
On k-Column Sparse Packing Programs

Nikhil Bansal1, Nitish Korula2, Viswanath Nagarajan1, and Aravind
Srinivasan3

1 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598.
{nikhil,viswanath}@us.ibm.com

2 Dept. of Computer Science, University of Illinois, Urbana IL 61801.
Partially supported by NSF grant CCF 07-28782 and a University of Illinois

Dissertation Completion Fellowship. nkorula2@illinois.edu
3 Dept. of Computer Science and Institute for Advanced Computer Studies,

University of Maryland, College Park, MD 20742. Supported in part by NSF ITR
Award CNS-0426683 and NSF Award CNS-0626636. srin@cs.umd.edu

Abstract. We consider the class of packing integer programs (PIPs)
that are column sparse, where there is a specified upper bound k on
the number of constraints that each variable appears in. We give an
improved (ek+o(k))-approximation algorithm for k-column sparse PIPs.
Our algorithm is based on a linear programming relaxation, and involves
randomized rounding combined with alteration. We also show that the
integrality gap of our LP relaxation is at least 2k−1; it is known that even
special cases of k-column sparse PIPs are Ω(k

log k
)-hard to approximate.

We generalize our result to the case of maximizing monotone submod-
ular functions over k-column sparse packing constraints, and obtain an“

e2k
e−1

+ o(k)
”
-approximation algorithm. In obtaining this result, we prove

a new property of submodular functions that generalizes the fractionally
subadditive property, which might be of independent interest.

1 Introduction

Packing integer programs (PIPs) are those of the form:

max
{
wT x | Sx ≤ c, x ∈ {0, 1}n

}
, where w ∈ Rn

+, c ∈ Rm
+ and S ∈ Rm×n

+ .

Above, n is the number of variables/columns, m is the number of rows/constraints,
S is the matrix of sizes, c is the capacity vector, and w is the weight vector. In
general, PIPs are very hard to approximate: a special case is the classic inde-
pendent set problem, which is NP-Hard to approximate within a factor of n1−ε

[30], whereas an n-approximation is trivial. Thus, various special cases of PIPs
are often studied. Here, we consider k-column sparse PIPs (denoted k-CS-PIP),
which are PIPs where the number of non-zero entries in each column of matrix
S is at most k. This is a fairly general class and models several basic problems
such as k-set packing [19] and independent set in graphs with degree at most k.

Recently, in a somewhat surprising result, Pritchard [25] gave an algorithm
for k-CS-PIP where the approximation ratio only depends on k; this is useful

2

when k is small. This result is surprising because in contrast, no such guarantee
is possible for k-row sparse PIPs. In particular, the independent set problem
on general graphs is a 2-row sparse PIP, but is n1−o(1)-hard to approximate.
Pritchard’s algorithm [25] had an approximation ratio of 2k · k2. Subsequently,
an improved O(k2) approximation algorithm was obtained independently by
Chekuri et al. [14] and Chakrabarty-Pritchard [11].

Our Results: In this paper, we first consider the k-CS-PIP problem and obtain
an (ek + o(k))-approximation algorithm for it. Our algorithm is based on solv-
ing a strengthened version of the natural LP relaxation of k-CS-PIP, and then
performing randomized rounding followed by suitable alterations. In the ran-
domized rounding step, we pick each variable independently (according to its LP
value) and obtain a set of variables with good expected weight; however some
constraints may be violated. Then in the alteration step, we drop some variables
so as to satisfy all constraints, while still having good expected weight. A simi-
lar approach can be used with the natural relaxation for k-CS-PIP obtained by
simply dropping the integrality constraints on the variables; this gives a slightly
weaker 8k-approximation bound. However, the analysis of this weaker result is
much simpler and we thus present it first. To obtain the ek + o(k) bound, we
construct a stronger LP relaxation by adding additional valid constraints to
the natural relaxation for k-CS-PIP. The analysis of our rounding procedure is
based on exploiting these additional constraints and using the positive correla-
tion between various probabilistic events via the FKG inequality. Due to space
constraints, we omit some details; these and other omitted proofs can be found
in the full version of this paper [5].

Our result is almost the best possible that one can hope for using the LP
based approach. We show that the integrality gap of the strengthened LP is
at least 2k − 1, so our analysis is tight up to a small constant factor e/2 ≈
1.36 for large values of k. Even without restricting to LP based approaches,
an O(k) approximation is nearly best possible since it is NP-Hard to obtain
an O(k/ log k)-approximation for the special case of k-set packing [18]. We also
obtain improved results for k-CS-PIP when capacities are large relative to the
sizes. In particular, we obtain a Θ(k1/bBc)-approximation algorithm for k-CS-
PIP, where B := mini∈[n],j∈[m] cj/sij measures the relative slack between the
capacities c and sizes S. We also show that this result is tight up to constant
factors relative to its LP relaxation.

