
Fault-Tolerant Facility Location:

a randomized dependent LP-rounding algorithm★

Jaroslaw Byrka1★★, Aravind Srinivasan2, and Chaitanya Swamy3

1 Institute of Mathematics, Ecole Polytechnique Federale de Lausanne,
CH-1015 Lausanne, SWITZERLAND. jaroslaw.byrka@epfl.ch

2 Dept. of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742, USA. srin@cs.umd.edu

3 Dept. of Combinatorics & Optimization, Faculty of Mathematics, University of
Waterloo, Waterloo, ON N2L 3G1, CANADA. cswamy@math.uwaterloo.ca

Abstract. We give a new randomized LP-rounding 1.725-approximation
algorithm for the metric Fault-Tolerant Uncapacitated Facility Location
problem. This improves on the previously best known 2.076-approximation
algorithm of Swamy & Shmoys. To the best of our knowledge, our work
provides the first application of a dependent-rounding technique in the
domain of facility location. The analysis of our algorithm benefits from,
and extends, methods developed for Uncapacitated Facility Location; it
also helps uncover new properties of the dependent-rounding approach.
An important concept that we develop is a novel, hierarchical cluster-
ing scheme. Typically, LP-rounding approximation algorithms for facility
location problems are based on partitioning facilities into disjoint clus-
ters and opening at least one facility in each cluster. We extend this
approach and construct a laminar family of clusters, which then guides
the rounding procedure: this allows us to exploit properties of dependent
rounding, and provides a quite tight analysis resulting in the improved
approximation ratio.

1 Introduction

In Facility Location problems we are given a set of clients 𝒞 that require a certain
service. To provide such a service, we need to open a subset of a given set of
facilities ℱ . Opening each facility 𝑖 ∈ ℱ costs 𝑓𝑖 and serving a client 𝑗 by facility
𝑖 costs 𝑐𝑖𝑗 ; the standard assumption is that the 𝑐𝑖𝑗 are symmetric and constitute
a metric. (The non-metric case is much harder to approximate.) In this paper,
we follow Swamy & Shmoys [11] and study the Fault-Tolerant Facility Location

★ This work was partially supported by: (i) the Future and Emerging Technologies Unit
of EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL),
(ii) MNISW grant number N N206 1723 33, 2007-2010, (iii) NSF ITR Award CNS-
0426683 and NSF Award CNS-0626636, and (iv) NSERC grant 327620-09 and an
Ontario Early Researcher Award.

★★ Work of this author was partially conducted at CWI Amsterdam, TU Eindhoven,
and while visiting the University of Maryland.

(FTFL) problem, where each client has a positive integer specified as its coverage
requirement 𝑟𝑗 . The task is to find a minimum-cost solution which opens some
facilities from ℱ and connects each client 𝑗 to 𝑟𝑗 different open facilities.

The FTFL problem was introduced by Jain & Vazirani [7]. Guha et al. [6]
gave the first constant factor approximation algorithm with approximation ra-
tio 2.408. This was later improved by Swamy & Shmoys [11] who gave a 2.076-
approximation algorithm. FTFL generalizes the standard Uncapacitated Facility
Location (UFL) problem wherein 𝑟𝑗 = 1 for all 𝑗, for which Guha & Khuller [5]
proved an approximation lower bound of ≈ 1.463. The current-best approxima-
tion ratio for UFL is achieved by the 1.5-approximation algorithm of Byrka [2].

In this paper we give a new LP-rounding 1.7245-approximation algorithm
for the FTFL problem. It is the first application of the dependent rounding
technique of [10] to a facility location problem.

Our algorithm uses a novel clustering method, which allows clusters not to
be disjoint, but rather to form a laminar family of subsets of facilities. The hi-
erarchical structure of the obtained clustering exploits properties of dependent
rounding. By first rounding the “facility-opening” variables within smaller clus-
ters, we are able to ensure that at least a certain number of facilities is open
in each of the clusters. Intuitively, by allowing clusters to have different sizes
we may, in a more efficient manner, guarantee the opening of sufficiently-many
facilities around clients with different coverage requirements 𝑟𝑗 . In addition, one
of our main technical contributions is Theorem 2, which develops a new property
of the dependent-rounding technique that appears likely to have further appli-
cations. Basically, suppose we apply dependent rounding to a sequence of reals
and consider an arbitrary subset 𝑆 of the rounded variables (each of which lies
in {0, 1}) as well as an arbitrary integer 𝑘 > 0. Then, a natural fault-tolerance-
related objective is that if 𝑋 denotes the number of variables rounded to 1 in 𝑆,
then the random variable 𝑍 = min{𝑘,𝑋} be “large”. (In other words, we want
𝑋 to be “large”, but 𝑋 being more than 𝑘 does not add any marginal utility.) We
prove that if 𝑋0 denotes the corresponding sum wherein the reals are rounded
independently and if 𝑍0 = min{𝑘,𝑋0}, then E[𝑍] ≥ E[𝑍0]. Thus, for analysis
purposes, we can work with 𝑍0, which is much more tractable due to the inde-
pendence; at the same time, we derive all the benefits of dependent rounding
(such as a given number of facilities becoming available in a cluster, with prob-
ability one). Given the growing number of applications of dependent-rounding
methodologies, we view this as a useful addition to the toolkit.

2 Dependent rounding

Given a fractional vector 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑁) ∈ [0, 1]𝑁 we often seek to round
it to an integral vector 𝑦 ∈ {0, 1}𝑁 that is in a problem-specific sense very
“close to” 𝑦. The dependent-randomized-rounding technique of [10] is one such
approach known for preserving the sum of the entries deterministically, along
with concentration bounds for any linear combination of the entries; we will
generalize a known property of this technique in order to apply it to the FTFL

problem. The very useful pipage rounding technique of [1] was developed prior to
[10], and can be viewed as a derandomization (deterministic analog) of [10] via
the method of conditional probabilities. Indeed, the results of [1] were applied in
the work of [11]; the probabilistic intuition, as well as our generalization of the
analysis of [10], help obtain our results.

Define [𝑡] = {1, 2, . . . , 𝑡}. Given a fractional vector 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑁) ∈
[0, 1]𝑁 , the rounding technique of [10] (henceforth just referred to as “dependent
rounding”) is a polynomial-time randomized algorithm to produce a random
vector 𝑦 ∈ {0, 1}𝑁 with the following three properties:

(P1): marginals. ∀𝑖, Pr[𝑦𝑖 = 1] = 𝑦𝑖;

(P2): sum-preservation. With probability one,
∑𝑁

𝑖=1 𝑦𝑖 equals either ⌊
∑𝑁

𝑖=1 𝑦𝑖⌋
or ⌈∑𝑁

𝑖=1 𝑦𝑖⌉; and
(P3): negative correlation. ∀𝑆 ⊆ [𝑁], Pr[

⋀
𝑖∈𝑆(𝑦𝑖 = 0)] ≤∏

𝑖∈𝑆(1− 𝑦𝑖), and
Pr[

⋀
𝑖∈𝑆(𝑦𝑖 = 1)] ≤∏

𝑖∈𝑆 𝑦𝑖.

