
Maximum Bipartite Flow in Networks with

Adaptive Channel Width

Yossi Azar1, Aleksander Mądry2 ⋆, Thomas Moscibroda3,
Debmalya Panigrahi2 ⋆⋆, and Aravind Srinivasan4 ⋆ ⋆ ⋆

1 Microsoft Research, Redmond, WA 98052 and Tel Aviv University, Tel Aviv, Israel
azar@tau.ac.il

2 Massachusetts Institute of Technology, Cambridge, MA 02139
{madry, debmalya}@mit.edu

3 Microsoft Research, Redmond, WA 98052
moscitho@microsoft.com

4 Dept. of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742

srin@cs.umd.edu

Abstract. Traditionally, combinatorial optimization problems (such as
maximum flow, maximum matching, etc.) have been studied for networks
where each link has a fixed capacity. Recent research in wireless network-
ing has shown that it is possible to design networks where the capacity
of the links can be changed adaptively to suit the needs of specific ap-
plications. In particular, one gets a choice of having few high capacity
outgoing links or many low capacity ones at any node of the network.
This motivates us to have a re-look at the traditional combinatorial op-
timization problems and design algorithms to solve them in this new
framework. In particular, we consider the problem of maximum bipar-
tite flow, which has been studied extensively in the traditional network
model. One of the motivations for studying this problem arises from
the need to maximize the throughput of an infrastructure wireless net-
work comprising base-stations (one set of vertices in the bipartition) and
clients (the other set of vertices in the bipartition). We show that this
problem has a significantly different combinatorial structure in this new
network model from the classical one. While there are several polynomial
time algorithms solving the maximum bipartite flow problem in tradi-
tional networks, we show that the problem is NP-hard in the new model.
In fact, our proof extends to showing that the problem is APX-hard. We
complement our lower bound by giving two algorithms for solving the
problem approximately. The first algorithm is deterministic and achieves
an approximation factor of O(log N), where there are N nodes in the
network, while the second algorithm (which is our main contribution) is
randomized and achieves an approximation factor of e

e−1
.

⋆ Research supported by a Fulbright Science and Technology Award, by NSF contract
CCF-0829878 and by ONR grant N00014-05-1-0148.

⋆⋆ Part of this work was done while visiting Microsoft Research, Redmond. Research
supported in part by NSF contract CCF-0635286.

⋆ ⋆ ⋆ Part of this work was done while visiting Microsoft Research, Redmond. Research
supported in part by NSF ITR Award CNS-0426683 and NSF Award CNS-0626636.

1 Introduction

Combinatorial optimization has been an important tool in the analysis of com-
puter networks. Traditionally, optimization problems such as maximum flow,
maximum matching, etc. have been studied for networks where each link has a
fixed capacity.5 However, recent research in wireless networking has shown that
it is possible to design networks where the capacity of the links can be changed
adaptively to suit the needs of specific applications [4][19]. (We call this phe-
nomenon adaptive channel width.) Specifically, wider communication channels
increases channel capacity (a result that is also predicted by Shannon’s capacity
formula [20]), but reduces the transmission range thereby disconnecting distant
nodes. Thus, one gets a choice of having few high capacity outgoing links ormany
low capacity ones at each node of the network. This motivates us to have a re-
look at traditional combinatorial optimization problems and design algorithms
to solve them in this new framework. In this paper, we focus on the maximum
bipartite flow problem in networks with adaptive channel width.