Our second main result is for the more general problem of maximizing a
monotone submodular function over packing constraints that are k-column sparse.
This problem is a common generalization of maximizing a submodular function
over (a) a k-dimensional knapsack [22], and (b) the intersection of k partition
matroids [24]. Here, we obtain an

(
e2k
e−1 + o(k)

)
-approximation algorithm for this

problem. Our algorithm uses the continuous greedy algorithm of Vondrák [29]
in conjunction with our randomized rounding plus alteration based approach.
However, it turns out that the analysis of the approximation guarantee is much
more intricate: In particular, we need a generalization of a result of Feige [16]

3

that shows that submodular functions are also fractionally subadditive. See Sec-
tion 3 for a statement of the new result, Theorem 5, and related context. This
generalization is based on an interesting connection between submodular func-
tions and the FKG inequality. We believe that this result and technique might
be of further use in the study of submodular optimization.

Related Previous Work: Various special cases of k-CS-PIP have been extensively
studied. An important special case is the k-set packing problem, where given a
collection of sets of cardinality at most k, the goal is to find the maximum weight
sub-collection of mutually disjoint sets. This is equivalent to k-CS-PIP where the
constraint matrix S is 0-1 and the capacity c is all ones. Note that for k = 2 this
is maximum weight matching which can be solved in polynomial time, and for
k = 3 the problem becomes APX-hard [18]. After a long line of work [19, 2, 12, 9],
the best-known approximation ratio for this problem is k+1

2 + ε obtained using
local search techniques [9]. An improved bound of k

2 +ε is also known [19] for the
unweighted case, i.e., the weight vector w = 1. It is also known that the natural
LP relaxation for this problem has integrality gap at least k − 1 + 1/k, and in
particular this holds for the projective plane instance of order k − 1. Hazan et
al. [18] showed that k-set packing is Ω(k

log k)-hard to approximate.
Another special case of k-CS-PIP is the independent set problem in graphs

with maximum degree at most k. This is equivalent to k-CS-PIP where the
constraint matrix S is 0-1, capacity c is all ones, and each row is 2-sparse. This
problem has an O(k log log k/ log k)-approximation [17], and is Ω(k/ log2 k)-hard
to approximate [3], assuming the Unique Games Conjecture [20].

Shepherd and Vetta [26] studied the demand matching problem on graphs,
which is k-CS-PIP with k = 2, with the further restriction that in each column
the non-zero entries are equal, and that no two columns have non-zero entries in
the same two rows. They gave an LP-based 3.264-approximation algorithm [26],
and showed that the natural LP relaxation for this problem has integrality gap
at least 3. They also showed the demand matching problem to be APX-hard even
on bipartite graphs. For larger values of k, problems similar to demand matching
have been studied under the name of column-restricted PIPs [21], which arise in
the context of routing flow unsplittably (see also [6, 7]). In particular, an 11.54k-
approximation algorithm was known [15] where (i) in each column all non-zero
entries are equal, and (ii) the maximum entry in S is at most the minimum entry
in c (this is also known as the no bottle-neck assumption); later, it was observed
in [13] that even without the second of these conditions, one can obtain an 8k
approximation. The literature on unsplittable flow is quite extensive; we refer
the reader to [4, 13] and references therein.

For the general k-CS-PIP, Pritchard [25] gave a 2kk2-approximation algo-
rithm, which was the first result with approximation ratio depending only on k.
Pritchard’s algorithm was based on solving an iterated LP relaxation, and then
applying a randomized selection procedure. Independently, [14] and [11] showed
that this final step could be derandomized, yielding an improved bound of O(k2).
All these previous results crucially use the structural properties of basic feasible
solutions of the LP relaxation. However, as stated above, our result is based on

4

randomized rounding with alterations and does not use properties of basic solu-
tions. This is crucial for the submodular maximization version of the problem,
as a solution to the fractional relaxation there does not have these properties.

We remark that randomized rounding with alteration has also been used
earlier by Srinivasan [28] in the context of PIPs. However, the focus of this
paper is different from ours; in previous work [27], Srinivasan had bounded the
integrality gap for PIPs by showing a randomized algorithm that obtained a
“good” solution (one that satisfies all constraints) with positive — but perhaps
exponentially small — probability. In [28], he proved that rounding followed by
alteration leads to an efficient and parallelizable algorithm; the rounding gives
a “solution” of good value in which most constraints are satisfied, and one can
alter this solution to ensure that all constraints are satisfied. (We note that [27,
28] also gave derandomized versions of these algorithms.)

Related issues have been considered in discrepancy theory, where the goal
is to round a fractional solution to a k-column sparse linear program so that
the capacity violation for any constraint is minimized. A celebrated result of
Beck-Fiala [8] shows that the capacity violation is at most O(k). A major open
question in discrepancy theory is whether the above bound can be improved to
O(
√

k), or even O(k1−ε) for some ε > 0. While the result of [25] uses techniques
similar to that of [8], a crucial difference in our problem is that no constraint
can be violated at all.

