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Abstract—As an instance of using IT to green non-IT domains,
we consider the question whether lessons from computer net-
working can be applied in water distribution networks to improve
their energy footprint and/or efficiency. Our contributions in this
work are: (i) we identify several areas where principles from
computer networking can be used to better water distribution;
(ii) we focus on a specific infrastructure enhancement problem
caused by increasing demands on a water utility network and
present solutions (similar to those used in computer networks)
that optimize both operational expenditure and total cost of
ownership. We validate our solutions through simulations and
compare their efficacy against techniques that are traditionally
used in enhancing water networks. Our results show that lessons
from computer networks can help in enhancing water networks.

I. Introduction

Widespread deployment of Information and Communica-
tion Technology (ICT) hardware coupled with the increasing
awareness of energy and carbon footprint of human activities
has led to recent research whose goal has been to “green”
ICT. A complementary trend has been to use ICT to improve
sustainability in other domains. Our work falls in the latter
category. Specifically, we study how municipal water delivery
networks can be improved by using modeling principles and
ideas used in computer networks.

Present day water networks face several challenges such as:
• Age: The estimated refurbishment cost of water infras-

tructure in the US is nearly $335 billion over 20 years.
• Increased demands: Global demand for water has grown

from 770 cubic-kilometers in 1900 to 3840 cubic-
kilometers in 2000.

• Accounting: World-wide loss to utilities due to theft or
leaks is about $14 billion every year.

• Security: Water delivery systems are potential targets for
bio-chemical threats, accidental or deliberate.

• Energy efficiency: Energy constitutes 34% of the operat-
ing expenditure of water utilities.

The keen reader will observe that some of the challenges
outlined above have their counterparts in large scale data
delivery networks such as the Internet. Given this, a natural
question arises: Is it possible to leverage the principles used in
designing and operating data delivery networks to solve simi-
lar problems in water delivery networks? This paper attempts
to answer this question affirmatively. While there have been
efforts to enumerate the similarities and differences between
computer networks and electrical grids [9], the connection
between computer and water networks is largely unexplored.

To begin with, we enumerate several issues in water delivery
networks that have a close parallel with computer networks.
We then focus on a specific problem in water network in-
frastructure planning and use algorithmic techniques similar
to those used in computer networks, viz. techniques based
on tree traversal and minimum weighted dominating set, to
solve this problem. Specifically, we consider a water utility
which needs to handle increasing demands while meeting
the required delivery pressure. While traditional solutions use
genetic algorithms (GAs) to enhance the delivery network
infrastructure, we find that algorithmic techniques can give
solutions that are better than GAs.

This paper is organized as follows. Section II enumerates
challenges in water distribution networks that can be addressed
through networking principles. Section III describes the plan-
ning problem in water distribution networks which we focus
on. Section IV presents an analysis for the lower bound to the
solution cost. Sections V and VI discuss two solutions to the
planning problem that are realizable in practice. Section VII
presents results of the two approaches from operational cost
and life-cycle cost perspectives. Section VIII discusses related
work and Section IX concludes.

II. Networking lessons for water sustainability

Infrastructure planning: In water infrastructure planning,
the key questions are often: Where should assets be located,
what should be their capacities, how should they be operated
to optimize energy consumption, cost of ownership, etc. These
optimization problems are typically handled using approaches
in operations research (OR) and searches such as genetic
algorithms (GA). Planning problems in computer networks use
graph theoretic techniques [19] that exploit the structure of the
underlying topology. Similar graph theoretic frameworks can
be used in the planning of water networks as well.
Threat detection: With the advent of bio-chemical sensors
and wireless sensor networks, it has become viable to con-
stantly monitor the quality of water and quickly alert response
teams in case of threat detection. Therefore a key problem
is the placement of sensors to minimize parameters such as
the detection time, contamination spread, exposure, etc. This
problem has began to draw the attention of water distribution
experts [1] and computer networking researchers [11], [28].
Storage location and management: Increasingly, decentral-
ized waste-water treatment is becoming popular in both devel-
oped and developing economies [24]. Taking a leaf out of peer-
to-peer (P2P) networking, communities that are geographically
closer can co-operate and share their stores of reclaimed water978-1-4673-0298-2/12/$31.00 c© 2012 IEEE



to average out the variations in production and consumption.
Strategies used for P2P server placement [27], [8], [18] can
possibly be adapted to identify the optimal location(s) for
sewage treatment plants and storage tanks for reclaimed water.

