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Abstract. A basic randomized coloring procedure has been used in probabilistic proofs to
obtain remarkably strong results on graph coloring. These results include the asymptotic
version of the List Coloring Conjecture due to Kahn, the extensions of Brooks’ Theorem
to sparse graphs due to Kim and Johansson, and Luby’s fast parallel and distributed
algorithms for graph coloring. The most challenging aspect of a typical probabilistic proof
is showing adequate concentration bounds for key random variables. In this paper, we
present a simple symmetry-breaking augmentation to the randomized coloring procedure
that works well in conjunction with Azuma’s Martingale Inequality to easily yield the
requisite concentration bounds. We use this approach to obtain a number of results in
two areas: frugal coloring and weighted equitable coloring. A β-frugal coloring of a graph
G is a proper vertex-coloring of G in which no color appears more than β times in any
neighborhood. Let G = (V, E) be a vertex-weighted graph with weight function w : V →
[0, 1] and let W =

∑
v∈V

w(v). A weighted equitable coloring of G is a proper k-coloring
such that the total weight of every color class is “large”, i.e., “not much smaller” than W/k;
this notion is useful in obtaining tail bounds for sums of dependent random variables.

1 Introduction and Summary of Results

The randomized coloring procedure refers to a simple randomized algorithm for coloring
graphs that has been used in probabilistic proofs over the past two decades, to obtain
remarkably strong results on graph coloring. Some of these results are existential, whereas
some lead to polynomial-time algorithms. These results include the asymptotic version
of the List Coloring Conjecture due to Kahn [16], and Kim [18] and Johansson’s [14]
extensions of Brooks’ Theorem for graphs with lower-bounded girth. The randomized
coloring procedure has also been used by Luby [22] to obtain fast parallel and distributed
algorithms for graph coloring. In its simplest form, the procedure is:

Each vertex v picks a tentative color uniformly at random from its color palette.
With high probability the tentative coloring may not be proper; it is repaired by
uncoloring each vertex v that receives the same color as a neighbor.

The randomized coloring procedure allows us to claim the existence of a proper, partial
coloring of the graph, having certain desired properties. This coloring can be extended
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to a complete proper coloring in a variety of ways (for example, greedily). Variants of
this procedure involve vertices making a non-uniform color choice or each vertex having
an activation probability. For example, in Johansson’s extension of Brooks’ Theorem for
triangle-free graphs [14], it is important that some colors are used more than others and
to ensure this, a non-uniform probability distribution is used for the choice of colors. In
Luby’s parallel algorithm for graph coloring [22] each node has an activation probability
of 1/2; the algorithm starts by flipping an unbiased coin for each vertex and only those
vertices that are activated in this step take further part in the coloring procedure.

In the iterative or incremental version of this procedure, the partial coloring obtained
after one application of the procedure is not completed deterministically; instead the
coloring is incrementally extended by repeating the procedure. Specifically, after one
application of the procedure we argue that (i) sufficient progress has been made and
(ii) the partial coloring has the desired properties with positive (though, typically very
small) probability. A “good” partial coloring is then fixed and we extend this coloring
by performing the next iteration of the randomized coloring procedure. This incremental
version of the procedure is extremely powerful and the results [14, 16, 18, 22] mentioned
above, are obtained thus. The incremental randomized coloring procedure is a special
case of the general technique variously referred to as the “semi-random method,” the
“pseudo-random method,” or the “Rödl Nibble.”

In this paper, we present a simple symmetry-breaking augmentation to the random-
ized coloring procedure. This symmetry-breaking approach, when used in conjunction
with Azuma’s Martingale Inequality, allows us to use the incremental randomized color-
ing procedure to prove a number of new results (mentioned below). In its simplest form,
our approach starts by picking a permutation π of the vertex set V of the given graph G.
Depending on the application, the permutation π can be arbitrary or random or dictated
by the structure of G. As in the standard randomized coloring procedure, in the first step,
vertices pick tentative colors. Then, in the uncoloring step, a vertex v is uncolored only
if there is a neighbor of lower rank in π that has received the same tentative color. Thus
the difference between the symmetry-breaking approach and the standard randomized
procedure is only in which neighbors are examined in the uncoloring step.