There is a large body of work on constrained maximization of submodu-
lar functions; we only cite the relevant papers here. Calinescu et al. [10] intro-
duced a continuous relaxation (called the multi-linear extension or extension-
by-expectation) of submodular functions and subsequently Vondrák [29] gave
an elegant e

e−1 -approximation algorithm for solving this continuous relaxation
over any “downward monotone” polytope P, as long as there is a polynomial-
time algorithm for optimizing linear functions over P. We use this continuous
relaxation in our algorithm for submodular maximization over k-sparse pack-
ing constraints. As noted earlier, k-sparse packing constraints generalize both
k-partition matroids and k-dimensional knapsacks. Nemhauser et al. [24] gave
a (k + 1)-approximation for submodular maximization over the intersection of
k partition matroids; when k is constant, Lee et al. [23] improved this to k + ε.
Kulik et al. [22] gave an

(
e

e−1 + ε
)
-approximation for submodular maximization

over k-dimensional knapsacks when k is constant; if k is part of the input, the
best known approximation bound is O(k).
Problem Definition and Notation: Before we begin, we formally describe the k-
CS-PIP problem and fix some notation. Let the items (i.e., columns) be indexed
by i ∈ [n] and the constraints (i.e., rows) be indexed by j ∈ [m]. We consider
the following packing integer program.

max

{
n∑

i=1

wixi

∣∣ n∑
i=1

sij · xi ≤ cj , ∀ j ∈ [m]; xi ∈ {0, 1}, ∀ i ∈ [n]

}
We say that item i participates in constraint j if sij > 0. For each i ∈ [n], let

N(i) := {j ∈ [m] | sij > 0} be the set of constraints that i participates in. In a

5

k-column sparse PIP, we have |N(i)| ≤ k for each i ∈ [n]. The goal is to find the
maximum weight subset of items such that all the constraints are satisfied.

We define the slack as B := mini∈[n],j∈[m] cj/sij . By scaling the constraint
matrix, we may assume that cj = 1 for all j ∈ [m]. We also assume that sij ≤ 1
for each i, j; otherwise, we can just fix xi = 0. Finally, for each constraint j, we
let P (j) denote the set of items participating in this constraint. Note that |P (j)|
can be arbitrarily large.

Organization: In Section 2 we begin with the natural LP relaxation, and describe
a simple 8k-approximation algorithm. We then present a stronger relaxation, and
sketch a proof of an (e + o(1))k-approximation. We also present the integrality
gap of 2k − 1 for this strengthened LP, implying that our result is almost tight.
In Section 3, we describe the O(k)-approximation for k-column sparse packing
problems over a submodular objective. Finally, in Section 4, we state the sig-
nificantly better ratios that can be obtained for both linear and submodular
objectives if the capacities of all constraints are large relative to the sizes; there
are matching integrality gaps up to a constant factor.

2 The Algorithm for k-CS-PIP

Before presenting our algorithm, we describe a (seemingly correct) algorithm
that does not quite work. Understanding why this easier algorithm fails gives
useful insight into the design for the correct algorithm.

A Strawman Algorithm: Consider the following algorithm. Let x be some opti-
mum solution to the natural LP relaxation of k-CS-PIP (i.e., dropping integral-
ity). For each element i ∈ [n], select it independently at random with probability
xi/(2k). Let S be the chosen set of items. For any constraint j ∈ [m], if it is
violated, then discard all items in S ∩ P (j), i.e., items i ∈ S for which sij > 0.

As the probabilities are scaled down by 2k, by Markov’s inequality any con-
straint j is violated with probability at most 1/(2k), and hence discards its items
with at most this probability. By the k-sparse property, each element can be dis-
carded by at most k constraints, and so by the union bound it is discarded with
probability at most k · 1/(2k) = 1/2. Since an element is chosen in S with prob-
ability xi/(2k), this implies that it lies in the overall solution with probability
at least xi/(4k), implying that the proposed algorithm is a 4k-approximation.

However, the above argument is not correct. Consider the following example.
Suppose there is a single constraint (and so k = 1),

Mx1 + x2 + x3 + x4 + . . . + xM ≤ M

where M � 1 is a large integer. Clearly, setting xi = 1/2 for i = 1, . . . ,M is a
feasible solution. Now consider the execution of the strawman algorithm. Note
that whenever item 1 is chosen in S, it is very likely that some item other than
1 will also be chosen (since M � 1 and we pick each item independently with
probability xi/(2k) = 1/4); in this case, item 1 will be discarded. Thus the final
solution will almost always not contain item 1, violating the claim that it lies in
the final solution with probability at least x1/(4k) = 1/8.

6

The key point is that we must consider the probability of an item being
discarded by some constraint, conditional on it being chosen in the set S (for
item 1 in the above example, this probability is close to one, not at most half).
This is not a problem if either all item sizes are small (say sij ≤ cj/2), or all item
sizes are large (say sij ≈ cj). The algorithm we analyze shows that the difficult
case is indeed when some constraints contain both large and small items, as in
the example above.

2.1 A Simple Algorithm for k-CS-PIP

We use the obvious LP relaxation for k-CS-PIP (i.e., dropping the integrality
condition) to obtain an 8k-approximation algorithm. An item i ∈ [n] is called
big for constraint j ∈ [m] iff sij > 1

2 , and small for constraint j iff 0 < sij ≤ 1
2 .