Pricing: There is an inherent trade-off between social and
economic angles of water pricing, which are resolved by policy
decisions. While one can analyze the costs involved in the
supply side rigorously and come up with appropriate price
points, it is equally important to analyze the demand response
to pricing. Algorithmic game theory, which has been used for
network pricing [10], is an ideal tool for modeling the reaction
of people to pricing changes.

Network tomography: If metering exists at all nodes in
the water network, leaks and thefts can be identified easily.
However, the cost will be high, and so one has to improvise.
This problem has a parallel in Internet research. Because the
Internet is vast and distributed, it is impossible to obtain a
global view of the entire system. Hence researchers have
evolved tomography to infer the global structure from end-
point measurements. Such techniques could be customized in
the context of water delivery to detect and localize leaks even
if flow meters are not available at all the junctions.

Striping across delivery channels: Non-piped supply of
water is common across the world. In developed countries,
(higher quality) water is available containers of various capaci-
ties. In developing countries, supply through trucks is common
in places lacking piped infrastructure or during times of
scarcity. Given that water of potable quality is not needed for
all purposes except for drinking and cooking, the delivery of
water can be striped across these multiple channels of delivery.
Hybrid network interface striping ideas can be adapted to
decide when and how to stripe the delivery of water through
alternate channels while optimizing cost and energy.

III. Infrastructure Enhancement Problem

Water utilities are required to not only supply treated water,
but also do so at a minimum acceptable end-point pressure to
customers. This minimum pressure requirement is put in place
so that end consumer devices can work satisfactorily. For e.g.,
in the UK, the utility compensates a consumer if the end-point
pressure falls below a minimum of 21.3 psi [21].

Consider a typical water utility network, such as the one at
Colorado Springs, USA [23].In this network, we increase the
demands of all the nodes uniformly by a scale factor, i.e., each
demand is scaled by this factor. Once the original demands
have been scaled, we evaluate the network in EPANET – a
water network simulator from US EPA [4] and observe the
fraction of end points for which the delivery pressure falls
below the acceptable value.

Figure 1 shows the results of this experiment. The X-axis
shows the scale factor and the Y-axis shows the percentage of
nodes for which the supply pressure is less than 21.3 psi. As
we can see, the network is able to absorb the increased demand
quite well until a scale factor of 1.9 due to over-provisioning
at the time of installation. However, beyond this scale factor
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Fig. 1. Pressure violations with increased demands.

of 1.9, significant fraction of nodes become pressure deficient.
We have seen a similar behavior with other utility networks
too. For the sake of brevity, we do not discuss them. As the
demand for water increases in a water delivery network, the
flows through pipes increase, and the Physics of piped water
flow dictates that as flow increases, the pressure drop across
the pipes increases leading to poor end point pressures.

It is clear from this experiment that a water utility should
necessarily enhance its network infrastructure to meet the
increased demands without violating the minimum pressure
requirement. Prior research done in the area of utility delivery
infrastructure scaling [26], [5], [15], [17], [2], [16], [6], [20]
typically focus on determining cost effective ways to upgrade
the delivery pipes and the pumps to meet the new demand.
While upgrading pipes along with pumps could lead to cost-
effective solutions, pipe upgrades may not always be feasible
due to: (i) constraints on capital expenditure, (ii) right-of-way
issues on land ownership, and (iii) impact on vehicular traffic
flows for pipes that are laid beneath heavy traffic ways. In this
work, we focus on enhancing the water distribution network
through the placement of additional booster pumps alone. Our
problem statement is as follows:

Problem statement: Given the network conditions for in-
creased demand, where should we locate additional booster
pumps such that the pressure constraint is satisfied and the
cost of these additional pump placement(s) is minimized?