Consider a directed bipartite graph on vertices X ∪ Y , where all the edges
are directed from vertices in X to vertices in Y and have capacities. In addition
each node in X and Y has a node capacity (corresponding to a budget for nodes
in X and demand for nodes in Y). This is equivalent to adding a vertex s (called
the supersource) which is connected by a directed edge6 to each vertex in X with
edge capacity corresponding to the node capacity; similarly, adding a vertex t
(called the supersink) such that each vertex in Y is connected to it by a directed
edge with the corresponding capacity. In the traditional model, the maximum
flow permitted on an edge is equal to its capacity. The maximum bipartite flow
problem then requires us to find the maximum flow from s to t subject to the
capacity constraints. On the other hand, in networks with adaptive channel
width, the edges from X to Y do not have fixed capacities; rather one needs to
determine the assigned capacity at each node x ∈ X. Choosing a high assigned
capacity disconnects x from some nodes in Y but produces a high capacity edge
to the remaining nodes, while choosing a low assigned capacity implies that all
edges from x to nodes in Y have low capacity. The goal is to choose assigned
capacities such that the achievable flow in the resulting capacitated network is
maximized.

The main practical motivation for studying this problem comes from the need
to maximize throughput in infrastructure wireless networks. In particular, let X
be the set of base-stations and Y be the set of clients in an infrastructure wireless
network. Suppose that the base-stations are equipped with the ability to adapt
channel width. We will show that the problem of maximizing throughput in
such an infrastructure wireless network is identical to solving the maximum flow
problem on bipartite graphs with adaptive channel width. We formally define our
throughput maximization problem and its connection to the maximum bipartite
flow problem below.

5 In this paper, we will use the terms bandwidth and capacity interchangeably.
6 In this paper, we will use the terms directed edge, link and arc interchangeably.

Problem Definition. We are given a set of base-stations B and a set of clients C
with |B| = n and |C| = m. Each base-station B ∈ B has a budget β(B), which is
the total capacity that the base-station can deliver to its clients. On the other
hand, each client C ∈ C has a demand α(C), which is the total bandwidth it
would like to be allocated from all the base-stations together.
For each base-station and client pair (henceforth, called a base-client pair)

(B,C), there is a critical capacity η(B,C), which corresponds to the maximum
bandwidth of a link from B to C. To each base station B ∈ B, the algorithm
selects an assigned capacity τ(B) that determines the capacity of a link (B,C)
(denoted by ψτ (B,C)) as follows

ψτ (B,C) :=

{
τ(B) , τ(B) ≤ η(B,C)
0 , otherwise.

Once the capacities of all links have been fixed, we want to find a flow f(B,C)
for each link (B,C) such that neither any link capacity is violated (capacity
constraint), i.e.

f(B,C) ≤ ψτ (B,C),

nor any base-station budget is violated (budget constraint), i.e.

∑

C∈C

f(B,C) ≤ β(B).

The goal is to find the capacity assignment τ , and corresponding flow f that
maximizes the sum of satisfied demands of all the clients, where the satisfied
demand ατ,f (C) of a client C is given by

ατ,f (C) = min
(∑

B∈B

f(B,C), α(C)
)
.

Note that given any τ and f , there always exists a flow f ′ which satisfies the bud-
get and capacity constraints, achieves the same value of total satisfied demand
and additionally satisfies the following demand constraints,

∑

B∈B

f(B,C) ≤ α(C).

As a result, we will focus on flows that obey demand constraints along with
budget and capacity constraints.
The benefit of this assumption is that our problem now corresponds to the

maximum bipartite flow problem in networks with adaptive channel width. Re-
call that in this flow problem, we have two sets of nodes X and Y with edges
directed from X to Y , along with a supersource s and a supersink t. To draw
the correspondence, let X be the set of base-stations and Y the set of clients.
The edge from s to any x ∈ X (called a budget arc) has capacity β(x), that
from any x ∈ X to any y ∈ Y has critical capacity η(x, y) and that from any
y ∈ Y to t (called a demand arc) has capacity α(y) (refer to Figure 1). We call

this graph the augmentation graph of the given problem instance. Our task is
to choose assigned capacities (i.e. the function τ) for vertices in X; this fixes
the capacities of all the arcs from X to Y . Our goal is to choose τ so that the
maximum flow in the resulting capacitated network is maximized.

s t

β(B1)

β(B2)

B1

B2

C1

C2

C3

α(C1)

α(C2)

α(C3)

η(B1, C1)

η(B1, C2)

η(B2, C1)

η(B1, C3)

η(B2, C2)

η(B2, C3)

Fig. 1. The augmentation graph corresponding to an instance of the problem.

