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Efficient and Resilient Backbones for Multihop Wireless Networks
Seungjoon Lee Bobby Bhattacharjee Aravind Srinivasan Samir Khuller

Abstract— We consider the problem of finding “backbones”
in multihop wireless networks. The backbone provides end-to-
end connectivity, allowing non-backbone nodes to save energy
since they do not have to route non-local data or participate in
the routing protocol. Ideally, such a backbone would be small,
consist primarily of high capacity nodes, and remain connected
even when nodes are mobile or fail. Unfortunately, it is often
infeasible to construct a backbone that has all of these properties;
e.g., a small optimal backbone is often too sparse to handle node
failures or high mobility.

We present a parameterized backbone construction algorithm
that permits explicit tradeoffs between backbone size, resilience
to node movement and failure, energy consumption, and path
lengths. We prove that our scheme can construct essentially
best possible backbones (with respect to energy consumption
and backbone size) when the network is relatively static. We
generalize our scheme to build more robust structures better
suited to networks with higher mobility. We present a distributed
protocol based upon our algorithm and show that this protocol
builds and maintains a connected backbone in dynamic networks.
Finally, we present detailed packet-level simulation results to
evaluate and compare our scheme with existing energy-saving
techniques. Our results show that, depending on the network
environment, our scheme increases network lifetimes by 20–220%
without adversely affecting delivery ratio or end-to-end latency.

Index Terms— C.2.2 Network Protocols, C.2.8 Mobile Comput-
ing, C.2.8.a Algorithm/protocol design and analysis

I. INTRODUCTION

In multihop wireless networks, end-nodes are typically
responsible for relaying traffic [1]. However, we often utilize
a “connected dominating set” of nodes that form a routing
backbone [2, 3]. Nodes not in the backbone have at least
one backbone neighbor (hence the backbone is a dominating
set). Further, since the non-backbone nodes do not need to
route traffic for other nodes, they can save energy by not
participating in the routing protocol. If the hardware permits,
the non-backbone nodes can further save energy by entering a
power-save or sleep mode, only waking up to send messages
or check for pending messages. Smaller backbones lead to
greater overall energy savings; as such, there have been many
algorithms developed for constructing near-optimal connected
dominating sets in wireless networks [3–6].1 The problem of
focusing only on the backbone size is that when nodes are
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1In general, finding a minimum connected dominating set is NP-hard.

battery-powered, the use of low-battery nodes in the backbone
can shorten the overall network lifetime. Therefore, many
schemes have been proposed that consider the residual battery
power in selecting backbone nodes [7–9]. However, along with
the battery capacity, these schemes often also use other criteria
for including nodes in the backbone (e.g., randomized node
selection for arbitration [7]). This leads to the inclusion of
low-capacity nodes in the resulting backbone. Clearly, a small
backbone composed of high-capacity nodes can significantly
increase total network lifetime; the construction of such back-
bones is the subject of this paper.

The operating environments for multihop wireless networks
can vary widely (e.g., minimal node mobility in sensor or
rooftop networks [10] vs. higher mobility for rescue op-
eration). Ideally, a backbone construction algorithm should
work well in a wide range of network environments. In
some existing backbone construction algorithms, nodes use
only local information to build and maintain a backbone
quickly [2, 7–9]. Although this class of backbone algorithms
can be useful in dynamic networks, they do not provide any
guarantee on performance objectives such as backbone size
or node capacity. Other backbone construction schemes find
a “good” connected backbone, e.g., with provable bounds
on backbone size or control overhead. However, this second
class of algorithms typically have higher control overhead,
require longer convergence times, and do not provide efficient
mechanisms for backbone maintenance [3, 4]. Therefore,
they are most useful in static environments, but in dynamic
networks, the overhead of maintaining a “good” backbone
can be prohibitive. Due to such inherent heterogeneities in
the operating environments for multihop wireless networks, it
is unlikely that a single fixed algorithm will work best in all
situations. In this work, we develop a general solution that can
be tailored to particular network environments.

The contributions of this paper are as follows. (i) We present
a parameterized backbone construction algorithm, which per-
mits explicit tradeoffs between different performance measures
including backbone size, resilience to node movement and
failure, node capacity, and path lengths. Our scheme has two
logical steps. First, each node nominates its highest-capacity
neighbor as its “leader.” Next, we connect these leaders such
that the resulting backbone achieves specific efficiency and
resilience properties. (ii) We prove that our scheme can con-
struct essentially best possible backbones with respect to node
capacity and backbone size. To the best of our knowledge,
this is the first work that achieves both objectives at the same
time. (iii) Based upon our backbone construction algorithm,
we present a distributed protocol that builds and maintains
a connected backbone in dynamic networks where nodes are
mobile, and node capacity constantly changes. (iv) We present
simulation results that investigate different performance as-
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pects of our proposed algorithm, including backbone size,
network lifetime, backbone-node capacities, and path lengths.
Compared to previous energy-saving techniques, our scheme
increases network lifetimes by 20–220% without adversely
affecting data delivery or end-to-end latency.
Roadmap. We present the first phase of our algorithm (leader
nomination) in § II and the second phase (leader connection)
in § III. We present our distributed protocol in § IV and
simulation results in § V. We compare our scheme with related
work in § VI and conclude in § VII. Please see the Appendix
for proofs omitted in the body of the paper.

II. LEADER NOMINATION

In this section, we first describe how each node nominates
a leader in the initial phase of our algorithm, and then show
desirable properties of the resulting set of leaders. We defer
the description of connecting the leaders to Section III.

We assume the network is connected and model it as
undirected graph G = (V, E), where V is the set of nodes, and
E is the set of edges between nodes. (We discuss the issue
of uni-directional links in Section IV.) We denote the total
number of nodes in the network by n = |V |. We define N(v)
to be the set of neighbors of node v, and N+(v) = N(v)∪{v}.
We denote v’s degree by dv = |N(v)|, and ∆ = maxv∈V dv.
A node v has a unique ID and a capacity value cv. Although
we can consider various attributes for cv (e.g., CPU speed,
storage space), we focus on the battery capacity in this paper.2

A. Algorithm Description

We assume that each node knows the capacity value of
its neighbors. The algorithm proceeds as follows: each node
nominates the node with highest capacity value in N+(v) as
leader. Each node then informs its leader of its decision, and all
nominated nodes constitute the set of leaders, which we denote
by L. For example, in Figure 1(a), the network has nine nodes.
The number in each circle denotes the node capacity (e.g.,
cA = 6). Thin lines between nodes represent wireless links,
while thick lines with arrows represent leader nomination. In
the figure, G nominates D because cD = 5 is higher than
cH = 2 and cG = 4. As a result, nodes A, C, D, F , and J
become leaders, as shown in Figure 1(b). (Nodes A and F
nominate themselves as leader, which we do not show here.)

The above algorithm requires only one-hop neighborhood
information and constant time. A similar clustering scheme
is proposed in [11]. Gao et al. [12] analyze the size of
resulting set using specific geometrical properties. However,
their analysis assumes that all nodes have a square-shaped
communication region of the same size, which is seldom the
case in practice [10]. We next present new analysis results,
based on more realistic assumptions.

B. Properties of the Leader Set L

We show that L forms a dominating set using high-capacity
nodes, and that the cardinality of L is small under reasonable

2For the ease of exposition, we assume distinct capacity values throughout
this paper. In practice, we use unique IDs to break ties.
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assumptions. Recall that a dominating set DS of G = (V, E)
is a subset of V , where each node in V either is in DS or
has a neighbor in DS [6]. If all nodes in DS are connected,
then it is called a connected dominating set (CDS). A minimum
(connected) dominating set is of smallest cardinality among all
(connected) dominating sets. We define a maximum-capacity
(connected) dominating set DSM to be a (connected) dominat-
ing set that maximizes the bottleneck node capacity. Formally,
DSM satisfies:

∀DS, minv∈DSM
cv ≥ minu∈DS cu, (1)

where DS denotes a (connected) dominating set.