In this paper, we also exploit the order in which the entries of the given fractional
vector 𝑦 are rounded. We initially define a laminar family of subsets of indices
𝒮 ⊆ 2[𝑁]. When applying the dependent rounding procedure, we first round
within the smaller sets, until at most one fractional entry in a set is left, then
we proceed with bigger sets possibly containing the already rounded entries. It
can easily be shown that it assures the following version of property (P2) for all
subsets 𝑆 from the laminar family 𝒮:
(P2’): sum-preservation. With probability one,

∑
𝑖∈𝑆 𝑦𝑖 =

∑
𝑖∈𝑆 𝑦𝑖

and ∣{𝑖 ∈ 𝑆 : 𝑦𝑖 = 1}∣ = ⌊∑𝑖∈𝑆 𝑦𝑖⌋.
Now, let 𝑆 ⊆ [𝑁] be any subset, not necessarily from 𝒮. In order to present

our results, we need two functions, Sum𝑆 and 𝑔𝜆,𝑆 . For any vector 𝑥 ∈ [0, 1]𝑛,
let Sum𝑆(𝑥) =

∑
𝑖∈𝑆 𝑥𝑖 be the sum of the elements of 𝑥 indexed by elements of

𝑆; in particular, if 𝑥 is a (possibly random) vector with all entries either 0 or 1,
then Sum𝑆(𝑥) counts the number of entries in 𝑆 that are 1. Next, given 𝑠 = ∣𝑆∣
and a real vector 𝜆 = (𝜆0, 𝜆1, 𝜆2, . . . , 𝜆𝑠), we define, for any 𝑥 ∈ {0, 1}𝑛,

𝑔𝜆,𝑆(𝑥) =

𝑠∑
𝑖=0

𝜆𝑖 ⋅ ℐ(Sum𝑆(𝑥) = 𝑖),

where ℐ(⋅) denotes the indicator function. Thus, 𝑔𝜆,𝑆(𝑥) = 𝜆𝑖 if Sum𝑆(𝑥) = 𝑖.
Let ℛ(𝑦) be a random vector in {0, 1}𝑁 obtained by independently rounding

each 𝑦𝑖 to 1 with probability 𝑦𝑖, and to 0 with the complementary probability
of 1 − 𝑦𝑖. Suppose, as above, that 𝑦 is a random vector in {0, 1}𝑁 obtained
by applying the dependent rounding technique to 𝑦. We start with a general
theorem and then specialize it to Theorem 2 that will be very useful for us:

Theorem 1. Suppose we conduct dependent rounding on 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑁).
Let 𝑆 ⊆ [𝑁] be any subset with cardinality 𝑠 ≥ 2, and let 𝜆 = (𝜆0, 𝜆1, 𝜆2, . . . , 𝜆𝑠)
be any vector, such that for all 𝑟 with 0 ≤ 𝑟 ≤ 𝑠−2 we have 𝜆𝑟−2𝜆𝑟+1+𝜆𝑟+2 ≤ 0.
Then, E[𝑔𝜆,𝑆(𝑦)] ≥ E[𝑔𝜆,𝑆(ℛ(𝑦))].

Theorem 2. For any 𝑦 ∈ [0, 1]𝑁 , 𝑆 ⊆ [𝑁], and 𝑘 = 1, 2, . . ., we have

E[min{𝑘,Sum𝑆(𝑦)}] ≥ E[min{𝑘, Sum𝑆(ℛ(𝑦))}].
Using the notation exp(𝑡) = 𝑒𝑡, our next key result is:

Theorem 3. For any 𝑦 ∈ [0, 1]𝑁 , 𝑆 ⊆ [𝑁], and 𝑘 = 1, 2, . . ., we have

E[min{𝑘,Sum𝑆(ℛ(𝑦))}] ≥ 𝑘 ⋅ (1− exp(−Sum𝑆(𝑦)/𝑘)).

The above two theorems yield a key corollary that we will use:

Corollary 1.

E[min{𝑘,Sum𝑆(𝑦)}] ≥ 𝑘 ⋅ (1− exp(−Sum𝑆(𝑦)/𝑘)).

Proofs will appear in the full version of the paper (see also [3]).

3 Algorithm

3.1 LP-relaxation

The FTFL problem is defined by the following Integer Program (IP).

minimize
∑

𝑖∈ℱ 𝑓𝑖𝑦𝑖 +
∑

𝑗∈𝒞
∑

𝑖∈ℱ 𝑐𝑖𝑗𝑥𝑖𝑗 (1)

subject to:
∑

𝑖 𝑥𝑖𝑗 ≥ 𝑟𝑗 ∀𝑗 ∈ 𝒞 (2)

𝑥𝑖𝑗 ≤ 𝑦𝑖 ∀𝑗 ∈ 𝒞 ∀𝑖 ∈ ℱ (3)

𝑦𝑖 ≤ 1 ∀𝑖 ∈ ℱ (4)

𝑥𝑖𝑗 , 𝑦𝑖 ∈ 𝑍≥0 ∀𝑗 ∈ 𝒞 ∀𝑖 ∈ ℱ , (5)

where 𝒞 is the set of clients, ℱ is the set of possible locations of facilities, 𝑓𝑖 is
a cost of opening a facility at location 𝑖, 𝑐𝑖𝑗 is a cost of serving client 𝑗 from
a facility at location 𝑖, and 𝑟𝑗 is the amount of facilities client 𝑗 needs to be
connected to.

If we relax constraint (5) to 𝑥𝑖𝑗 , 𝑦𝑖 ≥ 0 we obtain the standard LP-relaxation
of the problem. Let (𝑥∗, 𝑦∗) be an optimal solution to this LP relaxation. We will
give an algorithm that rounds this solution to an integral solution (�̃�, 𝑦) with
cost at most 𝛾 ≈ 1.7245 times the cost of (𝑥∗, 𝑦∗).

3.2 Scaling

We may assume, without loss of generality, that for any client 𝑗 ∈ 𝒞 there exists
at most one facility 𝑖 ∈ ℱ such that 0 < 𝑥𝑖𝑗 < 𝑦𝑖. Moreover, this facility can
be assumed to have the highest distance to client 𝑗 among the facilities that
fractionally serve 𝑗 in (𝑥∗, 𝑦∗).

We first set 𝑥𝑖𝑗 = 𝑦𝑖 = 0 for all 𝑖 ∈ ℱ , 𝑗 ∈ 𝒞. Then we scale up the fractional
solution by the constant 𝛾 ≈ 1.7245 to obtain a fractional solution (�̂�, 𝑦). To be

precise: we set �̂�𝑖𝑗 = min{1, 𝛾 ⋅ 𝑥∗𝑖𝑗}, 𝑦𝑖 = min{1, 𝛾 ⋅ 𝑦∗𝑖 }. We open each facility
𝑖 with 𝑦𝑖 = 1 and connect each client-facility pair with �̂�𝑖𝑗 = 1. To be more
precise, we modify 𝑦, 𝑦, �̂�, �̃� and service requirements 𝑟 as follows. For each
facility 𝑖 with 𝑦𝑖 = 1, set 𝑦𝑖 = 0 and 𝑦𝑖 = 1. Then, for every pair (𝑖, 𝑗) such
that �̂�𝑖𝑗 = 1, set �̂�𝑖𝑗 = 0, 𝑥𝑖𝑗 = 1 and decrease 𝑟𝑗 by one. When this process is
finished we call the resulting 𝑟, 𝑦 and �̂� by 𝑟, 𝑦 and 𝑥. Note that the connections
that we made in this phase can be paid for by a difference in the connection
cost between �̂� and 𝑥. We will show that the remaining connection cost of the
solution of the algorithm is expected to be at most the cost of 𝑥.