The most challenging aspect of a typical probabilistic-method proof is showing the
adequate concentration of key random variables. For example, for the first result of this
paper, we need to show that after an iteration of the randomized coloring, a constant
fraction of the neighbors of each vertex get colored. Let the random variable Pv denote
the number of neighbors of vertex v that get permanently colored in one iteration of
the coloring procedure. It can be shown that E[Pv] = α · degree(v) for some constant
0 < α < 1; we need to show that Pv is sharply concentrated around E[Pv]. In establishing
the concentration of Pv, we need to take into account the fact that even though vertices
independently chose tentative colors, the permanent acquisition of colors by vertices
may be highly correlated. Recall that a vertex u permanently acquires a color x if u
has tentatively chosen x and no neighbor of u has. To get around such “dependence”
problems, concentration inequalities such as Azuma’s Inequality that do not require
independence, have been used widely. However, obtaining sharp enough concentration
bounds using Azuma’s Inequality is not always easy. Consider the following version of
the inequality [23]:



Lemma 1. [Azuma’s Inequality] Let X be a random variable determined by n tri-
als T1, T2, . . . , Tn, such that for each i, and any two possible sequences of outcomes
t1, t2, . . . , ti−1, ti and t1, t2, . . . , ti−1, t

′
i:∣∣∣E[X|T1 = t1, . . . , Ti = ti]− E[X|T1 = t1, . . . , Ti = t′i]

∣∣∣ ≤ ci (1)

then
Pr
[
|X − E[X]| > t

]
≤ 2e−t2/(2

∑
c2i ). (2)

The difficulty in using Azuma’s Inequality arises from the need to show that
∑

i c
2
i is

small. For example, if each ci is shown to be bounded above by a small constant, then the
resulting bound in (2) is e−εt2/n for a positive constant ε. The “n” here is problematic,
as it may be considerably larger than E[X]. The more desirable concentration bound is
e−Ω(εt2/E[X]). For our random variable Pv, n may be as large as ∆2 (∆ being the maximum
degree of the graph), whereas E[Pv] is linear in ∆. This is because the permanent acqui-
sition of colors by vertices in the neighborhood of v depends on the tentative choices of
colors by vertices in the distance-2 neighborhood of v. The symmetry-breaking approach
provides critical help in showing that

∑
i c

2
i is small, usually O(E[X]). For example, to

show that Pv is concentrated around E[Pv], we consider Uv = 〈u1, u2, . . . , u`〉, the se-
quence of vertices at distance at most two from v, arranged in increasing rank according
to π. Letting Ti denote the tentative choice of a color by ui, we observe that changing Ti

does not affect any of the lower ranked vertices; only the higher ranked vertices. However,
(1) only considers the expected effect of changing Ti on higher ranked vertices, rather
than the worst-case effect. These observations play a critical role in proving a better
bound on

∑
i c

2
i ; see, e.g., the proofs of Lemmas 4 and 6.

Results and Notation. We apply randomized coloring with symmetry-breaking to ob-
tain a number of results in two areas: frugal coloring and weighted equitable coloring.
Our results include existential bounds, polynomial-time algorithms, and polylog-time
distributed algorithms. We state our specific results next. All logarithms here are nat-
ural logarithms, unless specified otherwise. We use e to denote the base of the natural
logarithm, and for any positive integer h, [h] to denote the set {1, 2, . . . , h}. For a vertex
v, N(v) denotes the set of neighbors of v in some graph G that is clear from the context;
deg(v) denotes |N(v)|. We make use of the following version of the Lovász Local Lemma.

Lemma 2. [Lovász Local Lemma] Consider a set E of events such that for each
A ∈ E, Pr[A] ≤ p < 1, and A is mutually independent of a set of all but at most d other
events from E. If 4pd ≤ 1, then with positive probability, none of the events in E occur.

Frugal coloring. A β-frugal coloring of a graph G is a proper vertex-coloring of G in
which no color appears more than β times in any neighborhood. Frugal coloring is a useful
subroutine in total coloring [10] and can also be used as a subroutine for efficient channel-
allocation schemes in multi-channel, multi-radio wireless networks [11]. We obtain four
results (F1)-(F4) for frugal coloring; let ∆ denote the maximum degree and n denote the
number of vertices of the graph.



(F1) Every graph has a (∆ + 1)-coloring that is O( log2 ∆
log log ∆)-frugal. Such a coloring can

be computed in polynomial time. Furthermore, there is a distributed algorithm that can
compute an O(log ∆ · log n

log log n)-frugal, (∆+1)-coloring in O(log n) communication rounds.

Hind, Molloy, and Reed [10] show that any graph has a O(log5 ∆)-frugal, (∆ + 1) color-
ing, and also show a lower bound of Ω(log ∆/ log log ∆) on the frugality of any (∆ + 1)-
coloring. Thus our result improves on the Hind-Molloy-Reed upper bound and is “log ∆”
away from being optimal3. Result (F1) is obtained via O(log ∆) iterations of the ran-
domized coloring procedure with symmetry-breaking and a proof that shows that in each
iteration, each color is used O(log ∆/ log log ∆) times in each neighborhood. In order to
tightly control the coloring procedure, we also assign activation probabilities to vertices
before each iteration; those vertices which are not activated, sleep through the iteration.