We first solve the LP relaxation to obtain an optimal fractional solution x, and
then round to an integral solution as follows. With foresight, set α = 4.

1. Sample each item i ∈ [n] independently with probability xi/(αk).
Let S denote the set of chosen items. We call an item in S an S-item.

2. For each item i, mark i (for deletion) if, for any constraint j ∈ N(i), either:
– S contains some other item i′ ∈ [n] \ {i} which is big for constraint j or
– The sum of sizes of S-items that are small for j exceeds 1. (i.e., the

capacity).
3. Delete all marked items, and return S ′, the set of remaining items.

Analysis: We will show that this algorithm gives an 8k-approximation.

Lemma 1. Solution S ′ is feasible with probability one.

Proof Sketch. Consider any fixed constraint j ∈ [m]. If there is some i′ ∈ S ′ that
is big for j, it will be the only item in S ′ that participates in constraint j. If all
S ′-items participating in j are small, their total size is at most 1. �

We now prove the main technical result of this section.

Theorem 1. For any item i ∈ [n], the probability Pr[i ∈ S ′ | i ∈ S] ≥ 1 − 2
α .

Equivalently, the probability that item i is deleted from S conditional on it being
chosen in S is at most 2/α.

Proof. For any item i and constraint j ∈ N(i), let Bij denote the event that
i is marked for deletion from S because there is some other S-item that is big
for constraint j. Let Gj denote the event that the total size of S-items that are
small for constraint j exceeds 1. For any item i ∈ [n] and constraint j ∈ N(i),
we will show that:

Pr[Bij | i ∈ S] + Pr[Gj | i ∈ S] ≤ 2
αk

(1)

To see that (1) implies the theorem, for any item i, simply take the union
bound over all j ∈ N(i). Thus, the probability that i is deleted from S conditional
on it being chosen in S is at most 2/α. Equivalently, Pr[i ∈ S ′ | i ∈ S] ≥ 1−2/α.

7

We now prove (1) using the following intuition: The total extent to which
the LP selects items that are big for any constraint cannot be more than 2 (each
big item has size at least 1/2); therefore, Bij is unlikely to occur since we scaled
down probabilities by factor αk. Ignoring for a moment the conditioning on
i ∈ S, event Gj is also unlikely, by Markov’s Inequality. But items are selected
for S independently, so if i is big for constraint j, then its presence in S does
not affect the event Gj at all. If i is small for constraint j, then even if i ∈ S,
the total size of S-items is unlikely to exceed 1.

To prove (1) formally, let B(j) denote the set of items that are big for con-
straint j, and Yj :=

∑
`∈B(j) x`. By the LP constraint for j, it follows that Yj ≤ 2

(since each ` ∈ B(j) has size s`j > 1
2). Now by a union bound,

Pr[Bij | i ∈ S] ≤ 1
αk

∑
`∈B(j)\{i}

x` ≤
Yj

αk
≤ 2

αk
. (2)

Now, let G−i(j) denote the set of items that are small for constraint j, not
counting item i, even if it is small. Using the LP constraint j, we have:∑

`∈G−i(j)

s`j · xl ≤ 1−
∑

`∈B(j)

s`j · x` ≤ 1− Yj

2
. (3)

Since each item i′ is chosen into S with probability xi′/(αk), inequality (3)
implies that the expected total size of S-items in G−i(j) is at most 1

αk (1− Yj/2).
By Markov’s inequality, the probability that the total size of these S-items ex-
ceeds 1/2 is at most 2

αk (1− Yj/2). Since items are chosen independently and
i 6∈ G−i(j), we obtain this probability even conditioned on i ∈ S.

Whether i is big or small for j, event Gj can occur only if the total size of
S-items in G−i(j) exceeds 1/2. Thus,

Pr[Gj | i ∈ S] ≤ 2
αk

(
1− Yj

2

)
=

2
αk

− Yj

αk

which, combined with inequality (2), yields (1).

Using the theorem above, we obtain the desired approximation:

Theorem 2. There is a randomized 8k-approximation algorithm for k-CS-PIP.

Proof. From Lemma 1, our algorithm always outputs a feasible solution. To
bound the objective value, recall that Pr[i ∈ S] = xi

αk for all i ∈ [n]. Hence
Theorem 1 implies that for all i ∈ [n]

Pr[i ∈ S ′] ≥ Pr[i ∈ S] · Pr[i ∈ S ′|i ∈ S] ≥ xi

αk
·
(

1− 2
α

)
.

Finally, using linearity of expectation and α = 4, we obtain the theorem.

8

Remarks: We note that the analysis above only uses Markov’s inequality con-
ditioned on a single item being chosen in set S. Thus a pairwise independent
distribution suffices to choose the set S, and hence the algorithm can be eas-
ily derandomized. More generally, one could consider k-CS-PIP with arbitrary
upper-bounds on the variables: the above 8k-approximation algorithm extends
easily to this setting (details in the full version).

2.2 A Stronger LP, and Improved Approximation

We now present our strengthened LP and the (ek + o(k))-approximation algo-
rithm for k-CS-PIP.