Related Work. Classically, the maximum bipartite flow problem has been solved
as a special case of the more general maximum flow problem on arbitrary graphs.
Suppose the input graph G = (V,E) has maximum flow of c from the source
to the sink. Ford and Fulkerson gave the first algorithm for the maximum flow
problem in the 1950s, which had a running time of O(|E|c) [9]. Since then, sev-
eral algorithms have been developed with better time bounds [6][7][8][11] finally
culminating in an Õ(|E|min(|E|1/2, |V |2/3) log c) algorithm due to Goldberg and
Rao [10], which is currently the fastest known deterministic algorithm for maxi-
mum flow. It may be noted here that a substantial amount of work has also been
done for developing randomized algorithms for maximum flow [14][16][15][17],
but these algorithms apply only to undirected networks. On the other hand, the
maximum bipartite flow problem with unit capacities (which is equivalent to
maximum bipartite matching) can be solved in O(|E|

√
|V |) time [13].

To summarize the above discussion, the maximum bipartite flow problem in
directed graphs with capacitated edges is solvable in polynomial time; however,
there is no algorithm which solves this problem faster than in general directed
graphs. As we will see, this is in sharp contrast to what we observe in networks
with adaptive channel width. In such networks, the maximum bipartite flow
problem is NP-hard (in fact, it is APX-hard); further, we give a randomized
approximation algorithm achieving an approximation factor of e

e−1 which does
not appear to extend easily to general directed networks.
We also briefly mention a related class of well-studied problems, namely un-

splittable flow problems. In these problems, typically there are one or more pairs

of source and sink vertices with specific demands, and the goal is to connect the
source-sink pairs using paths such that the satisfied demand is maximized while
not violating any capacity constraint. These problems are typically NP-hard,
and several variants have been studied extensively [18][21][12] [2][3][5]. Interest-
ingly, though we have a single source and a single sink, and flow is allowed to
re-distribute arbitrarily at a node, the techniques we use to give an approxima-
tion algorithm for our problem bear similarities with the techniques usually used
for solving unsplittable flow problems. Specifically, both problems use a suitable
linear programming relaxation which is then rounded ensuring that certain cuts
are large in the rounded solution.

Our Results. Our first claim is that the maximum bipartite flow problem in
networks with adaptive channel width is APX-hard, i.e., it is unlikely that a
polynomial-time algorithm can approximate the problem within a certain con-
stant factor. Specifically, we describe an L-reduction from the APX-hard Max-
imum Bounded 3-Dimensional Matching problem (Max-3DM) to the channel
width assignment problem. We prove the following theorem (details of the con-
struction are omitted due to space constraints).

Theorem 1. The maximum bipartite flow problem in networks with adaptive
channel width is APX-hard.

Our next contribution is a greedy combinatorial algorithm which achieves
an approximation factor of O(logN), where N = max(m,n). The algorithm
first categorizes links according to their critical capacity in geometrically spaced
intervals. Now, observe that for any interval, we can set the assigned capacities
at the nodes such that all the links in that interval have capacity equal to their
critical capacities (while all other links have potentially no capacity at all). The
algorithm needs to decide which interval to choose. For this purpose, a maximum
flow algorithm is run on the entire graph, assuming that each link has capacity
equal to its critical capacity. This outputs a flow on each link. The algorithm
greedily chooses the interval which carries the greatest amount of flow on its
links. The details of the algorithm are omitted due to space constraints.
Finally, our main result is a randomized algorithm for this problem.

Theorem 2. There is a randomized algorithm for the maximum bipartite flow
problem in networks with adaptive channel width that has an expected approxi-
mation factor of e

e−1 .