(F2) Let g be the maximum number of nodes at distance within C0 log ∆ from any vertex
in the given graph G, where C0 is an absolute constant. Then G has a (∆ + 1)-coloring
that is t-frugal, where t = O

(
log g

log(log g/ log ∆)

)
.

This result subsumes the bound of (F1), since g ≤ ∆O(log ∆). Note that if g ≤ ∆O(1), then
t is just O(log ∆). This result is particularly applicable to “growth-bounded” graphs [8,
21] which are graphs for which the number of nodes within distance r from any node
grows much smaller than ∆r (typically, as a polynomial in r). Thus, even for graphs
with exponential growth (the number of nodes at a distance r can be poly(∆, 2r)), we
still obtain an O(log ∆) bound on the frugality. For this result, we again use iterative
randomized coloring, but carefully exploit the fact that each iteration is local in the
graph, and that there are only O(log ∆) iterations: this is the reason for our definition
of g going only up to distance O(log ∆).

(F3) Let G be a d-inductive graph. Then G has a (d + 1)-coloring that is t-frugal,
where t = O(∆

d · log1+ε ∆) for any constant ε > 0 whenever d < 2∆/ log ∆, and t =
O(∆

d · log2 ∆
log(d log ∆/∆)) when d ≥ 2∆/ log ∆.

Recall that a graph is said to be d-inductive if there is an ordering v1, v2, . . . , vn of its
vertex set such that every vertex vi has at most d neighbors in {v1, v2, . . . , vi−1}. For
instance, planar graphs are 5-inductive. Any such ordering v1, v2, . . . , vn is called a d-
inductive ordering. A greedy algorithm that considers vertices of a d-inductive graph G
in d-inductive order and assigns to each vertex the smallest available color, succeeds in
producing a proper (d + 1)-vertex coloring of G. Note that no (d + 1)-coloring can have
frugality better than ∆/(d + 1) and therefore our result provides upper bounds that are
within O(polylog(∆)) of the ∆/(d+1) lower bound. Also note that since any graph with
maximum vertex degree ∆ is ∆-inductive, our result (F1) on arbitrary graphs can be
viewed as a special case of this result.

(F4) Let G be an n-vertex graph with maximum degree ∆ and girth at least 5. Then G

has an O(∆/ log ∆)-coloring that is O( log2 ∆
log log ∆)-frugal. Such a coloring can be computed

in polynomial time. Furthermore, an O(∆/ log ∆)-coloring that is O(log ∆· log n
log log n)-frugal

can be constructed by a distributed algorithm in O(log n) rounds of communication.

3 In recent personal communication, Molloy and Reed have mentioned that they have proved the exis-
tence of an O(log ∆/ log log ∆)-frugal (∆ + 1)-coloring; their paper is currently under preparation.



This result generalizes the result of Kim [18] and the result of Grable and Panconesi
[7]. In 1948 Brooks showed that any connected graph with maximum degree ∆, with
the exception of odd cycles and the (∆ + 1)-clique, has a ∆-coloring. In 1968 Vizing
asked if this bound could be improved for “sparse graphs” of certain kinds — graphs
with large girth, for example. This question remained unanswered until the work of [14]
showed that any triangle-free graph has chromatic number O(∆/ log ∆). Building on this
and a result due to [18] for graphs with girth at least 5, the paper [7] presents a simple
randomized distributed algorithm that produces an O(∆/ log ∆)-coloring of a triangle-
free graph with high probability, in O(log n) communication rounds. This algorithm
requires that ∆ ≥ log1+δ n for any constant δ > 0, whereas the existential result of [14]
holds for any ∆. We extend the analysis of [7, 18] to obtain (F4). We do not require our
symmetry-breaking approach for the polynomial-time algorithm guaranteed by (F4).