We address the above problem in water delivery networks that
have a “tree" topology. While urban water networks typically
have looped topologies, tree networks are commonplace in
rural and semi-urban areas [15]. Several rural and semi-
urban areas have witnessed a tremendous increase in their
demands. For example, the population of Faridabad – a city
in India, whose water delivery network has a tree topology,
has increased by nearly ten-fold in thirty years [13]. Given
that water distribution networks have a lifetime of 50+ years,
such high population growth rates can create a mismatch
between the demand and deployed network’s capacity, thereby
necessitating research similar to this work.

IV. Lower bounds for pump placement costs

The costs involved in placing a pump are: (i) capital expen-
diture (capex), the cost of purchasing the pump and associated
infrastructure and (ii) operational expenditure (opex) of the
pumps in terms of energy costs. As described in section VII-A,



these two costs are combined to give "total cost of ownership
(TCO)", which is the cost of the pump over its lifetime. We
now obtain a lower bound for this cost. Algorithm Min-Opex
determines a pump placement strategy for the lowest opex.
Based on this lower bound for opex, we derive the lower bound
for capex, which leads to the lower bound for TCO.

A. Algorithm Min-Opex

Algorithm, Min-Opex determines a pump placement strategy
that achieves the lowest possible opex. Based on this lower
bound for opex, we derive the lower bound for capex, which
leads to the lower bound for TCO. Min-Opex employs a
“greedy” approach. The ‘capacity’ or ‘power’ of a pump is
defined as the product of the flow through the pump and
the pressure boost it delivers to this flow. Min-Opex assumes
that the pump capacities are “continuous" in that the pressure
deficiency at any node can be addressed by placing a pump
before it of exactly the required capacity. In reality, pumps
are manufactured in discrete capacities and hence the solution
determined by Min-Opex may not be realizable in practice.
Nevertheless, it is a lower-bound to compare the performance
of other realizable algorithms. For lack of space, we do not
present the proof of correctness of this algorithm.

Algorithm Min-Opex shows our approach. Let Pmin be the
minimum pressure value required to be maintained at each
node. The basic idea is that when a node is visited and it
is pressure deficient, we place a pump in front of that node
just sufficient to handle that node’s deficiency. There may be
some additional boost due to its parents due to earlier pump
placements, which is tracked as parentBoost. If this node had
a pump placed before it, the extra boost is transferred to its
children also, which are visited with an increased parental
boost of parentBoost + currentBoost.

Min-Opex(N,parentBoost)
B N is a node

1 N.deficiency← N.pressure−Pmin
2 N.deficiency← N.deficiency - parentBoost
3 if ( N.deficiency > 0)
4 then Add pump before N

B Pump’s pressure boost is equal to N.deficiency
5 currentBoost← N.deficiency
6 for each successor K of N
7 do Min-Opex(K,parentBoost + currentBoost)
8 return

B. Lower bound on TCO

Min-Opex outputs a solution with minimum operational
expense in terms of the total pumping power, which is the
sum of individual pump powers. Suppose this quantity is Q∗.
Then we can calculate a lower bound on the total cost of
ownership as follows. Suppose C1,C2, · · · ,Cr be the capital
expenditure on the prices of varying sizes of pumping stations
and Q1,Q2, · · · ,Qr be the corresponding pumping power con-
sumption, such that the list is ordered in terms of increasing

capex cost per watt of pumping power, i.e. Ci/Qi. Then a
lower bound on the total cost of ownership can be calculated
by computing the lower bound on the capex. To do this, we
“fill” the requirement of Q∗ with the maximum number of
pumping stations with lowest per-watt capex cost, i.e., C1/Q1.
That is, we consider bQ∗

Q1
c as the number of pumps with power

Q1, where bXc denotes the greatest integer lesser than or equal
to X. Then for the remaining pumping power, we fill it with
pumping stations of the next lowest per-watt capex, i.e., Q2

and so on. Define S 0 = Q∗, Ni =

⌊
S i−1

Qi

⌋
and S i = S i−1−NiQi.

Then the lower bound on the capex is given by
∑i=r

i=1 NiCi.
Because we are concerned with a lower bound, this can be
generalized to include the cheapest real estate cost for the
pumping station and other auxiliary costs.