Our algorithm uses a linear programming relaxation of the problem. Recall that
the celebrated Menger’s theorem implies that maximum flow from s to t equals
the minimum s− t cut. So, an algorithm for the problem should aim to choose
assigned capacities so as to maximize the minimum s − t cut in the resulting
capacitated network. Now, let us consider any linear programming formulation
of the problem; such a fractional linear program can be interpreted as a polytope,
where its optimal solution is a convex combination of the vertices of the polytope.
Each vertex of the polytope represents a particular choice of assigned capacities
and therefore, a particular capacitated graph (call them vertex graphs); these

correspond to the integral solutions we will round our solution to. The natural
linear program that we consider first simply ensures that for each cut, the convex
combination of the values of the cut in the vertex graphs is large. However, since
each vertex graph may have a different minimum s−t cut, this does not guarantee
that sizes of these minimum s− t cuts are large. In fact, this linear program has
an integrality gap of Ω(logN/ log logN). To overcome this problem, we design
a more sophisticated linear program and a corresponding randomized rounding
technique that ensures that the minimal s− t cuts in the vertex graphs are large.

2 Algorithms for Maximum Bipartite Flow

As mentioned previously, a greedy combinatorial algorithm for our problem
achieves an approximation factor of O(logN), where N = max(m,n).

2.1 A Linear Program

Our goal now is to improve upon this combinatorial algorithm. Without loss of
generality, we may assume that the assigned capacity chosen at any base-station
B in an optimal solution is one among the critical capacities of its outgoing edges,
i.e. τ(B) ∈ {η(B,C) : C ∈ C}. If this is not the case, then the assigned capacity
can be increased to the closest value from the set {η(B,C) : C ∈ C} without
changing the flow on any link. This allows us introduce the boolean capacity
choice function p(B,C), which is 1 if τ(B) = η(B,C), and 0 otherwise. Clearly,
for any base-station B, p(B,C) = 1 for exactly one client C (called the choice
constraint). We also introduce another new notation, CB(C) which represents
the set of clients for which the critical capacity of their link to base-station B is
less than that for client C, i.e.

CB(C) = {C ′ ∈ C : η(B,C ′) ≤ η(B,C)}.

A natural formulation of the problem is via the following integer linear pro-
gram (ILP), where constraints (1), (2), (3) and (4) correspond to budget, de-
mand, capacity and choice constraints respectively.

maximize
∑

B∈B

∑
C∈C

f(B,C) subject to
∑

C∈C

f(B,C) ≤ β(B), ∀B ∈ B (1)

∑

B∈B

f(B,C) ≤ α(C), ∀C ∈ C (2)

f(B,C) ≤
∑

C′∈CB(C)

p(B,C ′)η(B,C ′), ∀B ∈ B, ∀C ∈ C (3)

∑

C∈C

p(B,C) = 1, ∀B ∈ B (4)

p(B,C) ∈ {0, 1}, ∀B ∈ B, ∀C ∈ C (5)

f(B,C) ≥ 0, ∀B ∈ B, ∀C ∈ C. (6)

LP Relaxation. To make this ILP tractable, we relax constraint (5) and allow
the function p to assume values between 0 and 1 (call this the fractional program
or FLP). The natural interpretation is that p(B,C) denotes the goodness of
η(B,C) as the assigned capacity of base-station B. Mathematically, it can be
thought of as the probability with which η(B,C) should be the assigned capacity
of base-station B.
Unfortunately, it turns out that this natural linear programming relaxation

fails to provide us with an approximation guarantee that is significantly better
than the one achieved by the combinatorial algorithm. To understand why this
is the case, let us note that for a given choice of values of p(B,C), this linear
program is solving the max-flow problem in the augmentation graph where the
capacity u of a link (B,C) is the following: if the assigned capacity τ(B) at base-
station B is chosen according to the probability distribution given by p(B,C),
then

u = E[ψτ (B,C)].