Stronger LP relaxation. Recall that entries are scaled so that all capacities are
one. An item i is called big for constraint j iff sij > 1/2. For each constraint
j ∈ [m], let B(j) = {i ∈ [n] | sij > 1

2} denote the set of big items. Since no
two items that are big for some constraint can be chosen in an integral solution,
the inequality

∑
i∈B(j) xi ≤ 1 is valid for each j ∈ [m]. The strengthened LP

relaxation that we consider is as follows.

max
n∑

i=1

wixi (4)

s.t.
n∑

i=1

sij · xi ≤ cj , ∀j ∈ [m] (5)∑
i∈B(j)

xi ≤ 1, ∀j ∈ [m]. (6)

0 ≤ xi ≤ 1, ∀i ∈ [n]. (7)

The Algorithm: The algorithm obtains an optimal solution x to the LP relax-
ation (4-7), and rounds it to an integral solution S ′ as follows (parameter α will
be set to 1 later).
1. Pick each item i ∈ [n] independently with probability xi/(αk), with α ≥ 1.

Let S denote the set of chosen items.
2. For any item i and constraint j ∈ N(i), let Eij denote the event that the

items {i′ ∈ S | si′j ≥ sij} have total size (in constraint j) exceeding one.
Mark i for deletion if Eij occurs for any j ∈ N(i).

3. Return set S ′ ⊆ S consisting of all items i ∈ S not marked for deletion.

Note the rule for deleting an item from S. In particular, whether item i is deleted
due to constraint j only depends on items that are at least as large as i in j.

Analysis: It is clear that S ′ is feasible with probability one. The improved ap-
proximation ratio comes from four different steps: First, we use the stronger LP
relaxation. Second, the more careful alteration step does not discard items un-
necessarily; the previous algorithm sometimes deleted items from S even when
constraints were not violated. Third, in analyzing the probability that constraint

9

j causes item i to be deleted from S, we further exploit discreteness of item sizes.
And fourth, for each item i, we use the FKG inequality to bound the probability
it is deleted instead of the weaker union bound over all constraints in N(i).

The main lemma is the following, where we show that each item appears in
S ′ with good probability.

Lemma 2. For every item i ∈ [n] and constraint j ∈ N(i), we have Pr[Eij | i ∈
S] ≤ 1

αk

(
1 + (2

αk)1/3
)
.

Proof Sketch. Let ` := (4αk)1/3. We classify items in relation to constraints as:

– Item i ∈ [n] is big for constraint j ∈ [m] if sij > 1
2 .

– Item i ∈ [n] is medium for constraint j ∈ [m] if 1
` ≤ sij ≤ 1

2 .
– Item i ∈ [n] is tiny for constraint j ∈ [m] if sij < 1

` .

We separately bound Pr[Eij |i ∈ S] when item i is big, medium, and tiny.

Claim. For any i ∈ [n] and j ∈ [m]:

1. If item i is big for constraint j, Pr[Eij | i ∈ S] ≤ 1
αk .

2. If item i is medium for constraint j, Pr[Eij | i ∈ S] ≤ 1
αk

(
1 + `2

2αk

)
.

3. If item i is tiny for constraint j, Pr[Eij | i ∈ S] ≤ 1
αk

(
1 + 2

`

)
.

In case 1, Eij occurs only if some other big item for constraint j is chosen in
S; the new constraints (6) of the strengthened LP bound this probability. In case
2, Eij can occur only if some big item or at least two medium items other than
i are selected for S; we argue that the latter probability is much smaller than
1/αk. In case 3, Eij can occur only if the total size (in constraint j) of items in
S \ {i} is greater than 1− 1

` ; Markov’s inequality gives the desired result.

Thus, for any item i and constraint j ∈ N(i), Pr[Eij | i ∈ S] ≤ 1
αk max{(1 +

2
`), (1 + `2

2αk)}. From the choice of ` = (4αk)1/3, which makes the probability in
parts 2 and 3 of the claim equal, we obtain the lemma. �

We now prove the main result of this section.

Theorem 3. For each i ∈ [n], Pr[i ∈ S ′ | i ∈ S] ≥
(
1− 1

αk

(
1 + (2

αk)1/3
))k

.

Proof. For any item i and constraint j ∈ N(i), the conditional event (¬Eij | i ∈ S)
is a decreasing function over the choice of items in set [n] \ {i}. Thus, by the
FKG inequality [1], for any fixed item i ∈ [n], the probability that no event
(Eij | i ∈ S) occurs is:

Pr

 ∧
j∈N(i)

¬Eij

∣∣ i ∈ S

 ≥
∏

j∈N(i)

Pr[¬Eij | i ∈ S]

From Lemma 2, Pr[¬Eij | i ∈ S] ≥ 1 − 1
αk

(
1 + (2

αk)1/3
)
. As each item is in

at most k constraints, we obtain the theorem.

10

Now, by setting α = 1,4 we have Pr[i ∈ S] = 1/k, and Pr[i ∈ S ′ | i ∈ S] ≥
1

e+o(1) , which immediately implies:

Theorem 4. There is a randomized (ek + o(k))-approximation algorithm for
k-CS-PIP.