Having obtained the lower bounds for opex and TCO, we
now present two approaches that are realizable in practice.
The two approaches work with available pump capacities and
aim to minimize any one of opex, capex, or TCO involved in
pump placement, but do not guarantee any optimality.

V. Algorithm Approx-Pump

Deciding the locations and capacities of assets subject to
constraints is a problem that recurs in computer network-
ing (e.g., [3]). Solutions of these problems usually employ
variants of the minimum weighted dominating set (MWDS)
concept. Following these works, we present a solution that
appropriately models the nodal pressure deficiencies in a water
distribution network and uses the MWDS concept to find the
locations and capacities of the pumps.

The MWDS problem can be explained as follows. Consider
a directed graph G = (V,E) with V being the set of vertices
and E being the set of directed edges. Each vertex v, v ∈ V is
associated with a a weight (or a cost) given by some function
c(.). A subset of vertices S ⊂ V is called a dominating set of
G if every vertex of G is either in S , or reachable from a
vertex in S within one hop. A minimum weighted dominating
set is a dominating set such that the sum of vertices’ weights
in the set is minimum among all possible dominating sets.
Identifying the minimum weighted dominating set in a graph
is an NP-hard problem [14]. However, efficient approximation
algorithms that guarantee a solution for MWDS that is within
a factor of the true solution (i.e., approximation ratio) have
been proposed in the literature [25].
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A. Modeling pump placement as a MWDS problem

Consider Figure 2 which shows a flow network P. Let nodes
C, D, and E be pressure deficient. To boost the pressure at
these nodes, pumps can be placed at several locations. For
instance, a pump of appropriate size can be placed along
the edge (D,E) in front of node E to satisfy the pressure
requirements of E; as an alternative, a bigger pump could be
placed along the edge (B,D) in front of node D to satisfy the
pressure requirements of both D and E; getting bolder, one
could place an even bigger pump in front of node B along the
edge (A,B) to meet the pressure requirements of all the nodes
C, D, and E. Thus, placing a pump at a given location in the
flow graph has the ability to meet the pressure requirements
of zero, one, or more deficient nodes at an appropriate cost.
This relation can be modeled as an MWDS problem which can
then be solved using algorithms in the literature. Our solution
APPROX-PUMP for pump placement in flow graphs does
exactly this. Logically, the solution consists of three phases.
The first phase is to pre-process the flow graph P to compute
the cost of placing pumps at possible locations. The second
phase is to transform the various pump placement options,
their costs, and coverage to an instance, Q, of the MWDS
problem. The third phase is to solve this MWDS problem
instance using solutions in the literature and thereby identify
cost effective locations to place the pumps along with the
pump capacities. For lack of space, we elaborate only on the
Transform phase.

B. Phase Transform

The transformation of the pump placement problem into an
instance of minimum dominating set is presented in Algorithm
Transform. In lines 2 through 5, the procedure adds all nodes
A through E to V1 as representatives for the pump placement
locations. In addition, it adds new nodes C′,D′ and E′ to V2
as representatives for the pressure deficient nodes. In lines 6
through 9, the procedure adds directed edges from a pump
location X to a set of pressure deficient nodes whose require-
ment can be satisfied by placing a pump at X. For example,
placing a pump at B can meet the pressure requirements of
nodes C′, D′, and E′. So, edges {(B,C′), (B,D′), (B,E′)} are
added to Q. Finally, in lines 10 through 13, the procedure
adds edges among vertices in V1 indicating the redundancy
existing in pump placement. For example, a pump placed
at node A in the original flow graph, will make the pumps
placed at nodes B,C,D and E redundant. Therefore, the edges
{(A,B), (A,C), (A,D), (A,E)} are added to Q. For the flow graph
P shown in Figure 2, the complete transformed graph Q is
shown in Figure 3. It can be shown that the worst-case runtime
of the algorithm is O(n3) in the number of nodes n.

