0)t · (2D2 min{t, r}/r)r ·(3.14)
2(ε/D)·(`−(1−ε/2)Φ(a0,a1,`;K2 ln m)).

The following lemma helps lower-bound Φ. The
facts that k ≥ 3/c and w(x) is “small” are critical, since
the function g is not uniformly concave:

Lemma 3.2. Let g be the function such that given y =
w(x) = 2−kx and v(x) = k(1 − x − H(x)), g(w(x)) =
v(x). That is, g(y) = k(1 + (lg y)/k − H(− lg y/k)).
Then, for k ≥ 3/c, any a0, a1 such that 1/(5D2) ≤ a0 ≤
a1 ≤ 1/(e(D + 1)), and in the range of x for which
a0 ≤ w(x) ≤ a1, i.e., a0 ≤ y ≤ a1, g(y) is a concave
function of y.

Proof. Define G1(z) = z + H(z), G2(y) = lg(1/y)/k,
and G(y) = G1(G2(y)). We need to show that G(y) is
convex for the range of y as in the lemma. We have
G′(y) = G′

2(y) ·G′
1(G2(y)); so,

G′′(y) = G′′
2(y) ·G′

1(G2(y)) + (G′
2(y))

2 ·G′′
1(G2(y)).

Let us calculate this. Since

G1(z) = z − 1
ln 2

· (z ln z + (1− z) ln(1− z)),

we have

G′
1(z) = 1− 1

ln 2
· (ln z − ln(1− z));

G′′
1(z) = − 1

z(1− z) ln 2
.

Also, G′
2(y) = −1/(ky ln 2) and G′′

2(y) = 1/(k ln 2 · y2).
Set x = − ln y/(k ln 2), and define

F (x) = 1− lnx− ln(1− x)
ln 2

− 1
k(ln 2)2x(1− x)

.

Thus, G′′(y) = ((k ln 2)y2)−1 · F (x).
We therefore want to prove that F (x) is non-

negative when 1/(5D2) ≤ 2−kx ≤ 1/(e(D + 1)). We
have

F ′(x) =
−1
ln 2

·
(

1
x(1− x)

− 1− 2x
(k ln 2) · (x(1− x))2

)
=

−1
(ln 2) · x(1− x)

·
(

1− 1− 2x
(k ln 2) · x(1− x)

)
.(3.15)

Recall that e(c12kc + 1) ≤ 2kx ≤ 5c212
2kc. Since

c1 ≤ 1/8, we have e ≤ 2kx ≤ 22kc, i.e.,

kx ln 2 ≥ 1 and x ≤ 2c.

As 0 ≤ x ≤ 2c < 1/2, all of x, 1 − x, and 1 − 2x are
non-negative. Thus, from (3.15),

F ′(x) ≤ −1
(ln 2) · x(1− x)

·
(

1− 1− 2x
1− x

)
=

−1
(ln 2)(1− x)2

,

which is negative for the entire interval 0 ≤ x ≤ 2c.

So, for any x in our domain,

F (x) ≥ F (2c)

≥ 1− 1
k(ln 2)22c(1− 2c)

≥ 1− 1
6(ln 2)2(1− 2c)

(since k ≥ 3/c)

≥ 1− 1
6(ln 2)2(1− 2c∗)

(since c ≤ c∗)

≥ 0,

as required.

Thus, an adversary who wants to minimize
∑

i∈S vi

for given (a0, a1, `), will set b0 of the wi’s to be a0 and
b1 of the wi’s to be a1, where b0 and b1 are non-negative
integers such that b0 + b1 = `. Further work helps
upper-bound the term “(2D2 min{t, r}/r)r” in (3.14).
Using these ideas, we can show that by choosing ε
small enough, then c1 small enough, and then K2 large
enough, the bound (3.14) can be made at most 2/m,
say. Finally, we set K3 = 3K1 + K2. We will present
the details in the full version.