For the feasibility of the final solution, it is essential that if we connected
client 𝑗 to facility 𝑖 in this initial phase, we will not connect it again to 𝑖 in the
rest of the algorithm. There will be two ways of connecting clients in the process
of rounding 𝑥. The first one connects client 𝑗 to a subset of facilities serving 𝑗 in
𝑥. Recall that if 𝑗 was connected to facility 𝑖 in the initial phase, then 𝑥𝑖𝑗 = 0,
and no additional 𝑖-𝑗 connection will be created.

The connections of the second type will be created in a process of clustering.
The clustering that we will use is a generalization of the one of Chudak & Shmoys
for the UFL problem [4]. As a result of this clustering process, client 𝑗 will be
allowed to connect itself via a different client 𝑗′ to a facility open around 𝑗′. 𝑗′

will be called a cluster center for a subset of facilities, and it will make sure that
at least some guaranteed number of these facilities will get opened.

To be certain that client 𝑗 does not get again connected to facility 𝑖 with a
path via client 𝑗′, facility 𝑖 will never be a member of the set of facilities clustered
by client 𝑗′. We call a facility 𝑖 special for client 𝑗 iff 𝑦𝑖 = 1 and 0 < 𝑥𝑖𝑗 < 1.
Note that, by our earlier assumption, there is at most one special facility for
each client 𝑗, and that a special facility must be at maximal distance among
facilities serving 𝑗 in 𝑥. When rounding the fractional solution in Section 3.5, we
take care that special facilities are not members of the formed clusters.

3.3 Close and distant facilities

Before we describe how do we cluster facilities, we specify the facilities that are
interesting for a particular client in the clustering process. The following can be
fought of as a version of a filtering technique of Lin and Vitter [8], first applied
to facility location by Shmoys et al. [9]. The analysis that we use here is a version
of the argument of Byrka [2].

As a result of the scaling that was described in the previous section, the con-
nection variables 𝑥 amount for a total connectivity that exceeds the requirement
𝑟. More precisely, we have

∑
𝑖∈ℱ 𝑥𝑖𝑗 ≥ 𝛾 ⋅ 𝑟𝑗 for every client 𝑗 ∈ 𝒞. We will

consider for each client 𝑗 a subset of facilities that are just enough to provide it
a fractional connection of 𝑟𝑗 . Such a subset is called a set of close facilities of
client 𝑗 and is defined as follows.

For every client 𝑗 consider the following construction. Let 𝑖1, 𝑖2, . . . , 𝑖∣ℱ∣ be the
ordering of facilities in ℱ in a nondecreasing order of distances 𝑐𝑖𝑗 to client 𝑗. Let

𝑖𝑘 be the facility in this ordering, such that
∑𝑘−1

𝑙=1 𝑥𝑖𝑙𝑗 < 𝑟𝑗 and
∑𝑘

𝑙=1 𝑥𝑖𝑙𝑗 ≥ 𝑟𝑗 .

Define

𝑥
(𝑐)
𝑖𝑙𝑗

=

⎧⎨
⎩
𝑥𝑖𝑙𝑗 for 𝑙 < 𝑘,

𝑟𝑗 −
∑𝑘−1

𝑙=1 𝑥𝑖𝑙𝑗 for 𝑙 = 𝑘,
0 for 𝑙 > 𝑘

Define 𝑥
(𝑑)
𝑖𝑗 = 𝑥𝑖𝑗 − 𝑥(𝑐)𝑖𝑗 for all 𝑖 ∈ ℱ , 𝑗 ∈ 𝒞.

We will call the set of facilities 𝑖 ∈ ℱ such that 𝑥
(𝑐)
𝑖𝑗 > 0 the set of close

facilities of client 𝑗 and we denote it by 𝐶𝑗 . By analogy, we will call the set of

facilities 𝑖 ∈ ℱ such that 𝑥
(𝑑)
𝑖𝑗 > 0 the set of distant facilities of client 𝑗 and

denote it 𝐷𝑗 . Observe that for a client 𝑗 the intersection of 𝐶𝑗 and 𝐷𝑗 is either
empty, or contains exactly one facility. In the latter case, we will say that this
facility is both distant and close. Note that, unlike in the UFL problem, we
cannot simply split this facility to the close and the distant part, because it is
essential that we make at most one connection to this facility in the final integral

solution. Let 𝑑
(𝑚𝑎𝑥)
𝑗 = 𝑐𝑖𝑘𝑗 be the distance from client 𝑗 to the farthest of its

close facilities.

3.4 Clustering

We will now construct a family of subsets of facilities 𝒮 ∈ 2ℱ . These subsets 𝑆 ∈
𝒮 will be called clusters and they will guide the rounding procedure described
next. There will be a client related to each cluster, and each single client 𝑗 will
be related to at most one cluster, which we call 𝑆𝑗 .

Not all the clients participate in the clustering process. Clients 𝑗 with 𝑟𝑗 = 1
and a special facility 𝑖′ ∈ 𝐶𝑗 (recall that a special facility is a facility that is fully
open in 𝑦 but only partially used by 𝑗 in 𝑥) will be called special and will not
take part in the clustering process. Let 𝒞′ denote the set of all other, non-special
clients. Observe that, as a result of scaling, clients 𝑗 with 𝑟𝑗 ≥ 2 do not have any
special facilities among their close facilities (since

∑
𝑖 𝑥𝑖𝑗 ≥ 𝛾𝑟𝑗 > 𝑟𝑗 + 1). As

a consequence, there are no special facilities among the close facilities of clients
from 𝒞′, the only clients actively involved in the clustering procedure.

For each client 𝑗 ∈ 𝒞′ we will keep two families 𝐴𝑗 and 𝐵𝑗 of disjoint subsets
of facilities. Initially 𝐴𝑗 = {{𝑖} : 𝑖 ∈ 𝐶𝑗}, i.e., 𝐴𝑗 is initialized to contain a
singleton set for each close facility of client 𝑗; 𝐵𝑗 is initially empty. 𝐴𝑗 will be
used to store these initial singleton sets, but also clusters containing only close
facilities of 𝑗; 𝐵𝑗 will be used to store only clusters that contain at least one
close facility of 𝑗. When adding a cluster to either 𝐴𝑗 or 𝐵𝑗 we will remove all
the subsets it intersects from both 𝐴𝑗 and 𝐵𝑗 , therefore subsets in 𝐴𝑗 ∪𝐵𝑗 will
always be pairwise disjoint.

The family of clusters that we will construct will be a laminar family of sub-
sets of facilities, i.e., any two clusters are either disjoint or one entirely contains
the other. One can imagine facilities being leaves and clusters being internal
nodes of a forest that eventually becomes a tree, when all the clusters are added.