Theorem 2.1: L is a maximum-capacity dominating set.
Proof: L is a dominating set by construction. We prove

the maximum-capacity property by contradiction. Assume that
L is not a maximum-capacity dominating set. Consider a
maximum-capacity dominating set DSM . Then, the minimum-
capacity node v ∈ L satisfies: ∀u ∈ DSM , cv < cu. By the
leader nomination rule, there exists a node w for which v is
the maximum-capacity node in N+(w). However, DSM also
has a node u in N+(w), and since v is w’s maximum-capacity
neighbor, cu ≤ cv , which is a contradiction.

We now show that the expected size of L (denoted by
E[|L|]) is small. For the sake of simpler analysis, we first
consider the case of D-regular graphs (i.e., ∀v, dv = D) and
analyze a more generalized case later in this section. In this
analysis, we assume cv is uniformly distributed between 0 and
1, and log(·) denotes the natural logarithm. (We plan to extend
our analysis for other distributions in the future.)

Theorem 2.2: Suppose ∀v, dv = D for a positive integer
D. Then, there exists a parameter ε > 0 such that:

E[|L|] ≤ (1 + ε) n
D log (D + 1). (2)

Also, ε can be arbitrarily close to 0 as D increases.
In practice, wireless nodes are likely to have different num-

bers of neighbors, and Theorem 2.2 does not hold in general.
However, due to spatial locality in the node distribution, we
expect that neighboring nodes in multihop wireless networks
have a similar number of neighbors. Formally, for a constant
α ≥ 1, we define G = (V, E) to be α-locally-regular if
∀(u, v) ∈ E, dv ≤ α du. In a 3-locally-regular graph, for
example, the degree of v’s neighbor is between dv/3 and 3 dv.
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We now generalize Theorem 2.2 to show that in α-locally-
regular graphs, E[|L|] is within an O(log ∆)-factor of the size
of a minimum dominating set.

Lemma 2.3: Suppose G = (V, E) is α-locally-regular for
constant α ≥ 1. Then,

E[|L|] ≤ c′
∑

v∈V

1

dv
log (dv + 1),

where c′ is a constant that depends on α.
Theorem 2.4: Suppose G = (V, E) is α-locally-regular for

constant α ≥ 1. Then, E[|L|] = O(log ∆) OPT, where OPT
is the size of a minimum dominating set.

Theorems 2.2 and 2.4 are essentially best possible. Theo-
rem 2.2 holds for any D-regular graph, and as shown in [13],
there exist D-regular graphs whose minimum dominating sets
are of size at least (1 − ε′) n

D log D for ε′ > 0. As D
becomes large, this value becomes arbitrarily close to the
upper bound in Theorem 2.2. Also, the approximation ratio of
Theorem 2.4 to OPT is O(log ∆). In general, finding a mini-
mum dominating set for a given graph is NP-hard [6]. Also, no
polynomial time algorithm can achieve the approximation ratio
of (1−ε′) log ∆ for any ε′ > 0 unless NP has nO(log log n)-time
deterministic algorithms [14]. Thus, the bound in Theorem 2.4
is within a constant factor of the best-possible approximation.
Although other existing schemes provide certain theoretical
guarantees about resulting dominating sets, some rely on
sequential operation on an entire network or multiple rounds of
local operation [3, 4, 15], which can delay the dominating-set
formation in distributed environments. Some other analytical
results are based on certain simplified assumptions [4, 12]. We
use only one round of local operation and provide an analysis
for generalized settings that relate to realistic distributed
environments.

III. CONNECTING THE LEADERS

We now present the second phase of our algorithm that
connects the leaders to form a connected dominating set.
We describe a special case of our scheme and then present
the general scheme (called TRUNC-K, where K is a system
parameter).

A. Multigraph Representation

The set of leaders form a forest in which edges are leader-
nomination relations. We refer to each tree in this forest
as a fragment. For example, in Figure 1(b), there are two
fragments: fragment X (nodes A and D) and fragment Y
(nodes C, F , and J). Since L is a dominating set, as shown
in [6], chains of up to two non-leader nodes are sufficient to
connect all fragments. We define a virtual edge to be such
a chain of (up to two) non-leader nodes that connects two
fragments. We transform the graph into a multigraph, where
each fragment corresponds to a vertex with (possibly multiple)
virtual edges connecting fragments. For a given virtual edge,
we use the minimum node capacity as the weight of the edge.3

3It is possible that no nodes are involved in a virtual edge. In this case, we
set the weight of the virtual edge to ∞.

In Figure 1(b), there are three virtual edges between fragments
X and Y : the first one using G and H , the second one using
E and B, and the last one using B only. The weights of these
three virtual edges are 2, 1, and 3, respectively. Figure 2 shows
the corresponding multigraph representation. We next describe
how we use this multigraph to find a connected backbone.

B. TRUNC-∞: Spanning Tree-Based Algorithm

We begin with an approach based on the well-studied
minimum spanning tree (MST) problem. This MST-based
approach is a special case of our parameterized algorithm
(Section III-C), which we call TRUNC-∞. Recall that an MST
of edge-weighted graph G = (V, E) connects all nodes in V
using a tree T ⊆ E, such that the sum of edge weights in
T is minimized [16]. In many algorithms that find MSTs,
nodes select a minimum outgoing edge that does not result
in a cycle [16, 17]. However, since we want to select high-
capacity nodes in the backbone, we need to use maximum-
weight outgoing virtual edges. For example, in Figure 2,
when connecting fragments X and Y to obtain high-capacity
connected backbone, we should use the virtual edge of weight
3. We further illustrate this using an example graph in Figure 3:
here, each node corresponds to a fragment after the leader
nomination phase, and each fragment is connected by virtual
edges. (We show only the maximum-weight virtual edges
between fragments for clarity.) Figure 4 shows the MST (as
defined above).

Let B∞ denote the connected backbone obtained by using
TRUNC-∞. We next show that B∞ produces a small connected
backbone using high-capacity nodes.

Theorem 3.1: TRUNC-∞ results in a maximum-capacity
connected dominating set.

Lemma 3.2: |B∞| ≤ 3|L|, where L denotes the leader set.
Proof: If L has f fragments, we need (f − 1) virtual

edges for a spanning tree. Since each virtual edge has up to
two nodes and f ≤ |L|, |B∞| ≤ |L|+ 2(f − 1) ≤ 3|L|.

From the lemma and Theorem 2.4, the next theorem follows.
Theorem 3.3: For α-locally-regular graphs, E[|B∞|] =

O(log ∆) OPT, where OPT denotes the size of a minimum
connected dominating set.

Discussion: Theorem 3.1 states that B∞ includes a node
with low capacity only when it is necessary in maintaining
connectivity. We show in Theorem 3.3 that for α-locally-
regular graphs, B∞ is an O(log ∆)-approximation to a min-
imum connected dominating set. As discussed in Section II,
this is within a constant factor of best possible approximation.
However, if a maximum-capacity backbone of even smaller
size is desired, we can further reduce the constant factor by
using the following optimization. When the B∞ is found, we
get to know the minimum node capacity in the backbone (say,
cth). Then, we apply any distributed CDS algorithm [3, 4]
onto a restricted set of nodes v where cv ≥ cth. For example,
by applying the scheme in [3], the approximation ratio of
the resulting maximum-capacity backbone becomes at most
2 log∆ + 3. (See the last part of the Appendix.)

Although TRUNC-∞ backbones achieve our desired goals
(i.e., finding a small backbone using high-capacity nodes),
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Fig. 5. Illustration of truncated algorithm.

Algorithm 1 Truncated Algorithm (Centralized)
1: Round ← 0
2: while more than one fragment exists do
3: if Round = K then
4: Merge with all neighboring fragments
5: Return
6: end if
7: Each fragment selects the best outgoing edge
8: Merge fragments using the selected edges
9: Round ← Round + 1

10: end while

the running time can be long. For example, a distributed
MST algorithm by Gallager, Humblet, and Spira (the GHS
algorithm) takes O(n log n) running time [17]. Also, there
is a clear trade-off between small backbones and shorter
path lengths as well as resilience. In Figure 4, the backbone
becomes disconnected even when a single link fails. Also, to
reach a node in fragment G, a node in fragment H needs to
use a path consisting of five virtual edges, compared to only
one when no backbone is used. We address this issue next.