Weighted Equitable Coloring. An equitable coloring of a graph is a proper vertex color-
ing such that the sizes of any two color classes differ by at most 1. If a k-coloring of an
n-vertex graph G is equitable, then the size of every color class is in {dn/ke, bn/kc}. In a
pivotal result, Hajnal and Szemerédi [9] showed that every graph G with maximum de-
gree at most ∆ has an equitable k-coloring for every k ≥ ∆ + 1. Recently, Kierstead and
Kostochka [17] have presented a short proof of this result, along with a polynomial-time
algorithm for computing such a coloring. Equitable colorings naturally arise in schedul-
ing, partitioning, and load balancing [1, 3, 12, 20, 25, 26]. Pemmaraju [24] and Janson and
Ruciński [13] have used equitable colorings to derive large-deviation bounds for sums of
random variables that exhibit limited dependence. Let X = {X1, X2, . . . , Xn} be a col-
lection of bounded random variables with Xi ∈ [0, 1] for all i, let S =

∑
i Xi, and let

µ = E[S]. It is well-known that if the Xi’s are independent then the following bounds
on the tail probabilities of S, due to Chernoff [5], hold:

Pr[S ≥ (1+ε)µ] ≤ F+(µ, ε) .=
(

eε

(1 + ε)(1+ε)

)µ

; Pr[S ≤ (1−ε)µ] ≤ F−(µ, ε) .= e−µε2/2.

(3)
Researchers have attempted to extend the Chernoff bounds to situations where the Xi’s
exhibit limited dependence. We will model the “limited dependence” as usual by a de-
pendency graph G of X : G is an undirected graph with vertices {1, 2, . . . , n} such that if
{i1, i2, . . . , i`} is any independent set in G, then the random variables Xi1 , Xi2 , . . . , Xi`

are mutually independent. If the Xi’s have the same mean and G can be equitably k-
colored, then the following tail-bounds hold [24]: Pr[S ≥ (1 + ε)µ] ≤ 4k

e F+(µ, ε)1/k, and
Pr[S ≤ (1 − ε)µ] ≤ 4k

e F−(µ, ε)1/k, where F+(µ, ε) and F−(µ, ε) are from (3). Observe
that if k, the palette size of the equitable coloring, is small then these bounds are quite
good relative to the Chernoff bounds.

The above bounds apply only in the case where the Xi’s have the same mean. To
deal with the general case of arbitrary Xi ∈ [0, 1] using a similar approach, one needs to
consider weighted equitable colorings. Let G = (V = [n], E) be a vertex-weighted graph
with weight function w : V → [0, 1] such that w(i) = E[Xi], and let W = µ = E[S] =∑

v∈V w(v). Informally, a weighted equitable coloring of G is a proper k-coloring such
that the total weight of every color class is “large”, i.e., “not much smaller” than W/k.
(A classical equitable coloring is the special case with unit weight for all vertices.) Call



a k-coloring of G with λ being the minimum weight of all color classes, a (k, λ)-coloring.
Using the approach of [13, 24], such a coloring can be used to show that

Pr[S ≥ (1 + ε)µ] ≤ k · F+(λ, ε); Pr[S ≤ (1− ε)µ] ≤ k · F−(λ, ε). (4)

Hence, given k, we aim for as large a λ as possible. We prove two results (E1), (E2) for
k = ∆ + 1 colors, where ∆ denotes the maximum degree of G. We prove result (E3) for
d-inductive graphs with k = d + 1.

(E1) A (∆ + 1, λ)-coloring exists, with λ ≥
(
1− 1

e

)
W

∆+1 −O(
√

W log(∆ + 1)).

(E2) There is a constant c > 0 such that a (∆ + 1, λ)-coloring exists, with λ ≥⌊
cW

∆ log(∆+1)

⌋
.

When W > ∆2+Ω(1), the lower bound in (E1) simplifies to (1− 1/e− o(1)) W
∆+1 , which is

to within a constant of the best possible. Result (E2) holds for all values of W relative
to ∆ and in particular holds for “small” W as well. As shown by (4), these results yield
bounds on the tail probabilities of sums of arbitrary bounded random variables. (E1)
is obtained via a single iteration of randomized coloring with symmetry-breaking; (E2)
is obtained by combining [9] and (E1) with a partitioning approach. We note that for
a slightly smaller choice of c, we can also obtain (E2) by combining [9] and a second-
moment analysis with partitioning; however, we are not aware of any other approach
that yields our result (E1).

(E3) Every d-inductive graph has a (d+1, λ)-coloring with λ ≥ 1
e ·

W
d+1−O

(√
W

d+1∆ log(d + 1)
)
.

When W > ∆ · d1+Ω(1), the lower bound in (E3) simplifies to (1
e − o(1)) W

d+1 . Note that
since a graph with maximum degree ∆ is a ∆-inductive graph, result (E3) can be viewed
as a generalization of result (E1), with the small change that the leading constant is
1/e instead of 1− 1/e. This result extends known results on classical equitable colorings
of d-inductive graphs [4, 19]. Bollobas and Guy [4] consider the equitable coloring of 1-
inductive graphs (i.e., forests) whereas Kostochka et al. [19] consider d-inductive graphs
for arbitrary d. Specifically, Kostochka et al. [19] show that every d-inductive graph has
an equitable coloring with at most 16d colors (provided ∆ < n/15). Here, in result (E3),
we relax the notion of “equitability” while requiring that exactly d+1 colors be used. Like
(E1), result (E3) is also obtained via one iteration of the randomized coloring procedure,
but with π being an arbitrary d-inductive vertex ordering.
Organization. Due to space constraints, we only present proofs of results (F1) and (E1)
in this paper; these appear in the next two sections. For result (F1) we only present the
existential proof, postponing the algorithmic results to the full version of the paper. We
highlight the use of symmetry-breaking and Azuma’s Inequality in our proofs.