We will use 𝑦(𝑆) as a shorthand for
∑

𝑖∈𝑆 𝑦𝑖. Let us define 𝑦(𝑆) = ⌊𝑦(𝑆)⌋. As
a consequence of using the family of clusters to guide the rounding process, by

Property (P2’) of the dependent rounding procedure when applied to a cluster,
th quantity 𝑦(𝑆) lower bounds the number of facilities that will certainly be
opened in cluster 𝑆. Additionally, let us define the residual requirement of client
𝑗 to be 𝑟𝑟𝑗 = 𝑟𝑗 −

∑
𝑆∈(𝐴𝑗∪𝐵𝑗)

𝑦(𝑆), that is 𝑟𝑗 minus a lower bound on the
number of facilities that will be opened in clusters from 𝐴𝑗 and 𝐵𝑗 .

We use the following procedure to compute clusters. While there exists a

client 𝑗 ∈ 𝒞′, such that 𝑟𝑟𝑗 > 0, take such 𝑗 with minimal 𝑑
(𝑚𝑎𝑥)
𝑗 and do the

following:

1. Take𝑋𝑗 to be an inclusion-wise minimal subset of 𝐴𝑗 , such that
∑

𝑆∈𝑋𝑗
(𝑦(𝑆)−

𝑦(𝑆)) ≥ 𝑟𝑟𝑗 . Form the new cluster 𝑆𝑗 =
∪

𝑆∈𝑋𝑗
𝑆.

2. Make 𝑆𝑗 a new cluster by setting 𝒮 ← 𝒮 ∪ {𝑆𝑗}.
3. Update 𝐴𝑗 ← (𝐴𝑗 ∖𝑋𝑗) ∪ {𝑆𝑗}.
4. For each client 𝑗′ with 𝑟𝑟𝑗′ > 0 do

– If 𝑋𝑗 ⊆ 𝐴𝑗′ , then set 𝐴𝑗′ ← (𝐴𝑗′ ∖𝑋𝑗) ∪ {𝑆𝑗}.
– If 𝑋𝑗 ∩𝐴𝑗′ ∕= ∅ and 𝑋𝑗 ∖𝐴𝑗′ ∕= ∅,

then set 𝐴𝑗′ ← 𝐴𝑗′ ∖𝑋𝑗 and 𝐵𝑗′ ← {𝑆 ∈ 𝐵𝑗′ : 𝑆 ∩ 𝑆𝑗 = ∅} ∪ {𝑆𝑗}.
Eventually, add a cluster 𝑆𝑟 = ℱ containing all the facilities to the family 𝒮.

We call a client 𝑗′ active in a particular iteration, if before this iteration
its residual requirement 𝑟𝑟𝑗 = 𝑟𝑗 −

∑
𝑆∈(𝐴𝑗∪𝐵𝑗)

𝑦(𝑆) was positive. During the
above procedure, all active clients 𝑗 have in their sets 𝐴𝑗 and 𝐵𝑗 only maximal
subsets of facilities, that means they are not subsets of any other clusters (i.e.,
they are roots of their trees in the current forest). Therefore, when a new cluster
𝑆𝑗 is created, it contains all the other clusters with which it has nonempty
intersections (i.e., the new cluster 𝑆𝑗 becomes a root of a new tree).

We shall now argue that there is enough fractional opening in clusters in 𝐴𝑗

to cover the residual requirement 𝑟𝑟𝑗 when cluster 𝑆𝑗 is to be formed. Consider
a fixed client 𝑗 ∈ 𝒞′. Recall that at the start of the clustering we have 𝐴𝑗 =
{{𝑖} : 𝑖 ∈ 𝐶𝑗}, and therefore

∑
𝑆∈𝐴𝑗

(𝑦(𝑆) − 𝑦(𝑆)) = ∑
𝑖∈𝐶𝑗

𝑦𝑖 ≥ 𝑟𝑗 = 𝑟𝑟𝑗 . It

remains to show, that
∑

𝑆∈𝐴𝑗
(𝑦(𝑆) − 𝑦(𝑆)) − 𝑟𝑟𝑗 does not decrease over time

until client 𝑗 is considered. When a client 𝑗′ with 𝑑(𝑚𝑎𝑥)
𝑗′ ≤ 𝑑

(𝑚𝑎𝑥)
𝑗 is considered

and cluster 𝑆𝑗′ is created, the following cases are possible:

1. 𝑆𝑗′ ∩ (
∪

𝑆∈𝐴𝑗
𝑆) = ∅: then 𝐴𝑗 and 𝑟𝑟𝑗 do not change;

2. 𝑆𝑗′ ⊆ (
∪

𝑆∈𝐴𝑗
𝑆): then 𝐴𝑗 changes its structure, but

∑
𝑆∈𝐴𝑗

𝑦(𝑆) and
∑

𝑆∈𝐵𝑗
𝑦(𝑆)

do not change; hence
∑

𝑆∈𝐴𝑗
(𝑦(𝑆)− 𝑦(𝑆))− 𝑟𝑟𝑗 also does not change;

3. 𝑆𝑗′∩(
∪

𝑆∈𝐴𝑗
𝑆) ∕= ∅ and 𝑆𝑗′∖(

∪
𝑆∈𝐴𝑗

𝑆) ∕= ∅: then, by inclusion-wise minimal-

ity of set 𝑋𝑗′ , we have 𝑦(𝑆𝑗′)−
∑

𝑆∈𝐵𝑗,𝑆⊆𝑆𝑗′
𝑦(𝑆)−∑

𝑆∈𝐴𝑗 ,𝑆⊆𝑆𝑗′
𝑦(𝑆) ≥ 0;

hence,
∑

𝑆∈𝐴𝑗
(𝑦(𝑆)− 𝑦(𝑆))− 𝑟𝑟𝑗 cannot decrease.

Let 𝐴′
𝑗 = 𝐴𝑗 ∩ 𝒮 be the set of clusters in 𝐴𝑗 . Recall that all facilities in

clusters in 𝐴′
𝑗 are close facilities of 𝑗. Note also that each cluster 𝑆𝑗′ ∈ 𝐵𝑗 was

created from close facilities of a client 𝑗′ with 𝑑(𝑚𝑎𝑥)
𝑗′ ≤ 𝑑

(𝑚𝑎𝑥)
𝑗 . We also have for

each 𝑆𝑗′ ∈ 𝐵𝑗 that 𝑆𝑗′ ∩ 𝐶𝑗 ∕= ∅, hence, by the triangle inequality, all facilities

in 𝑆𝑗′ are at distance at most 3 ⋅ 𝑑(𝑚𝑎𝑥)
𝑗 from 𝑗. We thus infer the following

Corollary 2. The family of clusters 𝒮 contains for each client 𝑗 ∈ 𝒞′ a collec-

tion of disjoint clusters 𝐴′
𝑗∪𝐵𝑗 containing only facilities within distance 3⋅𝑑(𝑚𝑎𝑥)

𝑗 ,
and

∑
𝑆∈𝐴′

𝑗∪𝐵𝑗
⌊∑𝑖∈𝑆 𝑦𝑖⌋ ≥ 𝑟𝑗.