C. TRUNC-K: Parameterized Algorithm

We now describe our generalized scheme that balances
the above-mentioned trade-off when connecting the leader set
(Algorithm 1). It is based on a well-known MST algorithm
by Boruvka [18]. In Boruvka’s algorithm, each fragment finds
and marks the best outgoing edge. Then, using those edges,
fragments are merged into new larger fragments. This step is
repeated until there is no outgoing edge (i.e., there is only one
fragment). During the first K rounds, our algorithm runs just
as Boruvka’s algorithm, where K is an algorithm parameter.
However, in our truncated algorithm, all remaining fragments
after K rounds mark edges to all neighboring fragments and
are merged into one fragment. One extreme case is K =
0, where after leader nomination, each pair of neighboring
fragments marks one virtual edge (e.g., all edges in Figure 3).
Another extreme case is K =∞, which results in B∞.

Figure 5 shows the operations of the algorithm applied to
the graph in Figure 3. Here, we set K = 1. In the first
round, each individual fragment selects the best outgoing
edge among neighboring fragments, and fragments are merged
using selected edges. Then, as shown in Figure 5(a), there
remain four fragments at the end of first round. Since K = 1

in this example, each remaining fragment after the first round
connects to all neighboring fragments. For example, fragment
FG chooses three edges to fragments AC, BD, and EH. The
resulting connected backbone is shown in Figure 5(b).

We call this algorithm TRUNC-K and the resulting backbone
BK . In contrast to O(log n) rounds in Boruvka’s algorithm,
TRUNC-K needs only a constant number (K) of rounds to
complete, and the resulting backbone has higher redundancy
than B∞. This eventually leads to both increased resilience
against node mobility and decreased average path length.
Note that the resulting backbone is not a maximum-capacity
backbone and may include low-capacity nodes. However, by
construction, nodes included in the first K rounds are part
of a maximum-capacity backbone. After the K-th round,
when connecting to each of remaining neighboring fragments,
we choose the best virtual edge among typically multiple
edges, and we include relatively high-capacity nodes. Also,
the resulting backbone includes more virtual edges than B∞,
and Theorem 3.3 does not hold. However, we can adjust
K to control the amount of increase. Our future goal is
to analyze the performance trade-offs (e.g., backbone size,
capacity distribution) when we vary K. We next use simulation
experiments to illustrate that even with small values of K, the
increase in backbone size is not significant.

D. Evaluation of the TRUNC-K Algorithm

In this subsection, we use simulations to understand perfor-
mance trade-offs of the TRUNC-K algorithm (e.g., backbone
size, capacity) when we use different values of the parameter
K. In this simulation, stationary nodes are distributed on a
square uniformly at random, and we vary the number of nodes
and the size of square to experiment with various settings.
Node capacity values are uniformly distributed between 0
and 1. Nodes within the nominal transmission range (250
meters) become neighbors. For each set of parameters, we use
25 runs with different node placement scenarios and report the
average. We also experimented using various scenarios with
non-uniform node placement and different capacity distribu-
tion, and obtained similar results. (See Section V.)

Backbone Size: In Figure 6, we show the average size of
the backbone with varying K. We use two different network
settings—the one with 1000 nodes on a 2km×2km square,
and the other with 4000 nodes on a 4km×4km square. In
Figure 6, the use of extra rounds is most effective when K
is small. Specifically, the first round (K = 1) leads to the
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1.4 km×1.4 km 2.0×2.0 2.8×2.8 4.0×4.0
min. avg. min. avg. min. avg. min. avg.

B0 0.349 0.913 0.111 0.854 0.021 0.771 0.007 0.666
B1 0.860 0.967 0.705 0.934 0.307 0.872 0.054 0.760
B2 0.888 0.970 0.787 0.942 0.573 0.892 0.188 0.796
B∞ 0.888 0.970 0.787 0.942 0.574 0.893 0.200 0.802

TABLE I
CAPACITY VALUES OF BACKBONE NODES WITH VARYING NODE DENSITY

largest reduction in backbone size. With larger K > 2, there
are a small number of remaining fragments after K rounds.
As a result, when compared to B∞, connecting all neighboring
fragments does not significantly increase the backbone size.

Capacity Distribution among Backbone Nodes: We investi-
gate another potential problem with TRUNC-K backbone—the
resulting backbone may include low-capacity nodes. In this
scenario, we use 1000 nodes but vary the square size, thus
varying node density. In Table I, we list the minimum and
average capacity values depending for K values with different
node density. Even with small K (1 or 2), the difference in
minimum-capacity between BK and B∞ is small. For example,
in the case of 2km×2km square, the difference between B1 and
B∞ is around 10% (0.705 vs. 0.787). The difference in average
capacity values is even smaller: less than 1% for the same
scenario. As discussed in III-C, this is because fragments after
K rounds choose best possible virtual edges to connect neigh-
boring fragments, and very low-capacity nodes are not likely
to join the backbone. However, in sparser networks, fewer
virtual edges are available between neighboring fragments, and
the difference in minimum capacity between BK and B∞ is
slightly larger.4 In the actual deployment of the TRUNC-K
algorithm, we should choose an appropriate K value based on
network parameters such as node density and mobility.

Average Path Length: We consider the average shortest path
length (induced by the backbone) between each of all possible
node pairs. This measure provides a good lower bound for
the performance of practical routing protocols such as [1].
Due to space constraints, we report results for the cases with

4When 5km×5km squares are used with 1000 nodes, only four cases out
of 25 resulted in connected networks, and the use of 4km×4km squares with
1000 nodes corresponds to considerably sparse scenarios.

1000 nodes placed in a 4km×4km square. When there is no
backbone, the average path length is 11.2. The use of any
routing backbone inevitably increases path length since we
are forced to find paths using a restricted set of nodes. B0

has most redundancy, and the average path length is 12.5 with
minimum increase. As K increases, the redundancy decreases
and the path length thus increases; the average path length of
B1 is 14.8, while that of B2 is 18.8. In contrast, the average
expansion in path length for B∞ is 23.0, which is more than
twice the underlying shortest paths. We observe that small K
values again offer a good trade-off. For example, compared to
B∞, the average path length of B1 is up to 36% shorter, while
the backbone size is only up to 13% larger.

To summarize, backbones obtained using small K (1 or
2) perform well and provide a reasonable balance among
a number of performance measures. We next describe a
distributed protocol that implements the TRUNC-K algorithm.

IV. DISTRIBUTED PROTOCOL DESCRIPTION

In this section, we present our distributed protocol that
implements the TRUNC-K algorithm to construct and maintain
a connected backbone in dynamic network environments. Our
protocol is based on the GHS algorithm, which is a distributed
version of Boruvka’s algorithm [17]. We assume that each
node has a unique ID (e.g., IP address). We first describe
the leader nomination and explain how to connect the frag-
ments obtained after the nomination phase. We also present a
backbone maintenance mechanism later in this section. These
backbone construction operations are performed periodically.
While the interval depends on various factors such as mobility,
node density, traffic pattern, etc., our simulations in Section V
indicate that 10–20 seconds works well in typical scenarios.

A. Leader Nomination Protocol

Each node broadcasts a HELLO message periodically that
includes information about itself and its neighbors. Figure 7
shows the fields for individual node information in HELLO
messages. Using these fields, each node maintains information
about two-hop neighbors (e.g., capacity, fragment root IDs).

Before broadcasting a HELLO message, node v checks
which neighbor has the highest capacity (e.g., residual battery
power). Suppose u is the highest-capacity neighbor of v. Then,
v sets its Leader ID field to u in its HELLO message. Upon
receiving a HELLO message from v, u becomes a leader and
sets its IsLeader field to TRUE in subsequent HELLO messages
until v changes leaders and there exist no other neighbors
nominating u (e.g., due to later decrease in residual battery).