Therefore, by max-flow/min-cut duality, the approach used in the LP boils down
to choosing p(B,C) in such a way that the minimal expected capacity among
all s-t-cuts in the augmented graph is maximized. Given some final choice of
p(B,C) computed by the linear program, it is tempting to round it by choosing
assigned capacities according to p(B,C), and then solving the max-flow problem
in the resulting graph, hoping that the capacity of minimal cut will be close to
the expected one. Clearly, when we focus on one particular cut, say the one that
separates base-stations from clients, it will be true, but this does not necessarily
mean that for all cuts, such a promise will hold simultaneously. It may happen
that for the choice of assigned capacities that we obtain, it will always be the
case that for part of the clients the capacity of links leading to them in the
resulting graph will be much below the expectation, while for the other part
it will excessively large, and this excess will be wasted due to the bottlenecks
imposed by not large enough capacity of demand arcs for the respective clients.
Thus, even if on expectation each client has reasonable capacity of links leading
to it, the rounding procedure might not provide us with a particularly good
solution. Therefore, our analysis of the approximation guarantee given by this
LP would need to argue that with good probability all cuts are preserved up
to some ratio, and in fact, using Chernoff bounds, we can prove that this is
indeed true for the ratio O(log(m + n)/ log log(m + n)). Unfortunately, we can
show through an integrality gap example (omitted due to space constraints)
that this unsatisfactorily large ratio is not only a shortcoming of our particular
rounding procedure, but it is in fact all that we can achieve through any rounding
algorithm for this LP.

2.2 An Alternative Linear Program

In this section, we will describe a more sophisticated ILP which overcomes the
shortcomings of the previous ILP. Note that our goal is to choose assigned capaci-
ties such that the augmentation graph has a large maximum flow, or equivalently

by Menger’s theorem, a large minimum cut. The previous FLP ensures that each
cut has large capacity in expectation and therefore the minimum among the ex-
pected capacities of the cuts is large; this however does not guarantee that the
expected capacity of the minimum cut is large. We need this stronger guarantee
from our LP. To achieve this goal, we design an LP which yields a family of flows
corresponding to the different choices of assigned capacities, and ensures that
the expected value of these flows is large. This clearly implies that the expected
capacity of the minimum cut is large, and therefore provides stronger guarantees
than the previous LP. Precisely, we consider the following ILP.

maximize
∑

B∈B

∑
C′,C∈C

fC′(B,C) subject to

∑

C∈C

fC′(B,C) ≤ p(B,C ′)β(B), ∀B ∈ B, ∀C ′ ∈ C (7)

∑

B∈B

∑

C′∈C

fC′(B,C) ≤ α(C), ∀C ∈ C (8)

fC′(B,C) ≤

{
0, if η(B,C) < η(B,C ′)
p(B,C ′)min{η(B,C ′), α(C)}, otherwise

∀B ∈ B, ∀C,C ′ ∈ C (9)
∑

C∈C

p(B,C) = 1, ∀B ∈ B (10)

p(B,C) ∈ {0, 1}, ∀B ∈ B, ∀C ∈ C (11)

fC′(B,C) ≥ 0, ∀B ∈ B, ∀C,C ′ ∈ C. (12)

The key to understanding this ILP is the rounding technique that we employ
in our approximation algorithm; so let us describe our algorithm first. We relax
the integrality constraint , i.e. constraint (11) and allow the variables p to take
any value between 0 and 1, both inclusive. We solve the resulting FLP, and then
round the solution to obtain an integral solution. It is in this rounding procedure
that the crux of our algorithm lies. We choose assigned capacities according to
p(B,C), noting that for a fixed base-station B, p(B,C) is a valid probability dis-
tribution. Now, for any base-station B, if the assigned capacity τ(B) = η(B,C ′),
then for each link (B,C), we add a flow of gC′(B,C) ≡ fC′(B,C)/p(B,C ′) to
the s−B −C − t path in the augmentation graph. Crucially, this does not vio-
late the budget constraint at any base-station B since the total outflow at B is∑