VI. Algorithm Tree-Pump

We now discuss a second algorithm for the placement of
pumps. In this algorithm, we assume that we have pumps of
only one capacity (i.e., operating power) available to boost
the pressure in the network. Under this assumption,Tree-
Pump aims to minimize the number of pumps required to

transform(P)
B P is the input flow graph.
B Q = (V,E) is returned on which a MWDS solution is run.
B Let V = V1∪V2
B Let N(v) be the set of neighbors of vertex v

1 V1← {}; V2← {}; E← {}
2 for each node x in P
3 do V1← V1∪{x}
4 if x is pressure deficient
5 then V2← V2∪{x′}
6 for each x in V1
7 do for each y in V2
8 if a pump at x can give required boost at y
9 then E← E∪ (x,y)

10 for each x in V1
11 do for each y in {V1 − x}
12 if

(
N(y)∩V2

)
⊆

(
N(x)∩V2

)
13 then E← E∪ (x,y)
14 return Q
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Fig. 4. Child’s over-provisioning removed when processing a non-leaf node.

meet the pressure requirements of the nodes. The algorithm is
then repeated for different pump capacities and the least cost
solution is chosen. This algorithm has two phases; in the first
phase, pumps are placed in-front of pressure deficient nodes
and/or their parents; in the second phase, any redundancies in
the pumps so placed in the first phase are pruned.

A. Provisioning Phase

In the first phase, a post-order traversal of the nodes in the
flow graph is done. If a leaf-node is found to be pressure
deficient, a pump is added before it. Figure 4 illustrates this.
To begin with, nodes C, D, E, F, and G are pressure deficient.

We start at node E and add a pump before it. It is possible
that the pump so added may not be powerful enough to supply
the necessary boost individually. If so, the new deficiency
(difference between the boost required originally and the
capacity of the pump added) is propagated up to its parent
and added to the parent’s deficiency. When a deficient non-
leaf node is encountered in the post order traversal, a pump is
added before it like in the case of a leaf node. In addition, if
its children have pumps before them, it is possible that they
could be rendered redundant due to the pump in front of the
node; if so, the redundant pumps in front of the children are
removed. Figure 4 illustrates the processing of a non-leaf node,
specifically node C. When node C is processed, we add a
pump before it, and that causes the pump before its child E
to become redundant and so the pump is removed.

B. Pruning Phase

Because we check only one-hop descendants when process-
ing a non-leaf node, it is possible that the flow graph is still



over-provisioned in terms of the pressure boosts. Therefore,
we have a pruning phase where the tree is traversed in a
pre-order fashion. Whenever any excess pressure is detected,
appropriate pumps are pruned as shown in Post-process.
Figure 5 illustrates this idea. The pumps before nodes B and
D are sufficient to handle the pressure deficiency of node G.
Thus the pump before node G is pruned in this process. The
overall runtime of the algorithm for n nodes is O(rn), where
r is the number of pump capacities.
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Fig. 5. Over-provisioning is handled by removing redundant pump.

VII. Results

We studied the performance of the two algorithms on a
variety of tree flow graphs. The results presented here are from
a flow graph containing one reservoir and 1747 nodes.

A. Cost of the solutions

We first analyze Approx-Pump and Tree-Pump from the
perspective of the Net Present Value (NPV) of the pump
placement costs defined in terms of the opex and total cost
of operation (TCO). Pumps are assumed to be running 24×7
at their full load with a constant efficiency η. Opex includes
the cost for the electrical energy consumed by a pump in a
year. The total cost of operation (TCO) is the sum of the NPV
of the opex and the capex over a pump’s life-time which is
taken as 15 years. For Approx-Pump, we obtain the NPV by
rounding-up the pump capacities returned by the algorithm
to the nearest (higher) available capacity. For Tree-Pump, we
obtain the NPV by choosing the pump power among the set
of available pump capacities, which has the smallest opex or
TCO as per our objective.