Remark: We note that this algorithm can be derandomized using conditional
expectation and pessimistic estimators, since we can exactly compute estimates
of the relevant probabilities. Also, using ideas from [28], the algorithm can be
implemented in RNC. We defer details to the full version.

Integrality Gap of LP (4-7). Consider the instance on n = m = 2k−1 items
and constraints defined as follows. We view the indices [n] = {0, 1, · · · , n− 1} as
integers modulo n. The weights wi = 1 for all i ∈ [n]. The sizes are:

sij :=

1 if i = j
ε if j ∈ {i + 1, · · · , i + k − 1 (mod n)}
0 otherwise

, ∀i, j ∈ [n].

where ε > 0 is arbitrarily small, in particular ε � 1
nk .

Observe that setting xi = 1−kε for all i ∈ [n] is a feasible fractional solution
to the strengthened LP (4-7); each constraint has only one big item and so the
new constraint (6) is satisfied. Thus the optimal LP value is at least (1−kε) ·n ≈
n = 2k−1. On the other hand, it is easy to see that the optimal integral solution
can only choose one item and hence has value 1. Thus the integrality gap of the
LP we consider is at least 2k − 1, for every k ≥ 1.

3 Submodular Objective Functions

We now consider the more general case when the objective we seek to maximize
is an arbitrary non-negative monotone submodular function f : 2[n] → R+. The
problem we consider is:

max

{
f(T)

∣∣ ∑
i∈T

sij ≤ cj , ∀j ∈ [m]; T ⊆ [n]

}
(8)

As is standard when dealing with submodular functions, we only assume
value-oracle access to the function: i.e., the algorithm can query any subset
T ⊆ [n], and it obtains the function value f(T) in constant time. Again, we let k
denote the column-sparseness of the underlying constraint matrix. In this section
we obtain an O(k)-approximation algorithm for Problem (8). The algorithm is
similar to that for k-CS-PIP (where the objective was linear):

1. We first solve (approximately) a suitable continuous relaxation of (8). This
step follows directly from the algorithm of Vondrák [29].

4 Note that this is optimal only asymptotically; in the case of k = 2, for instance, it
is better to choose α ≈ 2.8.

11

2. Then, using the fractional solution, we perform the randomized rounding
with alteration described in Section 2. Although the algorithm is the same
as for linear functions, the analysis requires considerably more work. In the
process, we also establish a new property of submodular functions that gen-
eralizes fractional subadditivity [16].

Solving the Continuous Relaxation. The extension-by-expectation (also called
the multi-linear extension) of a submodular function f is a continuous function
F : [0, 1]n → R+ defined as follows:

F (x) :=
∑

T⊆[n]

Πi∈T xi ·Πj 6∈T (1− xj) · f(T)

Note that F (x) = f(x) for x ∈ {0, 1}n and hence F is an extension of f .
Even though F is a non-linear function, using the continuous greedy algorithm of
Vondrák [29], we can obtain an

(
1− 1

e

)
-approximation algorithm to the following

fractional relaxation of (8):

max

{
F (x)

∣∣ n∑
i=1

sij · xi ≤ cj , ∀j ∈ [m]; 0 ≤ xi ≤ 1, ∀i ∈ [n]

}
(9)

In order to apply the algorithm from [29], one needs to solve in polynomial
time the problem of maximizing a linear objective over the constraints {

∑n
i=1 sij ·

xi ≤ cj , ∀j ∈ [m]; 0 ≤ xi ≤ 1, ∀i ∈ [n]}. This is indeed possible since it is a
linear program on n variables and m constraints.

The Rounding Algorithm and Analysis. The rounding algorithm is identi-
cal to that for k-CS-PIP. Let x denote any feasible solution to Problem (9). We
apply the rounding algorithm from the previous section, to first obtain (possibly
infeasible) solution S ⊆ [n] and then feasible integral solution S ′ ⊆ [n].

However, the analysis approach in Theorem 3 does not work. The problem
is that even though S (which is chosen by random sampling) has good expected
profit, i.e., E[f(S)] = Ω(1

k)F (x), it may happen that the alteration step used
to obtain S ′ from S may end up throwing away essentially all the profit. This
was not an issue for linear objective functions since our alteration procedure
guarantees that Pr[i ∈ S ′|i ∈ S] = Ω(1) for each i ∈ [n]; if f is linear, this im-
plies E[f(S)] = Ω(1)E[f(S ′)]. However, this property is not enough for general
monotone submodular functions. Consider the following:
Example: Let set S ⊆ [n] be drawn from the following distribution:
– With probability 1/2n, S = [n].
– For each i ∈ [n], S = {i} with probability 1/2n.
– With probability 1/2− 1/2n, S = ∅.

Define S ′ = S if S = [n], and S ′ = ∅ otherwise. For each i ∈ [n], we have
Pr[i ∈ S ′ | i ∈ S] = 1/2 = Ω(1). However, consider the profit with respect to the
“coverage” submodular function f , where f(T) = 1 if T 6= ∅ and = 0 otherwise.
We have E[f(S)] = 1/2 + 1/2n, but E[f(S ′)] is only 1/2n � E[f(S)].