C∈C
gC′(B,C), which is at most β(B) by constraint (7); neither does it violate

the capacity constraint on any link (B,C) since constraint (9) ensures that the
flow on link (B,C) is at most ψτ (B,C). Hence, we focus on analyzing violations
of the demand constraints. The total inflow at C is

∑
B∈B

gC′(B)(B,C). Unfor-
tunately, assigning these flow values simultaneously for all base-stations might
lead to an overflow in a demand arc (i.e., a demand constraint violation). For a
client with overflow, we decrease the incoming flows arbitrarily until the flow on
the link to t exactly matches its capacity (we call this the truncation step). Since
such a truncated flow is feasible, our ultimate goal is to prove that the truncation
step decreases the initial flow only by a constant fraction in expectation.

Let F (B,C) be the random variable denoting the flow on link (B,C); clearly,
F (B,C) = gC′(B,C) with probability p(B,C ′) and its expectation

E[F (B,C)] = f(B,C) ≡
∑

C′∈C

fC′(B,C) =
∑

C′∈C

p(B,C ′)gC′(B,C).

Constraint (8) states that the expected inflow
∑

B∈B
f(B,C) at client C is at

most its demand α(C). Also, for a given C, the F (B,C) values are independent.
Finally, constraint (9) enforces that F (B,C) ≤ α(C) irrespective of the choice of
the assigned capacity at base-station B, (i.e. inflow due to a single base-station
at a client never exceeds the demand of the client). Thus, we ensure that there
is some restriction on the wasted capacity, i.e. the capacity in the base-client
links which are left unused due to truncation; such a restriction was absent in
the previous formulation and, as we will see, this additional condition will be
sufficient for our purpose.
Note. The rounding procedure can be simplified in an actual implementa-

tion. Once we obtain the assigned capacities of all the base-stations using ran-
domized rounding as described above, we can run a maximum flow algorithm on
the augmentation graph. Note that this achieves at least as much (and poten-
tially more) flow as that achieved by the rounding procedure described above.
So an actual implementation of our algorithm will rather employ a maximum
flow sub-routine than the above procedure for determining flows. However, we
assume that our algorithm uses the above procedure since it would be simpler
to analyze—all bounds proved using this assumption hold for an actual imple-
mentation using maximum flow as well.
Before moving on to the analysis of the algorithm, let us verify that the new

ILP does represent the original problem. To do this, let us fix some optimal
solution (τ∗, f∗) for the original problem. Consider now a solution to our ILP
defined as follows. For each base-station B we set p(B,C) = 1 if B chooses η(C)
as its assigned capacity i.e. if τ∗(B) = η(B,C); otherwise p(B,C) = 0. Next,
for each link (B,C), we set fC′(B,C) = f∗(B,C) if τ∗(B) = η(B,C ′), and
fC′(B,C) = 0 otherwise. Observe that all the constraints are preserved, and the
objective value corresponding to this solution has value equal to that for the
optimal solution. The converse direction is similar and we omit it for brevity.

2.3 Analysis

If there are n base-stations and m clients, then the algorithm clearly runs in
time polynomial in N = max(n,m). So, we focus on proving guarantees on the
approximation factor of the algorithm. By the discussion in the previous section,
we know that in our rounding procedure the difference between the objective
value of the solution to the FLP and the actual flow that we obtain, consists solely
of the amount of initial flow that we have to truncate due to overflows at clients.
Thus our main task is to prove upper bounds on the expected overflow. Let
F (C) ≡

∑
B∈B

F (B,C) be the random variable denoting total inflow at C before
truncation and T (C) ≡ min(F (C), α(C)) be the random variable representing

the inflow at C after truncation. We would like to show that

E[T (C)] ≥ (1 − 1/e)E[F (C)]. (13)

Then,

E[
∑

C∈C

T (C)] ≥ (1 − 1/e)E[
∑

C∈C

F (C)] ≥ (1 − 1/e)T ∗, (14)

where T ∗ is the total flow in an optimal integral solution. This proves Theorem 2,
which was stated in Section 1.
To establish inequality (13), we will need the following theorem (a similar

proof appears in [1]).