Suppose node u finds itself as the highest-capacity node in
N+(u). Then, in addition to being a leader, u also becomes
a level-0 fragment root, where a level-0 fragment is a set
of leaders who are themselves connected via the leader-
nomination relation. In Figure 1(b), nodes A and F are level-0
fragment roots.

B. Protocol for Fragment Members

As discussed in Section III, the set of leaders form a forest
consisting of multiple fragments, and the protocol described
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Fig. 7. Information about individual nodes in a HELLO message.

here merges the fragments to form one connected component.
In Algorithm 2, we present a high-level protocol description.
We begin with the operation of level-0 fragments and later
discuss the operation of higher-level fragments.

We illustrate the protocol operations of level-0 fragments
using Figure 8. Each level-0 fragment forms a tree rooted
at its fragment root. To discover neighboring level-0 frag-
ments, level-0 fragment roots periodically send REQ0 mes-
sages, which are forwarded down this tree to the leaves (who
cannot forward the REQ message any further). The leaves
then generate a REPLY0 message that contains information
about other fragments (if any) that they are connected to. The
REPLY0 messages are forwarded back towards the fragment
root. For example, in Figure 8(b), node D generates a REPLY0

message, which contains the ID of other level-0 fragments
that D knows of (Fy in this example) along with the cost
of the virtual edge to connect to Fy. (Recall that D keeps
the information about fragment roots of two-hop neighbors.)
At each hop, before forwarding the REPLY message towards
the leader, nodes update the message if they know of a better
virtual edge than the one carried in the message. Also, nodes
add information about any new neighboring fragments that are
not in the REPLY message. In our example, node B does not
modify the REPLY message from D, since its path to Fy is
worse than the one that D found (Figure 8(b)). (A and C also
send REPLY0 messages, which are not shown in the figure.)

Once the fragment root has accumulated all REPLY mes-
sages (or has timed out on some), it sends a CONNECT
message using the best outgoing virtual edge. This is shown in
Figure 8(c), where X connects to Y using the weight 7 edge
through D. This virtual edge has two non-backbone nodes
P and Q, and upon receiving the CONNECT0 message, they
become bridges and join the backbone. Using these bridge
nodes, Fx and Fy are merged to form a new level-1 fragment.

Level-1 fragments also need to find neighboring level-
1 fragments to form next-level fragments. To elect level-1
fragment roots that send REQ1 messages, we use the following
rule similar to [17]: If two fragments choose each other as their
best neighboring fragment, then two fragment roots become
candidates for the next-level fragment root. We choose the
node with lower ID as the level-1 fragment root.

Level-i fragments (0 < i < K) operate similarly to above
procedures until their level reaches K. At the highest level-
K, instead of using only the best virtual edge, the level-K
fragment roots send CONNECT messages to all neighboring
level-K fragments, thus assuring a connected backbone.

In Figure 8, X is a both level-0 and level-1 fragment root,
and it periodically sends both REQ0 and REQ1 messages.
In general, a node can be a fragment root of up to (K+1)
levels at the same time. Even if higher-level fragments are
already found, lower-level fragment roots (e.g., Y in Figure 8)

Algorithm 2 Distributed operation of level-i fragments
1: Level-i fragment root periodically sends REQi message
2: Fragment members send REPLYi messages with neighbor-

ing level-i fragment information
3: if level-i fragment root receives all REPLYi messages, or

a timeout occurs then
4: if i = K then {highest level}
5: Fragment root sends CONNECTi messages to all

neighboring level-i fragments
6: else { i < K}
7: Fragment root sends CONNECTi message only to best

neighboring level-i fragment
8: end if
9: end if

still send REQi messages periodically. This allows lower-level
fragments to find new or better virtual edges to neighboring
fragments in dynamic networks.

C. Backbone Maintenance

All of the protocol specific states (e.g., leaders, bridges,
fragment roots) are “soft.” A node removes a neighbor if it
does not receive a HELLO message from the neighbor for a
certain duration (e.g., four HELLO-PERIODs). If the capacity of
the leader becomes lower (e.g., due to battery consumption),
a node may choose a different node with highest capacity as
leader. If a leader finds that no neighbors nominate it as leader
for some time, it stops being a leader. When a bridge does not
receive a CONNECT message for a certain period of time, it
stops being a bridge.

In a dynamic network, however, the basic protocol mecha-
nisms described above may not be sufficient for the timely
maintenance of the connected backbone. We efficiently re-
construct the backbone using a simple local search protocol
that exploits spatial locality. We illustrate its operation via an
example. In Figure 9, node P detects a link failure to backbone
neighbor Q. P looks up its neighbor table to find other nodes
that also had Q as neighbor. (Note that these nodes need not
currently be part of the backbone). In this example, P finds
two such neighbors, M and N , and sends a RECOVER message
to N , which has higher capacity. Upon receiving this message,
N temporarily joins the backbone and forms a bridge to Q. In
the next REQ-REPLY phase, X might choose a different virtual
edge (of higher weight) to connect to Fy. If that happens, N
will leave the backbone after a timeout.

There are potential problems with the local recovery
scheme. First, the repaired backbone may include lower-
capacity nodes than necessary. However, as mentioned above,
in the next REQ-REPLY phase, the fragment root will discover
the best virtual edge and send the appropriate CONNECT
message. Also, a node may not be able to find a common
neighbor for recovery. However, in networks with reasonable
node density, such events will likely be infrequent. Finally,
the recovery scheme does not help when nodes fail. However,
the TRUNC-K backbone should have sufficient resilience to
maintain connectivity against infrequent recovery failures.
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Fig. 9. Local maintenance.

We examine the effectiveness of this recovery scheme using
simulations in Section V.

Discussion: As shown in Figure 7, HELLO messages in
TRUNC-K contain (K+3) node IDs per neighbor: Node ID,
Leader ID, and fragment roots for K +1 levels. For example,
suppose that node U in Figure 8(c) is about to broadcast a
HELLO message. When K=1, the information for neighbor
Q should include (Q, U , Y , X). Including more information
in HELLO messages increases the control overhead. However,
since many neighbors share leaders and fragment roots, we
can reduce the increase by using the following simple indexing
scheme. U arranges all neighbors into an array and uses the
index values for leader IDs and fragment roots of its neighbors.
In the above example, U includes the following information
for its neighbor Q: (Q, IU , IY , IX ). Since an index field
is typically shorter (e.g., 1 byte) than an actual ID (e.g., 4
bytes), the amount of length increase becomes smaller. Note
that U still needs to include some non-neighbor IDs (e.g., X)
in its HELLO messages. However, since many of its neighbors
share leaders and fragment roots, the number of such non-
neighbors nodes are likely to be small. TRUNC-K also uses a
few additional control messages (e.g., REQ, REPLY), which
can potentially increase the overall control overhead. Our
simulation results in Section V-C show that the overall control
overhead of TRUNC-K is minimal.

Wireless links in practice can be uni-directional and show a
wide range of difference in their quality [10]. In our protocol,
we can easily detect uni-directional links using the neighbor
information in periodic HELLO messages and exclude those
links when building backbones. We further discuss the issue
of link quality in Section V.

V. SIMULATION STUDY

In this section, we compare TRUNC-K with prior approaches
using simulation experiments. Based on the results in Sec-
tion III-D, we consider only the case of K = 1. Although we
performed experiments in various other scenarios using differ-
ent topologies, traffic patterns, and capacity distributions, due
to space constraints, we present only a subset of representative
results in this paper. While we focus mainly on prior schemes
that consider node capacity, at the end of Section V-B, we
also compare TRUNC-K with other existing schemes that do
not consider node capacity. We first describe prior capacity-
aware approaches and then compare the performance of our
scheme against them.

A. Brief Description of Existing Schemes

In SPAN [7], a node becomes a coordinator and joins the
backbone when any two neighbors are not connected using
up to two current coordinators. To minimize contention and
give priority to high-energy nodes, SPAN uses a randomized
backoff using the energy level, number of neighbors, and a
random number. A coordinator withdraws after some period of
time to give other neighbors a chance to become coordinators.