Remark: Note that if S ′ itself was chosen randomly from S such that Pr[i ∈
S ′|S = T] = Ω(1) for every T ⊆ [n] and i ∈ T , then we would be done by Feige’s

12

Subadditivity Lemma [16]. Unfortunately, this is too much to hope for. In our
rounding procedure, for any particular choice of S, set S ′ is a fixed subset of S;
and there could be (bad) sets S, where after the alteration step we end up with
sets S ′ such that |S ′| � |S|.

However, it turns out that we can use the following two additional properties
of our algorithm to argue that S ′ has reasonable profit. First, the sets S we con-
struct are drawn from a product distribution on the items. Second, our alteration
procedure has the following ‘monotonicity’ property: Suppose i ∈ T1 ⊆ T2 ⊆ [n],
and i ∈ S ′ when S = T2. Then we are guaranteed that i ∈ S ′ when S = T1.
(That is, if S contains additional items, it is more likely that i will be discarded
by some constraint it participates in.) The example above does not satisfy ei-
ther of these properties. Corollary 1 shows that these properties suffice. Roughly
speaking, the intuition is that since f is submodular, the marginal contribution
of item i to S is largest when S is “small”; this is also the case when i is most
likely to be retained for S ′. That is, for every i ∈ [n], both Pr[i ∈ S ′ | i ∈ S] and
the marginal contribution of i to f(S) are decreasing functions of S. We prove
(see [5]) the following generalization of Feige’s Subadditivity Lemma.

Theorem 5. Let [n] denote a groundset, x ∈ [0, 1]n, and for each B ⊆ [n]
define p(B) = Πi∈Bxi ·Πj /∈B(1− xj). Associated with each B ⊆ [n], there is an
arbitrary distribution over subsets of B, where each set A ⊆ B has probability
qB(A); so

∑
A⊆B qB(A) = 1 for all B ⊆ [n]. That is, we choose B from a

product distribution, and then retain a subset A of B by applying a randomized
alteration. Suppose that the system satisfies the following conditions.

Marginal Property:

∀i ∈ [n],
∑

B⊆[n]

p(B)
∑

A⊆B:i∈A

qB(A) ≥ β ·
∑

B⊆[n]:i∈B

p(B). (10)

Monotonicity: For any two subsets B ⊆ B′ ⊆ [n] we have,

∀i ∈ B,
∑

A⊆B:i∈A

qB(A) ≥
∑

A′⊆B′:i∈A′

qB′(A′) (11)

Then, for any monotone submodular function f ,∑
B⊆[n]

p(B)
∑
A⊆B

qB(A) · f(A) ≥ β ·
∑

B⊆[n]

p(B) · f(B). (12)

Corollary 1. Let S be a random set drawn from a product distribution on [n].
Let S ′ be another random set where for each choice of S, set S ′ is an arbitrary
subset of S. Suppose that for each i ∈ [n] the following hold.
– PrS [i ∈ S ′ | i ∈ S] ≥ β, and
– For all T1 ⊆ T2 with T1 3 i, if i ∈ S ′ when S = T2 then i ∈ S ′ when S = T1.

Then E[f(S ′)] ≥ βE[f(S)].

13

We are now ready to prove the performance guarantee of our algorithm.
Observe that our rounding algorithm satisfies the hypothesis of Corollary 1 with
β = 1

e+o(1) , when parameter α = 1. Moreover, one can show that E[f(S)] ≥
F (x)/(αk). Thus, E[f(S ′)] ≥ 1

e+o(1) E[f(S)] ≥ 1
ek+o(k) ·F (x). Combined with

the fact that x is an e
e−1 -approximate solution to the continuous relaxation (9),

we have proved our main result:

Theorem 6. There is a randomized algorithm for maximizing any monotone
submodular function over k-column sparse packing constraints achieving approx-
imation ratio e2

e−1k + o(k).

4 k-CS-PIP Algorithm for large B

We can obtain substantially better approximation guarantees for k-CS-PIP when
the capacities are large relative to the sizes. Recall the definition of the slack
parameter B. We consider the k-CS-PIP problem as a function of both k and B,
and obtain improved approximation ratios given in the following.

Theorem 7. There is a
(
4e ·

(
(e + o(1)) bBc k

)1/bBc
)
-approximation algorithm

for k-CS-PIP, and a
(

4e2

e−1 ·
(
(e + o(1)) bBc k

)1/bBc
)
-approximation for maximiz-

ing monotone submodular functions over k-column sparse packing constraints.

The algorithms that obtain these approximation ratios are similar to those
of the preceding sections, but additional care is required in the analysis; as B is
large, one can now use a smaller scaling factor in the randomized rounding step
while bounding the probability that an element is deleted in the alteration step.
We also show that the natural LP relaxation for k-CS-PIP has an Ω(k1/bBc)
integrality gap for every B ≥ 1.