Theorem 3. Suppose we have a sequence of independent discrete random vari-
ables X1,X2, . . . ,Xn such that each 0 ≤ Xi ≤ 1. Furthermore, suppose X =∑n

i=1Xi and E[X] ≤ 1. If Y = min(X, 1), then

E[Y] ≥ (1 − 1/e)E[X].

We first use this theorem to prove inequality (13), and then give a proof
of the theorem itself. If, for client C, we define Xi = F (Bi, C)/α(C) (where
B = {B1, . . . , Bn}) and Y = T (C)/α(C), then such Xis and Y satisfy the
assumptions of the theorem. Thus, we can conclude that

E[T (C)] = α(C)E[Y] ≥ (1 − 1/e)α(C)E[X] = (1 − 1/e)E[F (C)].

Proof (Theorem 3). Our proof has the following outline. We assume for the
sake of contradiction that there exists a sequence {X̂1, X̂2, . . . , X̂n} of discrete
random variables such that

E[Ŷ] = E[min(
∑

i

X̂i, 1)] < (1 − 1/e)E[X̂] = (1 − 1/e)E[
∑

i

X̂i].

We call such a sequence (X̂i) a nemesis sequence. First, we prove that we can
assume without loss of generality, that X̂is are 0-1 random variables. Then, we
prove our theorem for 0-1 random variables, thus arriving at a contradiction for
the general case.
Let S(X̂i) be the number of distinct values other than 0 and 1 for which X̂i

has non-zero probability. Now, let us consider a nemesis sequence (X̂i) that min-
imizes

∑
i S(X̂i). We will prove that if

∑
i S(X̂i) > 0 then there exists another

nemesis sequence (X̃i) with
∑

i S(X̃i) <
∑

i S(X̂i). The minimality of (X̂i) im-

plies there exists a nemesis sequence with
∑

i S(X̂i) = 0, i.e. (X̂i) is a sequence
of 0-1 variables.
If

∑
i S(X̂i) > 0, then there exists some k such that S(X̂k) > 0, which in

turn means that there exists some 0 < a < 1 such that Pr[X̂k = a] = p > 0.
Suppose that this X̂k takes value of 0 and 1 with probability q ≥ 0 and r ≥ 0
respectively (note that p, q and r do not necessarily sum to 1). Now, consider

another random variable X̃k that is distributed identically to X̂k except that the

probabilities of a, 0 and 1 are changed to 0, q+ (1− a)p and r+ ap respectively.

Note that E[X̃k] = E[X̂k], 0 ≤ X̃k ≤ 1 and S(X̃k) = S(X̂k) − 1. So, if we define

X̃i = X̂i for i 6= k, then E[X̂] = E[X̃] ≤ 1. We would like to compare E[Ŷ] to

E[Ỹ] ≡ E[min{X̃, 1}]. Note that by our definition, for any δ ≥ 0,

Pr[X̃ − X̃k = δ] = Pr[X̂ − X̂k = δ].

Thus, to prove that E[Ỹ] ≤ E[Ŷ], it is sufficient to prove that

E[Ỹ |X̃ − X̃k = δ] ≤ E[Ŷ |X̂ − X̂k = δ],

for all δ ≥ 0.
Clearly, if δ ≥ 1 then

E[Ỹ |X̃ − X̃k = δ] = 1 = E[Ŷ |X̂ − X̂k = δ];

so the inequality holds. On the other hand, for δ < 1,

E[Ỹ |X̃ − X̃k = δ] − E[Ŷ |X̂ − X̂k = δ] = E[min{X̃k, 1 − δ}] − E[min{X̂k, 1 − δ}]

= ap(1 − δ) − pmin{a, 1 − δ} ≤ 0.