In GAF [8], the area is divided into square-shaped virtual
grids. GAF assumes the availability of location information
(e.g., from GPS), and each node can know its virtual grid from
the location information. Then, GAF elects the highest-energy
node in each grid, and these elected nodes form a connected
backbone due to the grid construction rule [8].

In the scheme by Wu et al. [9], a node initially joins the
backbone if its two neighbors are not connected. Then, to
reduce the size of this initial backbone, node v searches for a
neighbor u, or two neighbors u and w, such that the (union
of) neighbor set(s) includes the neighbor set of v. Due to
symmetry, the above rule may lead to connectivity loss, and
the authors of [9] also use the power level and degree of node.

B. Comparison Study in Large Networks

In this set of experiments, we use the same settings as in
Section III-D. We measure the performance when the initial
backbone stabilizes, and report the average of 25 runs each.

We first examine the size of backbones constructed by dif-
ferent schemes. In this set of experiments, we vary the number
of nodes and the size of square, but maintain the average
node degree constant. In Table II, we present the average
backbone sizes for various scenarios. The standard deviations
are small (less than 6% of the average in all cases), which we
do not present here. We observe that TRUNC-1 backbones are
smallest in all cases. Specifically, when the network has 4000
nodes, the TRUNC-1 backbone has 355 nodes on average. This
is 24% smaller than the SPAN backbone, which is the second
smallest in all these experiments.

Our proposed scheme also builds a backbone consisting of
higher-capacity nodes. In Table III, we tabulate the minimum
and average capacity values of backbone nodes. In all cases,
the backbone by TRUNC-1 achieves the highest values for both
minimum and average node capacity. For example, in 4000-
node networks, the TRUNC-1 backbone does not include any of
bottom 30% nodes, while the GAF backbone includes some of
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Number of nodes (square size in km×km)
500 1000 2000 4000

(1.4×1.4) (2.0×2.0) (2.8×2.8) (4.0×4.0)
SPAN 54.5 113.9 227.7 467.4

Wu et al. 67.4 150.3 308.9 652.5
GAF 158.0 308.6 605.6 1236.9

TRUNC-1 44.7 89.0 174.6 355.1

TABLE II
BACKBONE SIZE BY DIFFERENT SCHEMES.

No. of Nodes (square size in km×km)
500 1000 2000 4000

(1.4×1.4) (2.0×2.0) (2.8×2.8) (4.0.×4.0)
min avg min avg min avg min avg

SPAN 0.056 0.700 0.046 0.686 0.025 0.704 0.011 0.708
Wu et al. 0.005 0.504 0.002 0.480 0.002 0.495 0.002 0.504

GAF 0.032 0.714 0.014 0.707 0.007 0.720 0.003 0.723
TRUNC-1 0.752 0.937 0.705 0.934 0.502 0.933 0.335 0.933

TABLE III
MINIMUM AND AVERAGE CAPACITY VALUES OF BACKBONE NODES
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bottom 0.5% nodes. In the same scenario, the average capacity
of TRUNC-1 backbone is also 30% higher than those of SPAN
and GAF. When the routing backbone is used to reduce power
consumption and increase the network lifetime, the use of low-
capacity nodes can drain their energy unnecessarily. We later
investigate this aspect using packet-level simulations.

In Figure 10, we present a detailed snapshot of a represen-
tative run with 1000 nodes. We sort all nodes in an ascending
order of capacity value and cumulatively plot the number of
backbone nodes whose capacity is less than or equal to that
of a given node. For example, the GAF backbone includes 49
nodes out of 500 lowest-capacity nodes, while SPAN chooses
19 nodes from the lowest 500 nodes. In contrast, the TRUNC-1
backbone does not include any of the lowest-capacity nodes,
but selects only 93 nodes among the top 330 nodes.

In Table IV, we report the average path lengths by different
schemes as well as the case using no backbones. Not sur-
prisingly, since TRUNC-1 backbones are smaller in size than
any other scheme (Table II), its average path lengths are the
longest. However, the amount of reduction in backbone size is
more than the increase in the path length, especially in larger
networks. Specifically, in 4000-node networks, the difference
in the average path length between SPAN and TRUNC-1 is
around 20%, while the difference in backbone size is more
than 30%. The other two schemes (GAF and Wu et al.)
have shorter path lengths on average, but their backbones are
substantially larger in size (Table II). This result illustrates that
TRUNC-1 backbones provide relatively good paths considering
the small size.

Experiments with Non-uniform Node Distribution: In the
previous experiments, we placed nodes uniformly at random.
In this set of experiments, we first partition the area into
square grids (with each side 200m) and let each cell potentially
have a widely varying number of nodes. Specifically, we
randomly choose the node count for each cell using two
different distributions: exponential and Pareto. (Within a single
cell, nodes are randomly distributed.) In Table V, we report
the results when we use a 2km-by-2km area and the average of
10 nodes in each cell. We observe that TRUNC-1 consistently
outperforms existing schemes when nodes follow different
distribution patterns.

Comparison with Capacity-unaware Schemes: While we
have compared TRUNC-1 with prior backbone construction
schemes that consider node capacity, there are other schemes
that focus on small backbone size or control overhead without
considering backbone capacity [3, 4, 19]. Basagni et al. [20]
compare some of them based on multiple criteria, and we
briefly compare them with TRUNC-1 in terms of backbone
size. When we use the same network settings, TRUNC-1 finds
smaller backbones than highly localized schemes (e.g., [19]),
while TRUNC-1 backbones are similar in size to those based
on global operation (e.g., [4]). For example, in dense networks
(with the average node degree being around 20), both TRUNC-
1 and the scheme by Wan et al. [4] include around 19% of
nodes in the backbone on average, while backbones by Dai
and Wu [19] include around 25% of nodes. This is some-
what expected; TRUNC-1 uses information about extended
neighborhood (e.g., level-1 fragments) and thus can build
smaller backbones than purely localized schemes, while the
difference from the globally sequential scheme by Wan et
al. is minimal (See Section III-C). In addition to small size,
TRUNC-1 considers node capacity, and the resulting backbones
consist mostly of high-capacity nodes. We next present packet-
level simulation results to demonstrate that TRUNC-1 leads
to significant increase in network lifetime, while maintaining
connectivity in dynamic scenarios.

C. Packet-level Simulations

In this subsection, we focus on saving energy and extend-
ing network lifetime using ns-2 simulations [21]. SPAN and
TRUNC-1 performed best in Section V-B, and we compare
only these two schemes here. We use the SPAN simulation
code written by the authors of SPAN.5 Due to high resource
requirements, we have been able to perform simulations only

5Available at http://www.pdos.lcs.mit.edu/span/. We plan to make our
simulation code public as well.
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No. of nodes (square size in km×km)
500 1000 2000 4000

(1.4×1.4) (2.0×2.0) (2.8×2.8) (4.0.×4.0)
No backbone 3.66 5.04 6.86 9.60

SPAN 4.39 6.17 8.44 11.89
Wu et al. 4.14 5.75 7.86 11.01

GAF 3.93 5.45 7.45 10.46
TRUNC-1 5.66 7.84 10.27 14.35

TABLE IV
AVERAGE PATH LENGTH BY DIFFERENT SCHEMES.

Exponential Distribution Pareto Distribution
backbone avg. min. backbone avg. min.

size capacity capacity size capacity capacity
SPAN 104.16 0.660 0.017 111.48 0.669 0.025

Wu et al. 118.28 0.494 0.006 131.32 0.507 0.006
GAF 272.56 0.699 0.009 298.12 0.689 0.009

TRUNC-1 87.76 0.919 0.563 89.84 0.923 0.600

TABLE V
BACKBONE SIZE AND CAPACITY VALUES WITH DIFFERENT NODE DISTRIBUTIONS

with relatively small topologies (with 150 nodes). We first de-
scribe our simulation environment before reporting the results.