4 Conclusion

The main open question is to make further progress
toward a goal such as “pD1+o(1) ≤ O(1)” being suffi-
cient for algorithmic versions; even making “pD3−Ω(1) ≤
O(1)” a sufficient condition seems challenging using
currently-known methods, with the 2-3 trees-based ap-
proach being the bottleneck. It would also be very useful
to further develop the theory of algorithmic versions of
the Asymmetric version of the Local Lemma. Nothing is
known about constructive versions of the Lopsided Lo-
cal Lemma [3]; some initial steps in this direction would
be of interest.

Finally, our algorithm is fundamentally random-
ized, due to the random process of Phase II. Can it
be derandomized?

References

[1] A. Ageev and M. Sviridenko, Pipage rounding: a new
method of constructing algorithms with proven perfor-
mance guarantee, Journal of Combinatorial Optimiza-
tion, 8 (2004), pp. 307–328.

[2] N. Alon, A parallel algorithmic version of the Local
Lemma, Random Structures & Algorithms, 2 (1991),
pp. 367–378.

[3] N. Alon and J. H. Spencer, The Probabilistic Method,
Second Edition, Wiley, 2000.

[4] J. Beck, An algorithmic approach to the Lovász Local
Lemma, Random Structures & Algorithms, 2 (1991),
pp. 343–365.

[5] J. Beck and S. Lodha, Efficient proper 2-coloring of
almost disjoint hypergraphs, Proc. ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 598–605, 2002.

[6] A. Chattopadhyay and B. Reed, Properly 2-colouring
linear hypergraphs, Proc. RANDOM 2007, Lecture
Notes in Computer Science 4627, pages 395–408, 2007.

[7] A. Czumaj and C. Scheideler, Coloring non-uniform
hypergraphs: A new algorithmic approach to the Gen-
eral Lovász Local Lemma, Random Structures & Algo-
rithms, 17 (2000), pp. 213–237.

[8] A. Czumaj and C. Scheideler, A new algorithmic
approach to the General Lovász Local Lemma with
applications to scheduling and satisfiability problems,
In Proc. ACM Symposium on Theory of Computing,
pages 38–47, 2000.

[9] P. Erdős and L. Lovász, Problems and results on 3-
chromatic hypergraphs and some related questions, In
Infinite and Finite Sets, A. Hajnal et. al., eds., Colloq.
Math. Soc. J. Bolyai 11, North Holland, Amsterdam,
1975, pp. 609–627.

[10] U. Feige, M. M. Halldórsson, G. Kortsarz and A.
Srinivasan, Approximating the Domatic Number, SIAM
Journal on Computing, 32 (2002), pp. 172–195.

[11] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srini-
vasan, Dependent Rounding and its Applications to
Approximation Algorithms, Journal of the ACM, 53
(2006), pp. 324–360.

[12] M. Molloy and B. Reed, Further algorithmic aspects of
the Local Lemma, In Proc. ACM Symposium on Theory
of Computing, pages 524–529, 1998.

[13] M. Molloy and B. Reed, Graph Colouring and the
Probabilistic Method, Springer, 2000.

[14] S. Pemmaraju and A. Srinivasan, The Randomized Col-
oring Procedure with Symmetry-Breaking, submitted.

[15] J. Radhakrishnan and A. Srinivasan, Improved Bounds
and Algorithms for Hypergraph 2-Coloring, Random
Structures & Algorithms, 16 (2000), pp. 4–32.

[16] M. R. Salavatipour, A (1+ ε)-approximation algorithm
for partitioning hypergraphs using a new algorithmic
version of the Lovász Local Lemma, Random Struc-
tures & Algorithms, 25 (2004), pp. 68–90.

[17] A. Srinivasan, Distributions on level-sets with applica-
tions to approximation algorithms, In Proc. IEEE Sym-
posium on Foundations of Computer Science, pages
588–597, 2001.