Acknowledgements: NK thanks Chandra Chekuri and Alina Ene for detailed
discussions on k-CS-PIP. We also thank Deeparnab Chakarabarty and David
Pritchard for discussions and sharing a copy of [11]. We thank Jan Vondrák and
Chandra Chekuri for pointing out an error in the original proof of Theorem 6,
which prompted us to prove Theorem 5. Our thanks also to the IPCO referees
for their helpful suggestions.

References

1. N. Alon and J. Spencer, The Probabilistic Method. 3rd ed. Wiley-Interscience,
New York, 2008.

2. E. M. Arkin and R. Hassin, On Local Search for Weighted k-Set Packing, in Eu-
ropean Symposium on Algorithms, 1997, 13-22.

3. P. Austrin, S. Khot and S. Safra, Inapproximability of Vertex Cover and Indepen-
dent Set in Bounded Degree Graphs. In Comp. Complexity Conference, 2009.

4. N. Bansal, Z. Friggstad, R. Khandekar and M. R. Salavatipour, A logarithmic
approximation for unsplittable flow on line graphs. In SODA, 2009.

14

5. N. Bansal, N. Korula, V. Nagarajan and A. Srinivasan, On k-Column Sparse Pack-
ing Programs (full version), arXiv, 2010.

6. A. Baveja and A. Srinivasan, Approximating Low-Congestion Routing and
Column-Restricted Packing Problems. Information Proc. Letters (74), 19–25, 2000.

7. A. Baveja and A. Srinivasan, Approximation Algorithms for Disjoint Paths and
Related Routing and Packing Problems. Math. of Oper. Res. (25), 255–280, 2000.

8. J. Beck and T. Fiala, “Integer making” theorems. In Discrete Appl. Math., 3, 1–8,
1981.

9. Piotr Berman, A d/2 approximation for maximum weight independent set in d-claw
free graphs. In Nordic Journal of Computing, 7(3), 178-184, 2000.

10. G. Calinescu, C. Chekuri, M. Pál and J. Vondrák. Maximizing a monotone sub-
modular function under a matroid constraint, In IPCO, 2007.

11. D. Chakrabarty and D. Pritchard, Personal Communication, 2009.
12. B. Chandra and M. Halldórsson, Greedy Local Improvement and Weighted Packing

Approximation. In SODA, 1999.
13. C. Chekuri, A. Ene and N. Korula. Unsplittable Flow in Paths and Trees and

Column-Restricted Packing Integer Programs. In APPROX, 2009.
14. C. Chekuri, A. Ene and N. Korula, Personal Communication, 2009.
15. C. Chekuri, M. Mydlarz and B. Shepherd, Multicommodity Demand Flow in a

Tree and Packing Integer Programs. In ACM Trans. on Algorithms, 3(3), 2007.
16. U. Feige, On maximizing welfare when utility functions are subadditive. In STOC,

2006, 41-50.
17. E. Halperin, Improved Approximation Algorithms for the Vertex Cover Problem

in Graphs and Hypergraphs. In SIAM J. Comput., 31(5), 1608-1623, 2002.
18. E. Hazan, S. Safra and O. Schwartz, On the complexity of approximating k-set

packing. In Computational Complexity, 15(1), 20-39, 2003.
19. A. J. Hurkens, A. Schrijver, On the Size of Systems of Sets Every t of Which Have

an SDR, with an Application to the Worst-Case Ratio of Heuristics for Packing
Problems. In SIAM J. Discrete Math., 2(1), 68-72 1989.

20. S. Khot, On the power of unique 2-prover 1-round games, In STOC, 2002, 767–775.
21. S. Kolliopoulos and C. Stein, Approximating Disjoint-Path Problems using Packing

Integer Programs. Mathematical Programming A (99), 63–87, 2004.
22. A. Kulik, H. Shachnai and T. Tamir. Maximizing submodular functions subject to

multiple linear constraints. In SODA, 2009.
23. J. Lee, V. Mirrokni, V. Nagarajan and M. Sviridenko. Non-monotone submodular

maximization under matroid and knapsack constraints, In STOC, 2009, 323–332.
24. G. L. Nemhauser, L. A. Wolsey and M. L. Fisher. An analysis of approximations

for maximizing submodular set functions II. Math. Prog. Study 8 (1978), 73–87.
25. D. Pritchard, Approximability of Sparse Integer Programs, In ESA, 2009.
26. B. Shepherd and A. Vetta, The demand matching problem, Mathematics of Oper-

ations Research, 32, 563-578, 2007.
27. A. Srinivasan, Improved Approximation Guarantees for Packing and Covering In-

teger Programs, SIAM J. Comput., 29(2), 1999, 648-670.
28. A. Srinivasan, New approaches to covering and packing problems, In SODA, 2001,

567–576.
29. J. Vondrák, Optimal approximation for the submodular welfare problem in the

value oracle model. In STOC, 2008, 67-74.
30. David Zuckerman, Linear Degree Extractors and the Inapproximability of Max

Clique and Chromatic Number, Theory of Computing, 2007, 103-128, 3(1).