1) Simulation Environment: Both TRUNC-K and SPAN
run on top of the IEEE 802.11 MAC layer [22], and non-
backbone nodes stay in the power saving mode. In the IEEE
802.11 power saving mode, time is partitioned into beacon
periods. All nodes stay awake in the beginning of each beacon
period and exchange messages to inform neighbors of pending
messages. If a node finds that there are buffered incoming
messages, it requests the messages and stays awake during
the beacon period. Otherwise, it goes back to sleep until the
start of the next beacon period. Power saving mode usually
leads to increased delay and reduced throughput (e.g., due
to additional control packets), and Chen et al. [7] slightly
modified the power saving mode in the 802.11 MAC to
improve performance, which we use in our simulations.

We assume there are three classes for the node energy level.
A low-energy node has 300J of energy, which is used in the
experiments in [7]. A medium-energy node has 600J, and a
high-energy node has 2500J. (2500J is usually sufficient to
last 3000 seconds of simulation time.) We vary the node
percentage of each class to examine the performance in
different settings. Node energy is constantly updated using the
following power consumption values reported in [7]: 1.4W for
transmission, 1.0W for receiving, 0.83W for idling, and 0.13W
for sleeping. We place 150 nodes uniformly at random on a
1000 meter by 1000 meter square area. The transmission range
of each mobile node is 250 meters.

We choose 10 pairs of source and destination nodes uni-
formly at random among high-energy nodes; each source
generates traffic 50 seconds into the simulation at the constant
rate of one 128-byte packet per second. The MAC-level
transmission rate is 2 Mbps. As we discuss later, SPAN
rotates backbone nodes frequently (e.g., 2 changes per second),
which shortens path lifetimes. When we used on-demand
routing protocols over SPAN, the path maintenance overhead
was high. Instead, we use an idealized scheme for packet
routing, where a path is found on top of the connected
backbone using the centralized Floyd-Warshall algorithm [16]
implemented in ns-2. This corresponds to a best case scenario
for SPAN. Nodes move according to the Random Waypoint
mobility model (pause time=400s, and maximum speed is 1–
16m/s) [21]. We also set the minimum speed to be 0.1m/s
to avoid speed decay [23]. Unless otherwise stated, we use
mobile scenarios with the maximum speed of 1m/s.

In both TRUNC-1 and SPAN, each node sends a HELLO
message every two seconds. For TRUNC-1, we set the period
of REQ messages to 14 seconds, which leads to reasonable
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Fig. 11. Number of dead nodes over time. L:M:H=3:4:3.

performance. In each case, we report the average of 5 runs.
2) Simulation Results: For the first set of results, we

examine two types of network lifetimes [24]. Network 1-life
is the time when the first node dies, and half-life is the time
when the half of initial nodes die.6 In addition to TRUNC-1
and SPAN, we use two other schemes for reference. The first
one is to identify a lower bound, in which all nodes always
stay in sleep mode except when they wake up at the beginning
of beacon periods. Each node also sends a 128-byte HELLO
message every two seconds. In the second scheme (No-PSM),
no power saving operation is used, and all nodes always stay
awake without sending any control messages. We send no data
traffic in either of the two reference cases.

In Figure 11 we present a snapshot for the number of
dead nodes over time. In this setting, approximately 30% of
nodes are low-energy (L), 40% of them are medium-energy
(M), and the rest 30% are high-energy (H) nodes. (To denote
this ratio, we use an abbreviated notation L:M:H=3:4:3.) In
Figure 11, the network 1-life of SPAN is similar to that of “No-
PSM.” This is expected from Figure 10 to some extent; SPAN
includes low-energy nodes in the backbone, and their lifetimes
decrease significantly. Although SPAN rotates the backbone
node responsibility, there exists an unfortunate low-energy
node in most of our experiments that stays in the backbone
during the first 350 seconds. In contrast, with TRUNC-1, the
network 1-life is close to 960 seconds, which is 2.7 times
longer than that of SPAN. This is because the TRUNC-1
backbone consists mostly of high-energy nodes plus a few
medium-energy nodes, and low-energy nodes can stay in sleep

6We assume that the network needs external support after this time (e.g.,
addition of fresh nodes in the case of sensor networks).
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Ratio of 1-Life (sec) Half-Life (sec)
L:M:H TRUNC-1 SPAN TRUNC-1 SPAN
4:4:2 892.1 365.5 1911.0 1506.3

(101.0) (28.3) (139.6) (54.5)
3:4:3 946.6 375.0 2106.2 1689.8

(22.0) (29.1) (33.7) (40.5)
2:4:4 962.0 412.3 2208.3 1842.3

(13.7) (54.7) (41.1) (43.9)

TABLE VI
NETWORK LIFETIMES WITH VARIED PROPORTION OF NODES AT DIFFERENT

ENERGY LEVELS. THE VALUES IN PARENTHESES ARE STANDARD DEVIATIONS.

Energy consumption ratio (Idle:Sleep)
6.3:1 [7] 14.0:1 [25] 40.0:1 [8]

1-life 152 189 220
half-life 24 34 43

TABLE VII
LIFETIME EXTENSION IN DIFFERENT ENVIRONMENTS.

1 packet/sec 2 packets/sec 4 packets/sec
SPAN 0.96 (0.04) 0.88 (0.05) 0.62 (0.02)

TRUNC-1 0.98 (0.02) 0.92 (0.05) 0.58 (0.04)

TABLE VIII
AVERAGE DELIVERY RATIO WITH VARYING TRAFFIC LOAD.

mode and save energy. In the case of TRUNC-1, we observe a
sharp increase in the number of dead nodes as the first node
dies. This is the time (960 seconds) when all low-energy nodes
in TRUNC-1 run out of power. Note that this is earlier than the
case of lower-bound (around 1050 seconds). This is because
with TRUNC-1, nodes consume more energy to exchange
larger HELLO messages (in this experiment around 211 bytes
on average) than the lower-bound case (128 bytes). Compared
to SPAN, TRUNC-1 also increases the average lifetime of low-
energy nodes by 28% (1038.1 seconds vs. 811.3 seconds).

We now consider the lifetime of medium-energy nodes in
Figure 11. The use of low-energy backbone nodes in SPAN
allows more medium-energy nodes to be in sleep mode and
increase their lifetime. Still, compared to SPAN, the TRUNC-1
backbone increases the network half-life by around 26%. We
explain this as follows. In this network setting, a connected
backbone needs to use several medium-energy nodes to main-
tain connectivity. Ideally, as the initial medium-energy back-
bone nodes expend their energy, they should be replaced with
different medium-energy nodes, such that their lifetimes do not
decrease significantly. From Figure 11, we infer that TRUNC-
1 evenly distributes the backbone responsibility among all
medium-energy nodes, and no medium-energy nodes die until
1600 seconds. (In Figure 11, after all low-energy nodes die
in the case of TRUNC-1 backbone, we observe a relatively
stable period during which no node dies.) In contrast, in SPAN,
medium-energy nodes start to die before 1200 seconds, and the
network half-life of SPAN decreased.

In Table VI, we tabulate the average network lifetimes and
standard deviations while varying the proportion of nodes
at different energy levels. We observe that in all scenarios,
TRUNC-1 achieves longer network lifetimes than SPAN (133–
152% longer for 1-life and 20–26% longer for half-life). We
also experimented using different parameters (e.g., different
initial battery capacity values and L:M:H ratios), and TRUNC-
1 outperformed SPAN in all cases. In all these experiments,
the average backbone sizes of TRUNC-1 and SPAN are very
similar (between 21 and 23 nodes depending on the scenarios).

In the previous experiments, we have used the energy
consumption values reported in [7]. In Table VII, we briefly
compare the results when we use different sets of values
reported in [25] and [8]. We only show the ratio between idle
and sleep energy consumption, which is the most dominant
difference between these sets. Compared to the results in Ta-
ble VI, as nodes in sleep mode consume less energy, TRUNC-1

achieves larger network lifetime extension over SPAN (e.g., up
to 220% increase in 1-lifetime, compared to previous 152%).