2 Frugal coloring for arbitrary graphs

In this section we prove result (F1). This follows by repeated application of the following
result, that describes what happens in one iteration of randomized coloring procedure.

Theorem 1. Let G = (V,E) be a graph with maximum vertex degree ∆. Suppose that
associated with each vertex v ∈ V , there is a palette P (v) of colors, where |P (v)| ≥



deg(v) + 1. Furthermore, suppose |P (v)| ≥ ∆/4 for all vertices v in G. Then, for some
subset C ⊆ V , there is a list coloring of the vertices in C such that:

(a) G[C] is properly colored.
(b) For every vertex v ∈ V and for every color x, there are at most 9 · log ∆

log log ∆ neighbors
of v colored x.

(c) For every vertex v ∈ V , the number of neighbors of v not in C is at most ∆(1− 1
e5 )+

27
√

∆ log ∆.
(d) For every vertex v ∈ V , the number of neighbors of v in C is at most ∆

e5 +27
√

∆ log ∆.

Before we prove this theorem, we show how repeated applications of it yield result
(F1), proving the existence of an O

(
log2 ∆

log log ∆

)
-frugal, (∆ + 1)-coloring of a graph G with

maximum degree ∆. Start by associating the palette of colors [∆ + 1] to each vertex.
Letting P0(v) denote the initial palette of a vertex v, we have P0(v) = [∆+1] for all v ∈ V .
Let G0 = G. For each i ≥ 0, we apply Theorem 1 to obtain a partial coloring of Gi. Let
Gi+1 denote the subgraph of Gi induced by vertices that are not colored in this partial
coloring of Gi. The palette of colors Pi+1(v) associated with a vertex v in Gi+1 is obtained
by deleting from Pi(v) all colors used by neighbors of v in the partial coloring of Gi. Let
degi(v) denote the degree of vertex v in Gi. Let ∆i denote the maximum vertex degree
of Gi and let pi denote the minimum palette size in Gi. Thus, ∆0 = ∆ and p0 = ∆ + 1.
Note that initially the requirements of Theorem 1 are satisfied. Suppose that for some
i ≥ 0, the requirements of the theorem are satisfied. That is, (i) |Pi(v)| ≥ degi(v) + 1
for all vertices v and (ii) pi ≥ ∆i/4. Since the palette of a vertex loses at most as many
colors as neighbors that are colored, it is still true that |Pi+1(v)| ≥ degi+1(v) + 1 for all
v in Gi+1. Theorem 1(c) implies that ∆i+1 ≤ ∆i(1 − 1

e5 ) + 27
√

∆i log ∆i and Theorem
1(d) implies that pi+1 ≥ pi− ∆i

e5 −27
√

∆i log ∆i. Thus the worst case behavior of ∆i and
pi is captured by the recurrences:

∆i+1 = ∆i

(
1− 1

e5

)
+ 27

√
∆i log ∆i; pi+1 = pi −

∆i

e5
− 27

√
∆i log ∆i. (5)

The above recurrences can be solved to obtain the following bounds on ∆i and pi.

Lemma 3. Let α = (1 − 1/e5). For all i for which ∆i ≥ 109, ∆i ≤ 2∆0 · αi and
pi ≥ ∆0

2 αi.

This implies that, provided pi+1 and ∆i+1 are large enough, it is the case that pi+1 ≥
∆i+1/4, thereby permitting the next application of the above theorem. To get a (∆+1)-
coloring of the desired frugality, we repeatedly obtain partial colorings by applying the
Theorem 1 until ∆i < 109. Given the rate of decay of ∆i, letting α = (1 − 1/e5), we
see that at most log1/α

(
2∆0
109

)
= O(log ∆) applications of the theorem are needed. Since

the palette at every vertex has at least one more color than the number of neighbors
of the vertex, a greedy list coloring algorithm will succeed in completing the coloring
of the graph. Clearly, what we have constructed is a (∆ + 1)-proper vertex coloring of
G. In each round i, each color appears in a neighborhood at most 9 log ∆i/ log log ∆i =
O(log ∆/ log log ∆) times. The final round adds only O(1) copies of any color to any
neighborhood, yielding a (∆ + 1)-coloring that is O(log2 ∆/ log log ∆)-frugal. We have
thus proved result (F1).