B. Algorithms for comparison

We compare the cost effectiveness of the two algorithms
against the lower bound previously derived. In addition, fol-
lowing most approaches in the literature, we also imple-
mented a Genetic-Algorithm (GA) based solution for the
pump placement problem. The GA represents the solution in
a chromosome. The initial chromosomes are randomly chosen
in a guided manner to ensure that the capacity of the initial
set of pumps added is not too much over the deficit. Fol-
lowing typical GA templates, every generation chromosomes
are chosen through tournament selection with crossover (of
probability 80%) , mutation (of probability 5%), and elitism
(i.e., the most fit chromosome is automatically copied over to
the next generation). The fitness function used to evaluate the
chromosomes has constraints for the pressure and velocity, and
tries to minimize the cost. The GA is run for 500 generations
with an initial population of 100 chromosomes.

C. Costs

Figure 6(a) shows the results of the proposed algorithms
minimized for the operational expenditure (Opex), which is
typically a proxy for the energy consumed by the additional
pumps. The X-axis shows the factor by which demand is
increased and Y-axis shows the NPV of the opex of the
solution. As expected, the opex increases with demand. It can
be seen from the figure that our algorithms perform better
than the GA. We note that, in practice, the Approx-Pump
solution is quite close to the theoretical lower bound and is
roughly within a factor of 2. The behavior of all the three
approaches is similar when the Total Cost of Ownership (TCO)
is minimized (as opposed to opex alone), as shown in Figure
6(b). These results show that lessons learnt from computer
networking can indeed be useful for overcoming challenges
in water distribution networks.

D. Distribution of pressure slack at junctions

It is possible that the boost provided is more than the
minimum pressure required at a node. We define the pressure
slack of a node with new pressure P as follows: (P−Pmin)

Pmin
.

Figure 6(c) (resp. 6(d)) shows the average pressure slack intro-
duced by the proposed algorithms at the previously pressure
deficient nodes when minimized for TCO (resp. Opex). As the
demand increases, the over-provisioning introduced by both
the algorithms increases. This is due to the discretization of
the available pump sizes. The gap between available pump
capacities increases as the pump capacity increases. Conse-
quently, the slack introduced due to the rounding up increases
with increasing demands. While introducing extra slack is not
warranted, it brings in the added advantage of meeting future
demands with the same pumping infrastructure.

VIII. RelatedWork

Related work can be broadly classified into two areas.
Water networks as an application domain for computer
networking: Recently, networking researchers have begun to
consider water networks as an application domain. Most work
here [7], [12], [11], [22], [28] revolves around the use of
wireless sensor networks to monitor the operational parameters
of water distribution such as leaks, blocks, pressure drops etc.
Our work is different from these in the sense that it does not
use computer networks as a mechanism in water networks;
rather it borrows policy (principles) behind the solutions for
computer networking problems. The work that comes closest
to ours is [9] that brings out the parallels between the Internet
and electricity grids and discusses how the lessons learnt in
one domain can be used in the other. Our work aims to convey
a similar message in the context of water networks.
Water network planning: The problem of enhancing an
existing water utility infrastructure has been looked at so far
along two strategies – genetic algorithms [26], [5], [17] and
linear programming based operational research techniques [2],
[16], [6], [20]. Most existing works focus on discovering cost
effective ways to upgrade the delivery pipes along with the
pumps to meet the scaled demand. At times, pipe upgrades
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Fig. 6. Performance of the proposed solutions.

may not be feasible due to: (i) constraints on capital expen-
diture, (ii) right-of-way issues on land ownership, and (iii)
impact on vehicular traffic flows for pipes that are laid beneath
heavy traffic ways. Existing works may not be helpful in
such scenarios since they recommend both pump and pipe
replacement. Further, we have provided a lower bound for the
total operational cost of any improvement.

IX. Conclusions and FutureWork

With increasing focus on climate change and sustainability,
water is being considered as the next “gold". We identified
several challenges in water networks that can be tackled by
principles used in computer networking. We focused on a
specific municipal water network enhancement problem and
adopted techniques used in computer networking to solve
it. Our results show that that solutions used in computer
networking perform better or at par with traditional solutions.
We also acknowledge that it may be possible to leverage
principles from other related domains such as transportation
and oil/gas pipeline networks to overcome challenges in water
networks. At present, we are working on extending the ideas
presented in this paper to do integrated pipe and pump addi-
tions/enhancements on water networks with looped topologies.
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