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Abstract. We build on the work of Andelman & Mansour and Azar,
Birnbaum, Karlin, Mathieu & Thach Nguyen to show that the full-
information (i.e., offline) budgeted-allocation problem can be approxi-
mated to within 4/3: we conduct a rounding of the natural LP relax-
ation, for which our algorithm matches the known lower-bound on the
integrality gap.

1 Introduction

Sponsored-search auctions are a key driver of advertising, and are a topic of
much current research (Lahaie, Pennock, Saberi & Vohra [10]). A fundamen-
tal problem here is online budgeted allocation, formulated and investigated by
Mehta, Saberi, Vazirani & Vazirani [12]. Recent work has also focused on the
offline version of this basic allocation problem; we improve on the known results,
demonstrating a rounding approach for a natural LP relaxation that yields a
4/3-approximation, matching the known integrality gap. We also show that in
the natural scenario where bidders’ individual bids are much smaller than their
budgets, our algorithm solves the problem almost to optimality.

Our problem is as follows. We are given a set U of bidders and a set V
of keywords. Each bidder i is willing to pay an amount bi,j for keyword j to be
allocated to them; each bidder i also has a budget Bi at which their total payment
is capped. Our goal is to assign each keyword to at most one bidder, in order
to maximize the total payment obtained. This models the problem of deciding
which bidder (if any) gets to be listed for each keyword, in order to maximize
the total revenue obtained by, say, a search engine. That is, we want to solve the
following integer linear program (ILP), where xi,j is the indicator variable for
keyword j getting assigned to bidder i: maximize

∑
i∈U min{Bi,

∑
j∈V bi,jxi,j},

subject to
∑

i xi,j ≤ 1 for each j, and xi,j ∈ {0, 1} for all (i, j). (It is easy to see
that the “min” term can be appropriately rewritten in order to express this as
a standard ILP.)
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Known results. This NP -hard problem has been studied by Garg, Kumar
& Pandit, who presented an (1 +

√
5)/2 ∼ 1.618-approximation algorithm for

the problem [8]. (As usual, for our maximization problem, a ρ-approximation
algorithm, for ρ ≥ 1, is a polynomial-time algorithm that always presents a so-
lution of value at least 1/ρ times optimal; in the case of randomized algorithms,
the expected solution-value should be at least 1/ρ times optimal.) In addition
to other results, Lehmann, Lehmann & Nisan [11] have developed a greedy 2-
approximation algorithm for this problem. Now, the natural LP relaxation for
the problem is obtained by relaxing each xi,j to lie in [0, 1], in the above ILP. An-
delman & Mansour [2] presented a rounding algorithm for this LP that achieves
an approximation of e/(e − 1) ∼ 1.582; this was improved – for a more general
problem – by Feige & Vondrak to e/(e − 1) − ε, for an ε that is about 10−4

[6]. More recently, Azar, Birnbaum, Karlin, Mathieu & Thach Nguyen [3] have
improved the approximation ratio to 3/2. There are also two interesting special
cases of the problem: the uniform case, where each j has a price pj such that
bi,j ∈ {0, pj} for all i, and the case where all the budgets Bi are the same. Two
additional results are obtained in [2]: that the integrality gap of the above LP-
relaxation is at least 4/3 even for the first (i.e., uniform) special case, and that
the second special case can be approximated to within 1.39. See, e.g., [12, 4, 9]
for online versions of the problem.
Our results. We build on the work of [2, 3] and show how to round the LP
to obtain an approximation of 4/3: note from the previous paragraph that this
meets the integrality gap. Anna Karlin (personal communication, March 2008)
has informed us that Chakrabarty & Goel have independently obtained this
approximation ratio, as well as improved hardness-of-approximation results – a
preprint of this work is available [5]. We also present two extensions in Section 3:
(a) the important special case where each bidder’s bids are much smaller than
their budget [12, 4] can be solved near-optimally: if, for some ε ∈ [0, 1], bi,j ≤ ε·Bi

for all (i, j), our algorithm’s approximation ratio is 4/(4 − ε); and (b) suppose
that for some λ ≥ 1, we have for all (i, j, j′) that if bi,j and bi,j′ are nonzero, then
bi,j ≤ λ·bi,j′ . For this case, our algorithm yields a better-than-4/3 approximation
if λ < 2. In particular, if λ = 1, our algorithm has an approximation ratio of
(
√

2 + 1)/2 ∼ 1.207.

2 The algorithm and analysis

We will round the natural LP-relaxation mentioned in Section 1. Our algorithm
is randomized, and can be derandomized using the method of conditional prob-
abilities.