Thus, E[Ỹ] ≤ E[Ŷ], which proves that {X̂i} had to be a zero-one nemesis se-
quence.
Now, when {X̂i} is zero-one,

E[Ŷ] = Pr[X̂ ≥ 1]

= 1 −
∏

i

(1 − Pr[X̂i = 1])

≥ 1 − (1 −
∑

i

E[X̂i]/n)n

≥ 1 − e−E[X̂]

≥ (1 − 1/e)E[X̂],

as desired, where in the first inequality we used the fact that
∑

i

Pr[X̂i = 1] =
∑

i

E[X̂i] = E[X̂],

and the arithmetic/geometric mean inequality.

To conclude, we may note that this theorem is tight for n i.i.d. 0-1 random
variables Xi with Pr[Xi = 1] = 1/n.

3 Conclusion

The ability to adaptively change channel widths in wireless networks introduces
interesting algorithmic problems. In this paper, we have studied a throughput
maximization problem in infrastructure wireless networks that was identical to
the maximum flow problem in bipartite graphs with adaptive channel width. An
interesting open question is to to find maximum flow in a general network with
adaptive channels.

4 Acknowledgements

We thank the anonymous referees for their helpful comments.

References

1. N. Andelman and Y. Mansour. Auctions with budget constraints. In In 9th Scan-
dinavian Workshop on Algorithm Theory, pages 26–38, 2004.

2. Y. Azar and O. Regev. Combinatorial algorithms for the unsplittable flow problem.
Algorithmica, 44(1):49–66, 2006.

3. A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar. Approximation algorithms
for the unsplittable flow problem. Algorithmica, 47(1):53–78, 2007.

4. R. Chandra, R. Mahajan, T. Moscibroda, R. Raghavendra, and P. Bahl. A case
for adapting channel width in wireless networks. In SIGCOMM, pages 135–146,
2008.

5. C. Chekuri, S. Khanna, and F. B. Shepherd. An O(sqrt(n)) approximation and
integrality gap for disjoint paths and unsplittable flow. Theory of Computing,
2(1):137–146, 2006.

6. E. A. Dinic. Algorithm for solution of a problem of maximum flow in a network
with power estimation. Soviet Math. Doklady (Doklady), 11:1277–1280, 1970.

7. J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. Journal of the ACM, 19(2):248–264, 1972.

8. S. Even and R. E. Tarjan. Network flow and testing graph connectivity. SIAM J.
Comput., 4(4):507—518, 1975.

9. L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956.

10. A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. J. ACM,
45(5):783—797, 1998.

11. A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem.
J. ACM, 35(4):921—940, 1988.

12. V. Guruswami, S. Khanna, R. Rajaraman, F. B. Shepherd, and M. Yannakakis.
Near-optimal hardness results and approximation algorithms for edge-disjoint
paths and related problems. J. Comput. Syst. Sci., 67(3):473–496, 2003.

13. J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

14. D. R. Karger. Using random sampling to find maximum flows in uncapacitated
undirected graphs. In STOC, pages 240—249, 1997.

15. D. R. Karger. Better random sampling algorithms for flows in undirected graphs.
In SODA, pages 490–499, 1998.

16. D. R. Karger and M. S. Levine. Finding maximum flows in undirected graphs
seems easier than bipartite matching. In STOC, pages 69—78, 1998.

17. D. R. Karger and M. S. Levine. Random sampling in residual graphs. In STOC,
pages 63–66, 2002.

18. J. M. Kleinberg. Single-source unsplittable flow. In FOCS, pages 68–77, 1996.
19. T. Moscibroda, R. Chandra, Y. Wu, S. Sengupta, P. Bahl, and Y. Yuan. Load-
Aware Spectrum Distribution in Wireless LANs. In ICNP, 2008.

20. C. E. Shannon. Communication in the presence of noise. Proc. Institute of Radio
Engineers, 37(1):1021, 1949.

21. A. Srinivasan. Improved approximations for edge-disjoint paths, unsplittable flow,
and related routing problems. In FOCS, pages 416–425, 1997.