Note that our clustering is related to, but more complex then the one of
Chudak and Shmoys [4] for UFL and of Swamy and Shmoys [11] for FTFL,
where clusters are pairwise disjoint and each contains facilities whose fractional
opening sums up to or slightly exceeds the value of 1.

3.5 Opening of facilities by dependent rounding

Given the family of subsets 𝒮 ∈ 2ℱ computed by the clustering procedure from
Section 3.4, we can proceed with rounding the fractional opening vector 𝑦 into
an integral vector 𝑦𝑅. We do it by applying the rounding technique of Section 2,
guided by the family 𝒮, which is done as follows.

While there is more than one fractional entry, select a minimal subset of
𝑆 ∈ 𝒮 which contains more than one fractional entry and apply the rounding
procedure to entries of 𝑦 indexed by elements of 𝑆 until at most one entry in
𝑆 remains fractional. Eventually, if there remains a fractional entry, round it
independently and let 𝑦𝑅 be the resulting vector.

Observe that the above process is one of the possible implementations of
dependent rounding applied to 𝑦. As a result, the random integral vector 𝑦𝑅

satisfies properties (P1),(P2), and (P3). Additionally, property (P2’) holds for
each cluster 𝑆 ∈ 𝒮. Hence, at least ⌊∑𝑖∈𝑆 𝑦𝑖⌋ entries in each 𝑆 ∈ 𝒮 are rounded
to 1. Therefore, by Corollary 2, we get

Corollary 3. For each client 𝑗 ∈ 𝒞′.

∣{𝑖 ∈ ℱ∣𝑦𝑅𝑖 = 1 and 𝑐𝑖𝑗 ≤ 3 ⋅ 𝑑(𝑚𝑎𝑥)
𝑗 }∣ ≥ 𝑟𝑗 .

Next, we combine the facilities opened by rounding 𝑦𝑅 with facilities opened
already when scaling which are recorded in 𝑦, i.e., we update 𝑦 ← 𝑦 + 𝑦𝑅.

Eventually, we connect each client 𝑗 ∈ 𝒞 to 𝑟𝑗 closest opened facilities and
code it in 𝑥.

4 Analysis

We will now estimate the expected cost of the solution (�̃�, 𝑦). The tricky part is
to bound the connection cost, which we do as follows. We argue that a certain
fraction of the demand of client 𝑗 can be satisfied from its close facilities, then
some part of the remaining demand can be satisfied from its distant facilities.
Eventually, the remaining (not too large in expectation) part of the demand is
satisfied via clusters.

4.1 Average distances

Let us consider weighted average distances from a client 𝑗 to sets of facilities
fractionally serving it. Let 𝑑𝑗 be the average connection cost in 𝑥𝑖𝑗 defined as

𝑑𝑗 =

∑
𝑖∈ℱ 𝑐𝑖𝑗 ⋅ 𝑥𝑖𝑗∑

𝑖∈ℱ 𝑥𝑖𝑗
.

Let 𝑑
(𝑐)
𝑗 , 𝑑

(𝑑)
𝑗 be the average connection costs in 𝑥

(𝑐)
𝑖𝑗 and 𝑥

(𝑑)
𝑖𝑗 defined as

𝑑
(𝑐)
𝑗 =

∑
𝑖∈ℱ 𝑐𝑖𝑗 ⋅ 𝑥(𝑐)𝑖𝑗∑

𝑖∈ℱ 𝑥
(𝑐)
𝑖𝑗

,

𝑑
(𝑑)
𝑗 =

∑
𝑖∈ℱ 𝑐𝑖𝑗 ⋅ 𝑥(𝑑)𝑖𝑗∑

𝑖∈ℱ 𝑥
(𝑑)
𝑖𝑗

.

Let 𝑅𝑗 be a parameter defined as

𝑅𝑗 =
𝑑𝑗 − 𝑑(𝑐)𝑗

𝑑𝑗

if 𝑑𝑗 > 0 and 𝑅𝑗 = 0 otherwise. Observe that 𝑅𝑗 takes value between 0 and 1.

𝑅𝑗 = 0 implies 𝑑
(𝑐)
𝑗 = 𝑑𝑗 = 𝑑

(𝑑)
𝑗 , and 𝑅𝑗 = 1 occurs only when 𝑑

(𝑐)
𝑗 = 0. The role

played by 𝑅𝑗 is that it measures a certain parameter of the instance, big values
are good for one part of the analysis, small values are good for the other.

Lemma 1. 𝑑
(𝑑)
𝑗 ≤ 𝑑𝑗(1 +

𝑅𝑗

𝛾−1).

Proof. Recall that
∑

𝑖∈ℱ 𝑥
(𝑐)
𝑖𝑗 = 𝑟𝑗 and

∑
𝑖∈ℱ 𝑥

(𝑑)
𝑖𝑗 ≥ (𝛾 − 1) ⋅ 𝑟𝑗 . Therefore, we

have (𝑑
(𝑑)
𝑗 − 𝑑𝑗) ⋅ (𝛾 − 1) ≤ (𝑑𝑗 − 𝑑(𝑐)𝑗) ⋅ 1 = 𝑅𝑗 ⋅ 𝑑𝑗 , which can be rearranged to

get 𝑑
(𝑑)
𝑗 ≤ 𝑑𝑗(1 +

𝑅𝑗

𝛾−1). ⊓⊔
Finally, observe that the average distance from 𝑗 to the distant facilities of

𝑗 gives an upper bound on the maximal distance to any of the close facilities of

𝑗. Namely, 𝑑
(𝑚𝑎𝑥)
𝑗 ≤ 𝑑

(𝑑)
𝑗 .

4.2 Amount of service from close and distant facilities

We now argue that in the solution (�̃�, 𝑦), a certain portion of the demand is
expected to be served by the close and distant facilities of each client. Recall
that for a client 𝑗 it is possible, that there is a facility that is both its close
and its distant facility. Once we have a solution that opens such a facility, we
would like to say what fraction of the demand is served from the close facilities.
To make our analysis simpler we will toss a properly biased coin to decide if
using this facility counts as using a close facility. With this trick we, in a sense,

0 distant
facilities

close facilities

distance

average distance to distant facilities

average distance to close facilities

maximal distance to close facilities

𝑟𝑗
𝛾

𝑟𝑗

𝑑
(𝑑)
𝑗

𝑑
(𝑚𝑎𝑥)
𝑗

𝑑𝑗

𝑑
(𝑐)
𝑗 = 𝑑𝑗(1−𝑅𝑗)

Fig. 1. Distances to facilities serving client 𝑗 in 𝑥. The width of a rectangle correspond-
ing to facility 𝑖 is equal to 𝑥𝑖𝑗 . Figure helps to understand the meaning of 𝑅𝑗 .

split such a facility into a close and a distant part. Note that we can only do
it for this part of the analysis, but not for the actual rounding algorithm from
Section 3.5. Applying the above-described split of the undecided facility, we get
that the total fractional opening of close facilities of client 𝑗 is exactly 𝑟𝑗 , and
the total fractional opening of both close and distant facilities is at least 𝛾 ⋅ 𝑟𝑗 .
Therefore, Corollary 1 yields the following:

Corollary 4. The amount of close facilities used by client 𝑗 in a solution de-
scribed in Section 3.5 is expected to be at least (1− 1

𝑒) ⋅ 𝑟𝑗.
Corollary 5. The amount of close and distant facilities used by client 𝑗 in a
solution described in Section 3.5 is expected to be at least (1− 1

𝑒𝛾) ⋅ 𝑟𝑗.
Motivated by the above bounds we design a selection method to choose a

(large-enough in expectation) subset of facilities opened around client 𝑗:

Lemma 2. For 𝑗 ∈ 𝒞′ we can select a subset 𝐹𝑗 of open facilities from 𝐶𝑗 ∪𝐷𝑗

such that:

∣𝐹𝑗 ∣ ≤ 𝑟𝑗 (with probability 1),

𝐸[𝐹𝑗] = (1− 1

𝑒𝛾
) ⋅ 𝑟𝑗 ,

𝐸[
∑
𝑖∈𝐹𝑗

𝑐𝑖𝑗] ≤ ((1− 1/𝑒) ⋅ 𝑟𝑗) ⋅ 𝑑(𝑐)𝑗 + (((1 − 1

𝑒𝛾
)− (1− 1/𝑒)) ⋅ 𝑟𝑗) ⋅ 𝑑(𝑑)𝑗 .

A technical but not difficult proof we sketch in the Appendix.

4.3 Calculation

We can now combine the pieces into the algorithm ALG:

1. solve the LP-relaxation of (1)-(5);
2. scale the fractional solution as described in Section 3.2;
3. create a family of clusters as described in Section 3.4;
4. round the fractional openings as described in Section 3.5;
5. connect each client 𝑗 to 𝑟𝑗 closest open facilities;
6. output the solution as (�̃�, 𝑦).

Theorem 4. ALG is an 1.7245-approximation algorithm for FTFL.

Proof. First observe that the solution produced by ALG is trivially feasible to
the original problem (1)-(5), as we simply choose different 𝑟𝑗 facilities for client
𝑗 in step 5. What is less trivial is that all the 𝑟𝑗 facilities used by 𝑗 are within
a certain small distance. Let us now bound the expected connection cost of the
obtained solution.

For each client 𝑗 ∈ 𝒞 we get 𝑟𝑗 − 𝑟𝑗 facilities opened in Step 2. As we already
argued in Section 3.2, we can afford to connect 𝑗 to these facilities and pay the
connection cost from the difference between

∑
𝑖 𝑐𝑖𝑗 �̂�𝑖𝑗 and

∑
𝑖 𝑐𝑖𝑗𝑥𝑖𝑗 . We will

now argue, that client 𝑗 can connect to the remaining 𝑟𝑗 with the expected
connection cost bounded by

∑
𝑖 𝑐𝑖𝑗𝑥𝑖𝑗 .

For a special client 𝑗 ∈ (𝒞 ∖ 𝒞′) we have 𝑟𝑗 = 1 and already in Step 2

one special facility at distance 𝑑
(𝑚𝑎𝑥)
𝑗 from 𝑗 is opened. We cannot always just

connect 𝑗 to this facility, since 𝑑
(𝑚𝑎𝑥)
𝑗 may potentially be bigger then 𝛾 ⋅𝑑𝑗 . What

we do instead is that we first look at close facilities of 𝑗 that, as a result of the
rounding in Step 4, with a certain probability, give one open facility at a small
distance. By Corollary 4 this probability is at least 1− 1/𝑒. It is easy to observe

that the expected connection cost to this open facility is at most 𝑑
(𝑐)
𝑗 . Only if

no close facility is open, we use the special facility, which results in the expected
connection cost of client 𝑗 being at most

(1−1/𝑒)𝑑(𝑐)𝑗 +(1/𝑒)𝑑
(𝑑)
𝑗 ≤ (1−1/𝑒)𝑑(𝑐)𝑗 +(1/𝑒)𝑑𝑗(1+

𝑅𝑗

𝛾 − 1
) ≤ 𝑑𝑗(1+1/(𝑒⋅(𝛾−1)) ≤ 𝛾⋅𝑑𝑗,

where the first inequality is a consequence of Lemma 1, and the last one is a
consequence of the choice of 𝛾 ≈ 1.7245.

In the remaining, we only look at non-special clients 𝑗 ∈ 𝒞′. By Lemma 2,
client 𝑗 can select to connect itself to the subset of open facilities 𝐹𝑗 , and pay for

this connection at most ((1− 1/𝑒) ⋅ 𝑟𝑗) ⋅ 𝑑(𝑐)𝑗 +(((1− 1
𝑒𝛾)− (1− 1/𝑒)) ⋅ 𝑟𝑗) ⋅ 𝑑(𝑑)𝑗 in

expectation. The expected number of facilities needed on top of those from 𝐹𝑗 is
𝑟𝑗 −𝐸[∣𝐹𝑗 ∣] = (1

𝑒𝛾 ⋅ 𝑟𝑗). These remaining facilities client 𝑗 gets deterministically

within the distance of at most 3 ⋅ 𝑑(𝑚𝑎𝑥)
𝑗 , which is possible by the properties of

the rounding procedure described in Section 3.5, see Corollary 3. Therefore, the

expected connection cost to facilities not in 𝐹𝑗 is at most (1
𝑒𝛾 ⋅ 𝑟𝑗) ⋅ (3 ⋅ 𝑑(𝑚𝑎𝑥)

𝑗).

Concluding, the total expected connection cost of 𝑗 may be bounded by

((1 − 1/𝑒) ⋅ 𝑟𝑗) ⋅ 𝑑(𝑐)𝑗 + (((1 − 1

𝑒𝛾
)− (1− 1/𝑒)) ⋅ 𝑟𝑗) ⋅ 𝑑(𝑑)𝑗 + (

1

𝑒𝛾
⋅ 𝑟𝑗) ⋅ (3 ⋅ 𝑑(𝑚𝑎𝑥)

𝑗)

≤ 𝑟𝑗 ⋅
(
(1− 1/𝑒) ⋅ 𝑑(𝑐)𝑗 + ((1− 1

𝑒𝛾
)− (1− 1/𝑒)) ⋅ 𝑑(𝑑)𝑗 +

1

𝑒𝛾
⋅ (3𝑑(𝑑)𝑗)

)

= 𝑟𝑗 ⋅
(
(1− 1/𝑒) ⋅ 𝑑(𝑐)𝑗 + ((1 +

2

𝑒𝛾
)− (1− 1/𝑒)) ⋅ 𝑑(𝑑)𝑗

)

≤ 𝑟𝑗 ⋅
(
(1− 1/𝑒) ⋅ (1−𝑅𝑗) ⋅ 𝑑𝑗 + ((1 +

2

𝑒𝛾
)− (1− 1/𝑒)) ⋅ (1 + 𝑅𝑗

𝛾 − 1
) ⋅ 𝑑𝑗

)

= 𝑟𝑗 ⋅ 𝑑𝑗 ⋅
(
(1− 1/𝑒) ⋅ (1 −𝑅𝑗) + (

2

𝑒𝛾
+ 1/𝑒) ⋅ (1 + 𝑅𝑗

𝛾 − 1
)

)

= 𝑟𝑗 ⋅ 𝑑𝑗 ⋅
(
(1− 1/𝑒) + (

2

𝑒𝛾
+ 1/𝑒) +𝑅𝑗 ⋅ ((2

𝑒𝛾
+ 1/𝑒) ⋅ 1

𝛾 − 1
− (1 − 1/𝑒))

)

= 𝑟𝑗 ⋅ 𝑑𝑗 ⋅
(
1 +

2

𝑒𝛾
+𝑅𝑗 ⋅

(
(2
𝑒𝛾 + 1/𝑒)

𝛾 − 1
− (1 − 1/𝑒)

))
,

where the second inequality follows from Lemma 1 and the definition of 𝑅𝑗 .