Proof of Theorem 1. We start by describing a randomized coloring procedure that will
produce, with positive probability, a partial coloring of G with the four desired properties.
Let π be an arbitrary permutation of V . This establishes a ranking of the vertices. For
any vertex v and color x ∈ P (v), let L(v, x) be the set of neighbors u of v such that u has
a lower rank than v in π and u contains x in its palette P (u). Each vertex v computes
the quantity

qv =
1

|P (v)|
∑

x∈P (v)

∏
u∈L(v,x)

(
1− 1

|P (u)|

)
.

This is the probability that no lower ranked neighbor of v will tentatively pick the color
picked by v. Vertex v will use the value of qv to determine its “sleep probability.” For
each vertex v ∈ V , independently pick a color x ∈ Pv uniformly at random. We say
that x is the tentative color of v. After picking a tentative color, v either goes off to
sleep for the rest of this round or stays awake and attempts to make its tentative color
permanent. Specifically, vertex v stays awake with probability av = 1

qv ·e5 and it dozes
off with probability (1 − av). Later we will show that qv is never smaller than 1/e5 and
therefore av ≤ 1. If v dozes off, then it remains uncolored at the end of the procedure.
Note that v dozes off only after picking a tentative color and even though it may fall
asleep, this choice of tentative color by v may have an influence on whether a neighbor
gets permanently colored or not. If v stays awake, then it checks if there is a neighbor
u ∈ N(v) of smaller rank in π, that has the same tentative color as v. If no such u exists,
then v is permanently colored x. The vertex subset C consists of all vertices that are
permanently colored at the end of the procedure. The rest of the vertices are said to be
uncolored.

For any vertex v ∈ V and color x ∈ C, let Tv,x be the indicator random variable
that equals 1 if x is picked as v’s tentative color. Note that Pr[Tv,x = 1] = 1/|P (v)| and
therefore E[Tv,x] = 1/|P (v)|. For every v ∈ V and x ∈ C, let Nv,x be the random variable
that equals the number of neighbors of v permanently colored x. Since a vertex has to be
tentatively colored x before it can be permanently colored x, Nv,x ≤

∑
u∈N(v) Tu,x. By

linearity of expectation, E[
∑

u∈N(v) Tu,x] =
∑

u∈N(v) 1/|P (u)| ≤ ∆
∆/4 = 4. Note that the

lower bound on the palette sizes plays a critical role here. Since the Tu,x are mutually
independent, we can use the Chernoff bound to show that

∑
u∈N(v) Tu,x exceeds 9· log ∆

log log ∆

with probability less than 1
∆6 . Therefore, for any vertex v and any color x,

Pr
[
Number of neighbors of v colored x exceeds 9 · log ∆

log log ∆

]
<

1
∆6

. (6)

For any vertex v ∈ V , let Rv be the indicator random variable that equals 1 if v is
permanently colored at the end of the coloring procedure. Note that v is permanently
colored if v stayed awake and if no lower-ranked neighbor picked the same tentative
color as vertex v did. Therefore, the probability that Rv equals 1, is Pr[Rv = 1] =
av · 1

|P (v)| ·
∑

x∈P (v)

∏
u∈L(v,x)

(
1− 1

|P (u)|

)
= av · qv. Recall that av was chosen to be 1

qv ·e
and therefore Pr[Rv = 1] = 1/e5. However, for the “go to sleep” step of the coloring
procedure to be well-defined, we need to show that av ≤ 1. We do this by showing a
lower bound of 1/e5 on qv. Recall that qv is the probability that no neighbor will choose
the same tentative color as v. This probability is minimized when vertex v’s palette is



as small as possible, v has as many neighbors as possible, each of these neighbors have
palettes that are as small as possible, and finally each of these palettes is identical to v’s
palette. Therefore,

qv =
1

|P (v)|
·
∑

x∈P (v)

∏
u∈L(v,x)

(
1− 1

|P (u)|

)
≥ 1

|P (v)|
·
∑

x∈P (v)

(
1− 1

∆/4

)∆

=
(

1− 4
∆

)∆

≥ 1
e5

.

Since qv ≥ 1/e5, it follows that av = 1/(qve
5) ≤ 1.