Observe that for the original (integral) problem, setting

bi,j := min{bi,j , Bi} (1)

keeps the problem unchanged. Thus, we will assume

∀(i, j), bi,j ≤ Bi. (2)



Notation. When we refer to the load on a bidder i w.r.t. some (fractional)
allocation x, we mean the sum

∑
j bi,jxi,j ; note that we do not truncate at Bi

in this definition.
Suppose we are given some feasible fractional allocation x; of course, the case

of interest is where this is an optimal solution to the LP, but we do not require it.
It is also immediate that the following assumption is without loss of generality:

if bi,j = 0, then xi,j = 0. (3)

As in [3], we may assume that the bipartite graph (with (U, V ) as the partition)
induced by those xi,j that lie in (0, 1), is a forest F . This can be effected by
an efficient algorithm, such that the resulting fractional objective-function value
equals that of the original value that we started with [3]. This forest F is the
structure that we start with; we show how to round those xi,j in F . We are
motivated by the approaches of [1, 13, 7]; however, our method is different,
especially in step (P2) below. Each iteration is described next.

2.1 Iteration s, s ≥ 1

Remove all (i, j) that have already been rounded to 0 or 1; let F be the current
forest consisting of those xi,j that lie in (0, 1). Choose any maximal path P =
(w0, w1, . . . , wk) in F ; we will now probabilistically round at least one of the
edges in P to 0 or 1. For notational simplicity, let the current x value of edge
et = (wt−1, wt) in P be denoted yt; note that all the yt lie in (0, 1). We will next
choose values z1, z2, . . . , zk probabilistically, and update the x value of each edge
et = (wt−1, wt) to yt + zt. Suppose we initialize some value for z1, and that we
have chosen the increments z1, z2, . . . , zt, for some t ≥ 1. Then, the value zt+1

(corresponding to edge et+1 = (wt, wt+1)) is chosen as follows:

(P1) If wt ∈ V (i.e., is a keyword), then zt+1 = −zt (i.e., we retain the total
assignment value of wt);

(P2) if wt ∈ U (i.e., is a bidder), then we choose zt+1 so that the load on wt

remains unchanged (recall that in computing the load, we do not truncate
at Bwt); i.e., we set zt+1 = −bwt,wt−1zt/bwt,wt+1 , which ensures that the
incremental load bwt,wt−1zt + bwt,wt+1zt+1 is zero. (Since xwt,wt+1 is nonzero
by the definition of F , bwt,wt+1 is also nonzero by (3); therefore, dividing by
bwt,wt+1 is admissible.)

Observe that the vector z = (z1, z2, . . . , zk) is completely determined by z1,
the path P , and the matrix of bids b; more precisely, there exist reals c1, c2, . . . , ck

that depend only on the path P and the matrix b, such that

∀t, zt = ctz1. (4)

We will denote this resultant vector z by f(z1).
Now let µ be the smallest positive value such that if we set z1 := µ, then all

the x values (after incrementing by the vector z as mentioned above) stay in [0, 1],



and at least one of them becomes 0 or 1. Similarly, let γ be the smallest positive
value such that if we set z1 := −γ, then this “rounding-progress” property holds.
(It is easy to see that µ and γ are strictly positive, since all the yi lie in (0, 1).)
We now choose the vector z as follows:

(R1) with probability γ/(µ + γ), let z = f(µ);
(R2) with the complementary probability of µ/(µ + γ), let z = f(−γ).

2.2 Analysis

If Z = (Z1, Z2, . . . , Zk) denotes the random vector z chosen in steps (R1) and
(R2), the choice of probabilities in (R1) and (R2) ensures that E[Z1] = 0. So,
we have from (4) that

∀t, E[Zt] = 0. (5)

The algorithm clearly rounds at least one edge permanently in each itera-
tion (and removes all such edges from the forest F ), and therefore terminates
in polynomial time. We now analyze the expected revenue obtained from each
bidder i, and prove that it is not too small.

Let L
(s)
i denote the load on bidder i at the end of iteration s; the values L

(0)
i

refer to the initial values obtained by running the subroutine of [3] that obtains
the forest F . Property (P2) shows that as long as i has degree at least two in
the forest F , L

(s)
i stays at its initial value L

(0)
i with probability 1. (Recall that

whenever we refer to F etc., we always refer to its subgraph containing those
edges with x values in (0, 1); edges that get rounded to 0 or 1 are removed from
F .) In particular, if i never had degree one at the end of any iteration, then its
final load equals L

(0)
i with probability one, so the expected approximation ratio

for i is one. So, suppose the degree of i came down to one at the end of some
iteration s. Let the corresponding unique neighbor of i be j, let β = bi,j , and
suppose, at the end of iteration s, the total already-rounded load on i and the
value of xi,j are α ≥ 0 and p ∈ (0, 1) respectively. Note that j, α, β as well as p

are all random variables, and that L
(s)
i = α + βp; so,

Pr[α + βp = L
(0)
i ] = 1.

Fix any j, α, β and p that satisfy α +βp = L
(0)
i ; all calculations from now on

will be conditional on this fixed choice, and on all random choices made up to
the end of iteration s. Property (5) and induction on the iterations show that
the final load on i (which is now a random variable that is a function of the
random choices made from iteration s + 1 onward) is:

α, with probability 1− p; and α + β, with probability p. (6)

Let B = Bi for brevity. Thus, the final expected revenue from i is (1 − p) ·
min{α, B}+p ·min{α+β, B}; the revenue obtained from i in the LP solution is



min{α+βp,B}. So, by the linearity of expectation, the expected approximation
ratio is the maximum possible value of

min{α + βp,B}
(1− p) ·min{α, B}+ p ·min{α + β, B}

.