Observe that for 1 < 𝛾 < 2, we have
(2
𝑒𝛾 +1/𝑒)

𝛾−1 − (1− 1/𝑒) > 0. Recall that by
definition, 𝑅𝑗 ≤ 1; so, 𝑅𝑗 = 1 is the worst case for our estimate, and therefore

𝑟𝑗 ⋅𝑑𝑗 ⋅
(
1 +

2

𝑒𝛾
+ 𝑅𝑗 ⋅

(
(2
𝑒𝛾 + 1/𝑒)

𝛾 − 1
− (1− 1/𝑒)

))
≤ 𝑟𝑗 ⋅𝑑𝑗 ⋅(1/𝑒+ 2

𝑒𝛾
)(1+

1

𝛾 − 1
).

Recall that 𝑥 incurs, for each client 𝑗, a fractional connection cost
∑

𝑖∈ℱ 𝑐𝑖𝑗𝑥𝑖𝑗 ≥
𝛾 ⋅ 𝑟𝑗 ⋅ 𝑑𝑗 . We fix 𝛾 = 𝛾0, such that 𝛾0 = (1/𝑒+ 2

𝑒𝛾0)(1 +
1

𝛾0−1) ≤ 1.7245.
To conclude, the expected connection cost of 𝑗 to facilities opened during

the rounding procedure is at most the fractional connection cost of 𝑥. The total
connection cost is, therefore, at most the connection cost of �̂�, which is at most
𝛾 times the connection cost of 𝑥∗.

By property (P1) of dependent rounding, every single facility 𝑖 is opened with
the probability 𝑦𝑖, which is at most 𝛾 times 𝑦∗𝑖 . Therefore, the total expected
cost of the solution produced by ALG is at most 𝛾 ≈ 1.7245 times the cost of
the fractional optimal solution (𝑥∗, 𝑦∗). ⊓⊔

5 Concluding remarks

We have presented improved approximation algorithms for the metric Fault-
Tolerant Uncapacitated Facility Location problem. The main technical innova-
tion is the usage and analysis of dependent rounding in this context. We believe
that variants of dependent rounding will also be fruitful in other location prob-
lems. Finally, we conjecture that the approximation threshold for both UFL and
FTFL is the value 1.46 ⋅ ⋅ ⋅ suggested by [5]; it would be very interesting to prove
or refute this.

Acknowledgment. We thank the IPCO referees for their helpful comments.

References

1. A. Ageev and M. Sviridenko. Pipage rounding: a new method of constructing
algorithms with proven performance guarantee. Journal of Combinatorial Opti-
mization, 8(3):307–328, 2004.

2. J. Byrka. An optimal bifactor approximation algorithm for the metric uncapaci-
tated facility location problem. In APPROX-RANDOM, pages 29–43, 2007.

3. J. Byrka, A. Srinivasan, and C. Swamy. Fault-tolerant facility location: a random-
ized dependent LP-rounding algorithm. arXiv:1003.1295v1.

4. F. A. Chudak and D. B. Shmoys. Improved approximation algorithms for the
uncapacitated facility location problem. SIAM J. Comput., 33(1):1–25, 2003.

5. S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms.
J. Algorithms, 31(1):228–248, 1999.

6. S. Guha, A. Meyerson, and K. Munagala. A constant factor approximation algo-
rithm for the fault-tolerant facility location problem. J. Algorithms, 48(2):429–440,
2003.

7. K. Jain and V. V. Vazirani. An approximation algorithm for the fault tolerant
metric facility location problem. Algorithmica, 38(3):433–439, 2003.

8. J.-H. Lin and J. S. Vitter. epsilon-approximations with minimum packing con-
straint violation (extended abstract). In STOC, pages 771–782, 1992.

9. D. B. Shmoys, É. Tardos, and K. Aardal. Approximation algorithms for facility
location problems (extended abstract). In STOC, pages 265–274, 1997.

10. A. Srinivasan. Distributions on level-sets with applications to approximation algo-
rithms. In FOCS, pages 588–597, 2001.

11. C. Swamy and D. B. Shmoys. Fault-tolerant facility location. ACM Transactions
on Algorithms, 4(4), 2008.

Appendix

Proof. (for Lemma 2, a sketch) Given client 𝑗, fractional facility opening
vector 𝑦, distances 𝑐𝑖𝑗 , requirement 𝑟𝑗 , and facility subsets 𝐶𝑗 and 𝐷𝑗 , we will
describe how to randomly choose a subset of at most 𝑘 = 𝑟𝑗 open facilities from
𝐶𝑗 ∪𝐷𝑗 with the desired properties.

For this argument we assume that all the numbers are rational. Recall that
the opening of facilities is decided in a dependent rounding routine, that in a
single step couples two fractional entries to leave at most one of them fractional.

Observe that, for the purpose of this argument, we can split a single facility
into many identical copies with smaller fractional opening. One can think that
the input facilities and their original openings were obtained along the process
of dependent rounding applied to the multiple “small” copies that we prefer to
consider here. Therefore, without loss of generality, we can assume that all the
facilities have fractional opening equal 𝜖, i.e., 𝑦𝑖 = 𝜖 for all 𝑖 ∈ 𝐶𝑗∪𝐷𝑗. Moreover,
we can assume that sets 𝐶𝑗 and 𝐷𝑗 are disjoint.

By renaming facilities we obtain that 𝐶𝑗 = {1, 2, . . . , ∣𝐶𝑗 ∣}, 𝐷𝑗 = {∣𝐶𝑗 ∣ +
1, . . . , ∣𝐶𝑗 ∣+ ∣𝐷𝑗 ∣}, and 𝑐𝑖𝑗 ≤ 𝑐𝑖′𝑗 for all 1 ≤ 𝑖 < 𝑖′ ≤ ∣𝐶𝑗 ∣+ ∣𝐷𝑗 ∣.