Let Pv denote the number of neighbors of v that are permanently colored by the
procedure. Note that Pv =

∑
u∈N(v) Ru. Then by linearity of expectation, E[Pv] =∑

u∈N(v) E[Ru] = deg(v)/e5. Since the random variables Ru are not mutually indepen-
dent for u ∈ N(v), the Chernoff bound cannot be applied to show the concentration of
Pv about its expectation. Instead, we apply Azuma’s inequality in Lemma 4 to show the
following concentration bound for Pv. The vertex-ordering imposed by the permutation
π, will play a crucial role in this lemma.

Lemma 4.

Pr
[∣∣∣∣Pv −

deg(v)
e5

∣∣∣∣ > 27
√

∆ log ∆

]
<

2
∆4.5

. (7)

Proof. Let Uv = 〈u1, u2, . . . , um〉 be the sequence of vertices at distance at most two
from v, arranged in increasing rank according to π. Note that m ≤ ∆2. Let Si indicate
whether vertex ui has decided to go to sleep or not and let Ci denote the tentative color
choice of vertex ui. Let Ti = (Si, Ci). Clearly, Pv is completely determined by the trials
T1, T2, . . . , Tm. Referring to Azuma’s Inequality, let D denote the absolute difference in
conditional expectation

∣∣∣E[Pv|T1 = t1, . . . , Ti = ti] − E[Pv|T1 = t1, . . . , Ti = t′i]
∣∣∣. Let

ti = (si, ci) and t′i = (s′i, c
′
i). Provided ui is a neighbor of v, the difference between ti

and t′i may contribute at most 1 to the above difference. Any other contribution to this
difference is due to vertices uj such that (i) j > i, (ii) uj is a neighbor of both ui and
v, and (iii) uj picks as a tentative color either ci or c′i. To make this more precise, let
Si be the set {uj | j > i and uj is adjacent to both ui and v}. Thus, Si is the set of
vertices satisfying conditions (i) and (ii) above. For any uj ∈ Si, the probability that
uj picks ci or c′i as its tentative color is 2/|P (uj)|. Note that uj has to pick one or the
other color to many any contribution to D. The quantity 2/|P (uj)| is bounded above
by 8/∆, since |P (uj)| ≥ ∆/4. Therefore, the expected contribution of uj to the quantity
D is at most 8/∆. So, the expected contribution of all of Si to D is bounded above by
8|Si|/∆. Referring to Azuma’s Inequality, we can therefore take ci = 1+8|Si|/∆ for each
i : ui ∈ N(v) and ci = 8|Si|/∆ for all other i. Now note that since Si is a subset of the
set of neighbors of v, |Si| ≤ ∆ for every i. Also,

∑m
i=1 |Si| is bounded above by ∆2. This

is because for every vertex uj ∈ Si, there is a unique corresponding edge {ui, uj} in the
graph G. Noting that there are at most ∆2 edges incident on neighbors of v, we get the
upper bound on

∑m
i=1 |Si|. The two inequalities, |Si| ≤ ∆ and

∑m
i=1 |Si| ≤ ∆2 together

imply that
∑m

i=1 |Si|2 ≤ ∆3. Hence,

m∑
i=1

c2
i =

∑
i:ui∈N(v)

(
1 +

8|Si|
∆

)2

+
∑

i:ui 6∈N(v)

(
8|Si|
∆

)2



≤ 64
∆2

·
m∑

i=1

|Si|2 +
16
∆

·
m∑

i=1

|Si|+ ∆ ≤ 81∆

Finally, plugging the value t = 27 ·
√

∆ log ∆ and
∑m

i=1 c2
i ≤ 81∆ into Azuma’s Inequality

(see (2)), we get the desired result.

Let Bv denote the “bad event” that for some color x, vertex v has more than 9 log ∆
log log ∆

neighbors colored x or |Pv − deg(v)
e5 | > 27

√
∆ log ∆. Using Inequalities (6), (7), and the

union bound we get that Pr[Bv] < (∆ + 1)/∆6 + 2/∆4.5 ≤ 4/∆4.5. If vertices u and
v are more than four hops away from each other in G, then Bu and Bv are mutually
independent. Therefore, Bv is independent of all except at most ∆4 other bad events.
Applying the Lovász Local Lemma (see Lemma 2) yields the theorem.

Remark on constants. In this section we have explicitly specified constants so that a
careful reader may verify our calculations completely. However, we have not attempted
to optimize these constants. For example, it is possible to show that ∆i and pi decay
at a rate of (1 − 1

e1+ε ) (rather than (1 − 1
e5 )) for any ε > 0. The choice of ε here affects

various constants in the proof including the constant in the asymptotic notation used to
specify the frugality of the coloring.