Backbone Maintenance: We now examine the backbone
resilience as well as the effectiveness of our proposed main-
tenance mechanisms against backbone partition. Let us define
the coverage of a connected backbone to be the number
of nodes that are in the backbone or have a neighbor in
the backbone. For an ideal connected backbone, its coverage
would always be equal to the number of nodes alive in the
network. In Figure 12, we show the largest coverage of the
TRUNC-1 backbone over time, while we change the maximum
speed (1m/s, 8m/s, and 16m/s). Due to node mobility or
energy-level change, the backbone may get disconnected,
and we see occasional drops in the coverage of TRUNC-1
backbone. However, our protocol detects such disconnections
quickly, and the local maintenance scheme helps to regain the
perfect coverage in a short period of time. As node mobility
becomes higher, we observe modest increase in the number of
partitions in the TRUNC-1 backbone. Compared to the TRUNC-
1 backbone, the SPAN backbone results in more frequent
coverage loss (Figure 13). In SPAN, nodes periodically leave
the backbone only after ensuring that the departure does not
cause backbone disconnection. However, it is possible that a
node makes such a decision based on outdated information
(e.g., due to node mobility), which occurs frequently, for
example, once every 30 seconds on average in Figure 13(a).

Another aspect of backbone maintenance is the frequency
with which nodes in the backbone change. In Figure 13(a), the
SPAN backbone undergoes 674 membership changes between
100 and 400 seconds. This is because backbone nodes in SPAN
periodically leave the backbone. In the same scenario, TRUNC-
1 causes 49 changes in the backbone membership. Suppose
that an on-demand routing protocol such as DSR [1] found
a path using backbone nodes. With SPAN, nodes on such a
path are likely to leave the backbone about 12 times more
frequently than TRUNC-1, and the source may need to find a
new path consisting of backbone nodes frequently. (Recall that
this is why we use the idealized routing in our experiments.)

Data Delivery: We briefly report the results about data
delivery performance of TRUNC-1 backbone. In the previous
light-load experiments, both TRUNC-1 and SPAN achieve
near-perfect data delivery ratios. In this set of experiments
we experiment with high-load scenarios using 1024-byte data
packets with varying packet rates. We also use static networks
and ensure the distance between source and destination is more
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Fig. 12. TRUNC-1 backbone coverage.
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Fig. 13. SPAN backbone coverage.

Max. speed REQ REPLY CONNECT RECOVER HELLO
1m/s 1.80 2.15 1.64 0.12 52.73
8m/s 2.02 2.29 1.94 0.34 53.43
16m/s 1.83 2.04 2.14 0.49 53.65

TABLE IX
CONTROL PACKETS PER SECOND IN ENTIRE 150-NODE NETWORK.

than 500 meters such that all data packets go through at least
two intermediate hops. In Table VIII, we tabulate the average
data delivery ratios and standard deviations (in parentheses)
with different sending rates. As the amount of data traffic
increases, the average delivery ratio decreases in both schemes,
and the difference between TRUNC-1 and SPAN is marginal.
In these experiments, TRUNC-1 leads to shorter average end-
to-end delays than SPAN, but the difference is not significant.

Control Overhead: In both TRUNC-1 and SPAN, each
node sends a HELLO message every two seconds. HELLO
messages in TRUNC-1 contain more information, and the
average message is longer than that of SPAN. Specifically, in
TRUNC-1, the average length of HELLO messages is around
192 bytes, and in SPAN it is around 131 bytes. Note that the
difference is due in part to more dead nodes in SPAN, which
lead to fewer neighbors in HELLO messages.

TRUNC-1 uses additional control messages (e.g., REQ and
CONNECT). In Table IX we tabulate the average numbers of
control packets per second used in the entire network. In
TRUNC-1, the total number of non-HELLO control packets is
only around 6 packets per second in the 150-node network,

and their average sizes are 20 to 70 bytes. While the expected
number of HELLO messages is 75 per second (with 150
nodes sending once every two seconds), due to dead nodes,
the number in the table is around 30% smaller. We also
observe that the overall increase in control overhead due to
higher mobility is marginal. We believe that the advantages
of TRUNC-1 (e.g., longer network lifetime, better backbone
coverage) outweigh the modest increase in control overhead.

Experiments in Lossy Environments: Wireless links are
more prone to frame errors than wired links, and a large
amount of research attempts to improve system performance
in this environment [10, 26]. We briefly report the results
when TRUNC-K operates in such lossy wireless environments.
In our experiments, we randomly select 20% of links, which
intermittently experience a high frame-error rate in which 80%
of frames are lost. We vary the length of high-error period
and experiment with two scenarios: links experience average
of (1) 10-second lossy period in every 100 seconds and (2) 30-
second lossy period in every 100 seconds. Our results show
that without any loss, the delivery ratio is 99.2%, while it
goes down to 96.9% and 91.4% with 10-second and 30-second
lossy periods, respectively. While the drop in delivery ratio
is expected, the decrease is moderate—around 3% and 8%
drop when errors occur for 10% or 30% of time. In fact, we
ideally do not want to consider those fluctuating links when
connecting nodes to form a backbone (if not necessary), and
a more careful design of a backbone construction scheme
that jointly considers link quality and node capacity is an
interesting future research topic.
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VI. RELATED WORK

Many distributed algorithms have been proposed to find a
connected dominating set. Das and Bharghavan [3] apply well-
known centralized algorithms [6]. Using the unit-disk graph
model, Wan et al. [4] propose a message-optimal algorithm
that achieves a constant approximation ratio. Dubhashi et
al. [5] propose a distributed algorithm that finds an O(log ∆)
approximation to the minimum connected dominating set in
O(log n log ∆) time. None of them consider backbone mainte-
nance or node capacity. As described in Section V, SPAN [7],
GAF [8], and the scheme by Wu et al. [9] all consider
remaining energy level when finding a connected backbone.
However, none achieves a maximum-capacity backbone, nor
provides a bound on the backbone size. Recently, Basagni
et al. [20] present simulation results and compare a number
of existing schemes for connected backbone construction in
various aspects such as completion time, backbone size, and
message overhead. Also related are clustering algorithms for
sensor networks [27, 28]. Kuhn et al. [27] propose a clustering
algorithm that finds a dominating set in the initial deployment
phase. HEED [28] selects cluster-heads based on the residual
energy and parameters such as node degree, but assumes that
the network is quasi-stationary. In contrast, TRUNC-K provides
backbone-maintenance mechanisms for dynamic networks.
Recently, Lee et al. [29] present a backbone-construction
scheme in a selfish environment and report experimental
results from an implementation on a 12-node testbed.

TRUNC-K uses the sleep mode to save energy. There are
schemes that exploit the sleep mode operation, but are not
based on the connected backbone approach. A number of
wireless MAC protocols attempt to save energy by putting
nodes to sleep mode depending on various criteria [30, 31].
Zheng and Kravets [32] propose an on-demand power saving
scheme, where nodes stay awake according to traffic load
and their soft-state timers. Assuming dense sensor networks,
ASCENT [33] uses a simple mechanism to determine “active”
and “passive” nodes. However, ASCENT does not guarantee
network connectivity. We also can achieve energy saving
through transmission power control at each node [34–36],
which is complementary to our work.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a parameterized scheme TRUNC-K that
builds a connected backbone in multihop wireless networks.
We have also proved that our scheme can construct essen-
tially best possible backbones with respect to backbone size
and node capacity. We generalized our scheme to construct
and maintain a resilient backbone in dynamic networks.
Through detailed simulations, we demonstrated that our pro-
posed scheme outperforms existing energy-saving techniques
in many aspects. In the future, we plan to investigate how to
adjust the K value according to network environments (e.g.,
node mobility or density). Then, we will be able to include
adaptive protocol mechanisms that can automatically change
the K value when network parameters change over time
(e.g., increased mobility, or new node deployment). We also
want to analytically investigate the backbone performance with

different K values. As discussed earlier, another interesting
future direction is to design a backbone construction scheme
that jointly considers node capacity and link quality.
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APPENDIX