Consider random set 𝑆0 ⊆ 𝐶𝑗∪𝐷𝑗 created as follows. Let 𝑦 be the outcome of
rounding the fractional opening vector 𝑦 with the dependent rounding procedure,
and define 𝑆0 = {𝑖 : 𝑦𝑖 = 1, (

∑
𝑗<𝑖 𝑦) < 𝑘}. By Corollary 1, we have that

E[∣𝑆0∣] ≥ 𝑘 ⋅(1−exp(−Sum𝐶𝑗∪𝐷𝑗 (𝑦)/𝑘)). Define random set 𝑆𝛼 for 𝛼 ∈ (0, ∣𝐶𝑗 ∣+
∣𝐷𝑗 ∣] as follows. For 𝑖 = 1, 2, . . . ⌊∣𝐶𝑗 ∣ + ∣𝐷𝑗 ∣ − 𝛼⌋ we have 𝑖 ∈ 𝑆𝛼 if and only
if 𝑖 ∈ 𝑆0. For 𝑖 = ⌈∣𝐶𝑗 ∣ + ∣𝐷𝑗 ∣ − 𝛼⌉, in case 𝑖 ∈ 𝑆0 we toss a (suitably biased)
coin and include 𝑖 in 𝑆𝛼 with probability 𝛼− ⌊𝛼⌋. For 𝑖 > ⌈∣𝐶𝑗 ∣+ ∣𝐷𝑗 ∣ − 𝛼⌉ we
deterministically have 𝑖 /∈ 𝑆𝛼.

Observe that E[∣𝑆𝛼∣] is a continuous monotone non-increasing function of 𝛼,
hence there is 𝛼0 such that E[∣𝑆𝛼0 ∣] = 𝑘 ⋅ (1 − exp(−Sum𝐶𝑗∪𝐷𝑗 (𝑦)/𝑘)). We fix
𝐹𝑗 = 𝑆𝛼0 and claim that it has the desired properties. By definition, we have
E[∣𝐹𝑗 ∣] = 𝑘 ⋅ (1− exp(−Sum𝐶𝑗∪𝐷𝑗 (𝑦)/𝑘)) = (1− 1

𝑒𝛾) ⋅ 𝑟𝑗 . We next show that the
expected total connection cost between 𝑗 and facilities in 𝐹𝑗 is not too large.

Let 𝑝𝛼𝑖 = 𝑃𝑟[𝑖 ∈ 𝑆𝛼] and 𝑝′𝑖 = 𝑝𝛼0

𝑖 = 𝑃𝑟[𝑖 ∈ 𝐹𝑗]. Consider the cumulative
probability defined as 𝑐𝑝𝛼𝑖 =

∑
𝑗≤𝑖 𝑝

𝛼
𝑗 . Observe that application of Corollary 1

to subsets of first 𝑖 elements of 𝐶𝑗 ∪ 𝐷𝑗 yields 𝑐𝑝0𝑖 ≥ 𝑘 ⋅ (1 − exp(−𝜖𝑖/𝑘)) for
𝑖 = 1, . . . , ∣𝐶𝑗 ∣+ ∣𝐷𝑗 ∣. Since (1− exp(−𝜖𝑖/𝑘)) is a monotone increasing function
of 𝑖 one easily gets that also 𝑐𝑝𝛼𝑖 ≥ 𝑘 ⋅ (1 − exp(−𝜖𝑖/𝑘)) for 𝛼 ≤ 𝛼0 and 𝑖 =
1, . . . , ∣𝐶𝑗 ∣+ ∣𝐷𝑗 ∣. In particular, we get 𝑐𝑝𝛼0

∣𝐶𝑗∣ ≥ 𝑘 ⋅ (1− exp(−𝜖∣𝐶𝑗 ∣/𝑘)).
Since (1 − exp(−𝜖𝑖/𝑘)) is a concave function of 𝑖, we also have 𝑐𝑝𝛼0

𝑖 ≥
𝑘 ⋅ (1 − exp(−𝜖𝑖/𝑘)) ≥ (𝑖/∣𝐶𝑗 ∣) ⋅ 𝑘 ⋅ (1 − exp(−𝜖∣𝐶𝑗 ∣/𝑘)) = (𝑖/∣𝐶𝑗 ∣) ⋅ (1 − 1

𝑒) ⋅ 𝑟𝑗
for all 1 ≤ 𝑖 ≤ ∣𝐶𝑗 ∣. Analogously, we get
𝑐𝑝𝛼0

𝑖 ≥ (𝑘 ⋅ (1− exp(−𝜖∣𝐶𝑗 ∣/𝑘)))
+((𝑖− ∣𝐶𝑗 ∣)/∣𝐷𝑗 ∣) ⋅ 𝑘 ⋅

(
(1− exp(

−𝜖(∣𝐶𝑗 ∣+ ∣𝐷𝑗 ∣)
𝑘

))− (1− exp(−𝜖∣𝐶𝑗 ∣/𝑘))
)

= 𝑟𝑗 ⋅ (1− 1

𝑒
) + 𝑟𝑗 ⋅

(
((𝑖 − ∣𝐶𝑗 ∣)/∣𝐷𝑗∣)((1 − 1

𝑒𝛾
)− (1− 1

𝑒
))

)

for all ∣𝐶𝑗 ∣ < 𝑖 ≤ ∣𝐶𝑗 ∣+ ∣𝐷𝑗 ∣.
Recall that we want to bound E[

∑
𝑖∈𝐹𝑗

𝑐𝑖𝑗] =
∑

𝑖∈𝐶𝑗∪𝐷𝑗
𝑝′𝑖𝑐𝑖𝑗 . From the above

bounds on the cumulative probability, we get that, by shifting the probability
from earlier facilities to later ones, one can obtain a probability vector 𝑝′′ with
𝑝′′𝑖 = 1/∣𝐶𝑗∣⋅((1− 1

𝑒)⋅𝑟𝑗) for all 1 ≤ 𝑖 ≤ ∣𝐶𝑗 ∣, and 𝑝′′𝑖 = 1/∣𝐷𝑗∣⋅((1− 1
𝑒𝛾)−(1− 1

𝑒))⋅𝑟𝑗
for all ∣𝐶𝑗 ∣ < 𝑖 ≤ ∣𝐶𝑗 ∣+∣𝐷𝑗∣. As connection costs 𝑐𝑖𝑗 are monotone non-decreasing
in 𝑖, shifting the probability never decreases the weighted sum; hence,

E[
∑
𝑖∈𝐹𝑗

𝑐𝑖𝑗] =
∑
𝑖∈𝐹𝑗

𝑝′𝑖𝑐𝑖𝑗

≤
∑
𝑖∈𝐹𝑗

𝑝′′𝑖 𝑐𝑖𝑗

=
∑

1≤𝑖≤∣𝐶𝑗 ∣
1/∣𝐶𝑗∣ ⋅ ((1 − 1

𝑒
) ⋅ 𝑟𝑗)𝑐𝑖𝑗

+
∑

∣𝐶𝑗∣<𝑖≤∣𝐶𝑗 ∣+∣𝐷𝑗∣
1/∣𝐷𝑗∣ ⋅ (((1 − 1

𝑒𝛾
)− (1 − 1

𝑒
)) ⋅ 𝑟𝑗)𝑐𝑖𝑗

= ((1 − 1/𝑒) ⋅ 𝑟𝑗) ⋅ 𝑑(𝑐)𝑗 + (((1 − 1

𝑒𝛾
)− (1− 1/𝑒)) ⋅ 𝑟𝑗) ⋅ 𝑑(𝑑)𝑗 . ⊓⊔