3 Weighted Almost-Equitable Colorings

In this section we prove result (E1). Let G = (V = [n], E) be a vertex-weighted graph
with weight function w : V → [0, 1]. Let π be a permutation of (1, 2, . . . , n) picked
uniformly at random from the set of all permutations of (1, 2, . . . , n). Run one round
of our random coloring procedure described in Section 2, but without any nodes falling
asleep. For any color x and for any vertex v let P (v, x) denote the event that v is
(permanently) colored x, at the end of one round of the random coloring procedure.

Lemma 5. Pr[P (v, x)] ≥
(
1− 1

e

)
1

∆+1 .

Proof. Let L(v) be the subset of neighbors of vertex v that are ranked before v by π.

Then, Pr[P (v, x)] = 1
∆+1

∑deg(v)
j=0

1
deg(v)+1 ·

(
1− 1

(∆+1)

)j
. In this expression, the term

“ 1
(∆+1)” is the probability that color x is tentatively picked by v, the summation is over

all possible sizes of L(v), the term “ 1
deg(v)+1” is the probability that exactly j of the

neighbors of v are ranked below v in π, and the term “(1 − 1
(∆+1))

j” is the probability
that none of these j neighbors that are ranked below v, pick x as their tentative color.
This expression can be simplified to yield

Pr[P (v, x)] =
1

deg(v) + 1

(
1−

(
1− 1

(∆ + 1)

)deg(v)+1
)

.

Noting that the r.h.s. above achieves the minimum value at deg(v) = ∆, we obtain

Pr[P (v, x)] ≥ 1
∆ + 1

(
1−

(
1− 1

(∆ + 1)

)∆+1
)
≥ 1

∆ + 1
·
(

1− 1
e

)
.



The above lemma implies that the expected weight of any color class is at least
(1 − 1/e) · W/(∆ + 1). We now show that the weight of any color class is concentrated
around its expectation and in particular the weight of a color class is much smaller
than (1 − 1/e) · W/(∆ + 1) only with small probability. As usual, we employ Azuma’s
Martingale inequality to prove this result; again the symmetry-breaking approach plays
a critical role.

Lemma 6. Let x ∈ [∆ + 1] and let Wx denote the total weight of vertices colored x.
Then for any fixed c > 0,

Pr
[
Wx <

(
1− 1

e

)
· W

(∆ + 1)
− c
√

W log(∆ + 1)
]
≤ 1

(∆ + 1)c2/18
.

Proof. Let Ti be the tentative choice of a color by the vertex of rank i in π. Wx is
completely determined by the outcomes of the trials T1, T2, . . . , Tn. Now consider the
difference in conditional expectations from Azuma’s Martingale Inequality:

ci =
∣∣∣E[Wx | T1 = t1, T2 = t2, . . . , Ti = ti]− E[Wx | T1 = t1, T2 = t2, . . . , Ti = t′i]

∣∣∣.
Let v be the vertex of rank i in π. The above difference is at most

ci ≤ w(v) +
2

∆ + 1

∑
u∈U(v)

w(u),

where U(v) is the set of neighbors of v ranked higher than v in π. The first term “w(v)”
in the above bound is due to the change in the tentative color of v from ti to t′i. The
second term is the expected change in Wx; note that this occurs only at vertices in U(v).
Using the fact that every vertex weight is in [0, 1], we get that ci ≤ 1 + 2∆/(∆ + 1) < 3.
Also,

n∑
i=1

ci ≤
∑
v∈V

w(v) +
2

∆ + 1

∑
v∈V

∑
u∈U(v)

w(u) ≤ W +
2∆

∆ + 1
·
∑
v∈V

w(v) < 3W.

Finally,
∑n

i=1 c2
i < 3

∑n
i=1 ci < 9W . Therefore, the bound in Azuma’s Inequality simpli-

fies to

exp

(
−t2

2
∑n

i=1 c2
i

)
≤ exp

(
−c2W log(∆ + 1)

18W

)
=

1
(∆ + 1)c2/18

.

From this we get, using Azuma’s Inequality,

Pr
[
Wx <

(
1− 1

e

)
· W

∆ + 1
− c ·

√
W log(∆ + 1)

]
<

1
(∆ + 1)c2/18

.

Since we have ∆ + 1 color classes, using the union bound we get that

Pr
[
∃x ∈ [∆ + 1] : Wx <

(
1− 1

e

)
· W

∆ + 1
− c ·

√
W log(∆ + 1)

]
≤ (∆ + 1)

(∆ + 1)c2/18
.

Choosing c ≥ 5 guarantees that with positive probability, for every color x ∈ [∆+1], the
weight Wx of the vertices colored x is at least

(
1− 1

e

)
· W

∆+1 − c ·
√

W log(∆ + 1). This
proves result (E1).
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