We describe a special case of the FKG inequality [37].
Consider an event F that is determined by a vector ~Y =
(Y1, · · · , Ym) of independent random variables Yi ∈ {0, 1}.
Suppose that whenever F holds for ~a, F also holds for any
~b that coordinate-wise dominates ~a (i.e., ∀i, ai ≤ bi). Then,
we call F an increasing event of ~Y . For increasing events
F1, · · · , Fl, the following holds:

Pr(
∧l

i=1 Fi) ≥
∏l

i=1 Pr(Fi). (3)

We also use the following identity from [38], which holds
for any non-negative integer d and any real x /∈ {−d,−d +
1, . . . , 0}:

d
∑

l=0

(

d
l

) (−1)l

x + l
=

1

x
(

d + x
d

) (4)

A. Proof of Theorem 2.2

We prove that in any D-regular graph with n nodes,

E[|L|] ≤ c
n

D
log (D + 1) (5)

for a parameter c that can be arbitrarily close to 1 as D
becomes large. Consider an indicator variable Xv, where
Xv = 1 iff v ∈ L. Then, |L| =

∑

v Xv. Let us denote by
Pv the probability that node v is nominated as leader. Then,
from the linearity of expectation, E[|L|] = E[

∑

v Xv] =
∑

v E[Xv] =
∑

v Pv . Then, to prove the theorem, it is
sufficient to show:

∀ v, Pv ≤
c

D
log (D + 1). (6)

Since all nodes have exactly D neighbors, Pv is same
for all v’s. To show the above inequality, we use the fol-
lowing: Pv = 1 − Pr[no nodes nominate v] = 1 −
∫ 1

0
Pr[no nodes nominate v|cv = t] dt.

We define Ei = Pr[i-th neighbor of v does not nominate v].
We also denote E0 = Pr[v itself nominates other node]. For
each node u, consider the following random variable: Yu = 1
if cu > cv ; Yu = 0 otherwise. Then, Ei (0 ≤ i ≤ D) is an
increasing event of n random variable Yu’s, and we can apply
the FKG inequality to Pv , similarly to [39]:

Pv = 1−
∫ 1

0 Pr[E0 ∧ E1 ∧ · · · ∧ ED|cv = t] dt

≤ 1−
∫ 1

0

∏D
i=0 Pr[Ei|cv = t] dt

= 1−
∫ 1

0
(1− tD)D+1 dt

Let us define A =
∫ 1

0 (1− tD)D+1 dt. Then, Pv ≤ 1− A.
We want to find a value c ≥ 1 that satisfies the following:

A ≥ ( 1
D+1 )

c

D (7)

Then, since x ≥ 1 + log x for all x > 0, we have A ≥ 1 −
c log (D + 1)/D, and consequently, Pv ≤ c log (D + 1)/D,
which is what we want to show.

Now, it remains to determine c. By taking the natural
logarithm of (7), c should satisfy:

c ≥ − D
log (D+1) log A = D

log (D+1) log (A−1). (8)

We further simplify A by using (4):

A =

D+1
∑

l=0

(−1)l
(

D + 1

l

)

∫ 1

0

tDl dt

=

D+1
∑

l=0

(−1)l

Dl + 1

(

D + 1

l

)

=
(

D + 1 + 1/D
D + 1

)−1

=
(

∏D+1
i=1 (1 + 1

Di )
)−1

(9)

We note the following facts: H(n) =
∑n

i=1 1/i ≤ log n+1,
and 1 + x ≤ ex for all x ≥ 0. We denote exp(x) = ex. So,
we can upper-bound the right-hand-side of (8) as:

D
log (D+1) log(A−1) = D

log (D+1) log (
∏D+1

i=1 (1 + 1
Di ))

≤ D
log (D+1) log (

∏D+1
i=1 exp( 1

Di ))

= D
log (D+1)

∑D+1
i=1

1
Di

≤ log(D+1)+1
log (D+1)

Consequently, using:

c = 1 + 1
log (D+1) (10)

satisfies (8). Note that as D grows large, c approaches 1.

B. Proof of Lemma 2.3

Let us denote c from (10) as c(D). Note that c(D) is
decreasing where c(1) = 1 + 1/ log 2 ≈ 2.44. Using similar
steps as in Appendix A, we can show:

E[|L|] ≤
∑

v∈V α c(dv) log (dv+1)
dv

≤ c′
∑

v∈V
log (dv+1)

dv
,

where c′ = α c(δ) and δ is the minimum degree in the network.
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C. Proof of Theorem 2.4

We first show that in an α-locally-regular graph, the size
of an optimal dominating set (OPT) is lower-bounded by
OPT ≥ c′′

∑

v∈V
1
dv

, for some constant c′′. To obtain this
bound, we first consider the following Integer Program (IP)
for a minimum dominating set:

minimize
∑

v∈V xv,

subject to ∀v, xv +
∑

u:(u,v)∈E xu ≥ 1, xv ∈ {0, 1}

Relaxing the integrality constraints, we get a Linear Program
(LP) where ∀v, xv ≥ 0. An optimal LP solution is a lower
bound on the optimal solution of IP. The dual of the LP is:

maximize
∑

v∈V xv,

subject to ∀v, xv +
∑

u:(u,v)∈E xu ≤ 1, xv ≥ 0

We show that for c′′ = 1
α+1 , using xv = c′′

dv
is a feasible

solution of the dual. Clearly, xv is positive. We now show
that this choice of xv meets the first set of constraints as well.
Note that in α-locally-regular graphs, du ≥ dv/α.

xv +
∑

u:(u,v)∈E xu = c′′

dv

+
∑

u:(u,v)∈E
c′′

du

≤ c′′ +
∑

u:(u,v)∈E
c′′

dv/α

= c′′ + c′′α
dv

dv = c′′(1 + α) = 1.

Since any feasible solution for the dual is a lower bound on
OPT, OPT ≥ c′′

∑

v∈V
1
dv

. From Lemma 2.3,

E[|L|] ≤ c′
∑

v∈V

1

dv
log(∆ + 1) ≤

c′

c′′
log(∆ + 1) OPT.

D. Proof of Theorem 3.1

We denote by v the minimum-capacity node of the resulting
backbone. If v ∈ L, by Theorem 2.1, the backbone is a
maximum-capacity connected dominating set. We study the
case where v is a part of a virtual edge. Consider the virtual
edge that included v while connecting fragments F1 and F2.
Pick any two leaders each from F1 and F2 and call them L1

and L2, respectively. We first prove by contradiction that the
following set is not connected: S = {u | cu > cv}. Note that
L1 ∈ S and L2 ∈ S. Let us assume S is connected. Then,
L1 and L2 have at least one path P consisting only of nodes
in S. In this case, F1 and F2 can get merged using possibly
multiple virtual edges using the nodes on P . As a result, F1

and F2 would not have chosen the virtual edge with v. This
contradiction proves that S is not connected. Since S is not
connected, no subset of S can be a connected dominating set.
Therefore, any connected dominating set must include a node
whose capacity is at most cv.

E. Proof of the (2H(∆) + 1)-bound in [3]

The proof for the the (2H(∆) + 1) bound in Lemma 2
in [3] is not available in the literature, and we present the
proof here. Their algorithm first finds a dominating set DS
using the greedy heuristic [16], which guarantees s

.
= |DS| ≤

H(∆)OPT. Then, when we connect fragments using an MST-
based algorithm with chains of up to two nodes, we should first

connect two components using one node whenever available.
If no pairs of components have common neighbors, then we
connect components using chains of two nodes. Suppose that
we have added x nodes before using chains of two nodes.
Let us denote by y the number of remaining components at
this point. Clearly, y ≤ s − x. Since these components have
no common neighbors, each component requires at least one
distinct node in OPT, and y ≤OPT. We now use 2 nodes for
each connection of remaining components, giving a total cost
of: s + x + 2(y − 1) ≤ 2s + y ≤ (2H(∆) + 1)OPT.
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