It is easily seen that this ratio is 1 if α > B or if α + β < B. Also note from (2)
that β ≤ B. Thus, we want the minimum possible value of the reciprocal of the
approximation ratio:

r =
(1− p)α + pB

min{α + βp,B}
, (7)

subject to the constraints

p ∈ [0, 1]; α, β ≤ B; α + β ≥ B. (8)

(Of course, we assume the denominator of (7) is nonzero. In the case where it is
zero, it is easy to see that so is the numerator, in which case it follows trivially
that (1− p)α + pB ≥ (3/4) ·min{α + βp,B}.)

We consider two cases, based on which term in the denominator of r is
smaller:
Case I: α + βp ≤ B. Here, we want to minimize

r =
(1− p)α + pB

α + βp
. (9)

Keeping all other variables fixed and viewing α as a variable, r is minimized when
α takes one of its extreme values, since r is a non-negative rational function of
α. From our constraints, we have B − β ≤ α ≤ B − βp. Thus, r is minimized
at one of these two extreme values of α. If α + β = B, then r = 1. Suppose
α = B − βp. Then,

r =
(1− p)α + pB

B
. (10)

Since
α = B − βp ≥ B(1− p), (11)

we have

r =
(1− p)α + pB

B
≥ (1− p)2 + p,

which attains a minimum value of 3/4 when p = 1/2.
Case II: α + βp ≥ B. We once again fix all other variables and vary α; the
extreme values for α now are α = B − Bp (with β = B) and α = B. In the
former case, the argument of Case I shows that r ≥ 3/4; in the latter case, r is
easily seen to be 1.
This completes the proof that our expected approximation ratio is at most 4/3.
Also, it is easy to derandomize the algorithm by picking one of the two possible
updates in each iteration using the method of conditional probabilities; we will
describe this in the full version. Thus we have the following theorem:



Theorem 1. Given any feasible fractional solution to the LP-relaxation of the
offline budgeted-allocation problem with the truncations (1) done without loss of
generality, it can be rounded to a feasible integer solution with at least 3/4-th
the value of the fractional solution in deterministic polynomial time. Therefore,
the offline budgeted-allocation problem can be approximated to within 4/3 in
deterministic polynomial time.

3 Extensions

The following two extensions hold.

3.1 The case of bids being small w.r.t. budgets

Here we consider the case where for some ε ∈ [0, 1], we have for all i, j that
bi,j ≤ εBi. The only modification needed to the analysis of Section 2.2 is that
(11) now becomes “α = B−βp ≥ B(1− εp)”, and that the function to minimize
is (1−p) · (1− εp)+p instead of (1−p)2 +p. This is again minimized at p = 1/2,
giving r ≥ 1−ε/4. Thus, the approximation ratio in this case is at most 4/(4−ε).

3.2 The case of similar bids for any given bidder

We now study the case where for each i, all its nonzero bids bi,j are within some
factor λ of each other, where 1 ≤ λ ≤ 2. Note that different bidders can still
have widely-differing bid values.

Consider the analysis of Section 2.2. In the trivial case where α = 0, it easily
follows from (6) that the approximation ratio for machine i is 1. So suppose
α > 0; then the additional constraint that

β ≤ αλ (12)

must hold, by our assumption about the bid-values.
By a tedious proof along the lines of Section 2.2, it can be shown that we get

a better-than-4/3 approximation if λ < 2. We will present the calculation-details
in the full version. For now, we just focus on the case where λ = 1. Recall that
we aim to minimize r from (7), subject to (8) and the constraint (12), i.e., α ≥ β.
Let us first argue that if the minimum value of r is smaller than 1, then α = β
at any minimizing point. To see this, assume for a contradiction that there is a
minimizing pair (α, β) with α > β, and observe that we may make the following
three sets of assumptions w.l.o.g.: (i) if α = 0 or α + β = B, then r = 1: so, we
may assume that α > 0 and α + β > B; (ii) if β = B, then α ≥ β = B = β and
we are done, so we can assume β < B; (iii) if p = 0, then r = 1, so we can take
p > 0. Now, if we perturb as α := α− δ and β := β + δ/p for some tiny positive
δ, then we stay in the feasible region and get a smaller value for r from (7), a
contradiction. So, we can take α = β, and have from (8) that α = β ≥ B/2.

We repeat the case analysis of Section 2.2. In Case I, the extreme value
α = B/2 gives r = 1. The other extreme value is α = B − βp = B − αp, i.e.,



α = B/(1 + p). So, the r of (10) becomes (1 − p)/(1 + p) + p, whose minimum
value is 2(

√
2 − 1). Similarly in Case II. Thus, r ≥ 2(

√
2 − 1), and taking the

reciprocal, we see that the approximation ratio is (
√

2 + 1)/2 ∼ 1.207.
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