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Abstract. Basic graph structures such as maximal independent sets (MIS’s) have spurred much theo-
retical research in randomized and distributed algorithms, and have several applications in networking
and distributed computing as well. However, the extant (distributed) algorithms for these problems do
not necessarily guarantee fault-tolerance or load-balance properties. We propose and study “low-average
degree” or “balanced” versions of such structures. Interestingly, in sharp contrast to, say, MIS’s, it can
be shown that checking whether a structure is balanced, will take substantial time. Nevertheless, we
are able to develop good sequential/distributed (randomized) algorithms for such balanced versions.
We also complement our algorithms with several lower bounds. Randomization plays a key role in our
upper and lower bound results.
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1 Introduction

Graph-theoretic structures such as maximal independent sets (MIS’s) and minimal dominating
sets (MDS’s) are fundamental to graph theory, and their efficient computation is especially useful
in the context of distributed computing and networks [12]. MIS, for example, is a basic building
block in distributed computing and is useful in basic tasks such as monitoring, scheduling, routing,
and clustering [11, 13]; furthermore, the development of fast parallel/distributed algorithms for
it has spurred fundamental progress in randomized algorithms and in derandomization [1, 7, 10].
Extensive research has gone into designing fast distributed algorithms for these problems since
the early eighties: see [9, 15] and the references therein. We now know that problems such as
MIS are quite local, i.e., that they admit distributed algorithms that run in a small number of
rounds: typically (poly-)logarithmic in the network size n (n will denote the number of nodes in the
network throughout unless specified otherwise). However, one main drawback of these algorithms
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is that there is no guarantee on the quality of the structure output. For example, the classical
MIS algorithms of Alon, Babai & Itai [1] and Luby [10] compute an MIS in O(log n) rounds with
high probability; their focus is not on additional properties of the output MIS. In this paper, we
initiate a systematic study of “balanced” versions of these structures, i.e., the average degree – in
the original graph – of the nodes belonging to the structure is “small”; this study is motivated by
both theoretical and practical considerations.

1.1 Problems Addressed

We consider an undirected simple graph G = (V,E) with n nodes and m edges. We denote the
average degree of G by d = d(G) = 2m

n ; this parameter will play a key role in our results. More
generally, given any subset S ⊆ V , we define the average degree of S, denoted by dS , as the total

degree (in G) of the vertices of S divided by the number of vertices in S, i.e., dS =
∑
v∈S dv
|S| , where

dv is the degree of node v in G. We assume that G has no isolated vertices for convenience; this
assumption can be easily removed.

Recall the following fundamental graph structures:

– a Maximal Independent Set (MIS) is an inclusion-maximal vertex subset S ⊆ V such that no
two vertices in S are neighbors;

– a Minimal Dominating Set (MDS) is an inclusion-minimal vertex subset S ⊆ V such that every
vertex in G is either in S or is a neighbor of a vertex in S; and

– a Minimal Vertex Cover (MVC) is an inclusion-minimal vertex subset S ⊆ V such that every
edge in G has at least one endpoint in S.

This paper is concerned with the “balanced” versions of these problems:

1. Balanced Maximal Independent Set (BMIS): Given an undirected graph G, a BMIS is an MIS
S in G that minimizes dS . In other words, the BMIS has the minimum average degree (in G)
among all MIS’s in G.

2. Balanced Minimal Dominating Set (BMDS): Given an undirected graph G, a BMDS is an MDS
D in G that minimizes dD.

3. Balanced Minimal Vertex Cover (BMVC): Given an undirected graph G, a BMVC is an MVC
C in G that minimizes dC .

We note that the maximum independent set in a graph G – a well-studied NP-hard problem
[5] – is not necessarily a BMIS in G. Consider the graph G that contains a complete graph Kp

(assume p is even), and a complete bipartite graph KA,B with |A| = 2 and |B| = 3. Each vertex
in A is connected to a different half of the set of vertices in Kp (i.e., one vertex of A is connected
to one half of vertices of Kp and the second vertex of A is connected to the other half of Kp), and
each vertex in B is connected to all vertices in Kp. Clearly, B is the maximum independent set in
G and has average degree p+ 2, while A is a BMIS in G since its average degree is p/2 + 3. Thus
BMIS is quite different compared to the maximum independent set problem: in sharp contrast to
the standard MIS, a maximum independent set may be very different from any BMIS.

1.2 Motivations: distributed and complexity-theoretic

One key motivation for our work is understanding the complexity of local computation of globally
optimal (or near optimal) fundamental structures. The correctness of structures such as MIS or
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MDS can be verified strictly locally by a distributed algorithm.1 In the case of MIS, for example,
each node can check the MIS property by communicating only with its neighbors; if there is a
violation at least one node will raise an alarm. On the other hand, it is not difficult to show that
the correctness of balanced structures such as BMIS cannot be locally verified (in the above sense)
as the BMIS refers to a “global” property: nodes have to check the small average degree property,
in addition to the MIS property. In fact, it can be shown that, for any D such that D ∈ o(n), there
is a graph of diameter D, where it takes at least Ω(D) rounds to check whether a given MIS is (a
constant approximation of) a BMIS: Consider the graph consisting of a line L = (u1, . . . , uD) and a
cycle C of (n−D) nodes, and assume that node uD has an edge to each node in C. One way to select
an MIS is to select nodes u1, u3, . . . , uD−1 and Θ(n−D) nodes from C: this yields an MIS S with
constant average degree. On the other hand, the MIS S′ formed by selecting u1, u3, . . . , uD−3, uD
has an average degree of Θ(n/D) ∈ ω(1). For node u1, however, it takes D time to distinguish
between S and S′.

Moreover, we prove that BMIS is an NP-hard problem and hence the optimality of the structure
is not easy to check even in a centralized setting. A key issue that we address here is whether one
can compute near-optimal local (distributed) solutions to balanced global structures such as BMIS.
A main result of this paper is that despite the global nature, we can design efficient distributed
algorithms that output high quality balanced structures.

Our work is also a step toward understanding the algorithmic complexity of a few basic balanced
problems. While every MIS is an MDS, these two differ significantly in their balanced versions. In
particular, we show that there exist graphs for which no MIS is a good BMDS. Hence we need a
different approach to compute a good BMDS as compared to a good BMIS. Even for BMIS, we
show that while one can (for example) use Luby’s algorithm [10] to efficiently compute an MIS, the
same approach fails to compute a good quality BMIS. We present new algorithms for computing
such balanced structures.

1.3 Practical Motivations

In distributed networks, especially in resource-constrained networks such as ad hoc networks, sensor
and mobile networks, it is important to design structures that favor load balancing of tasks among
nodes (belonging to the structure). This is crucial in extending the lifetime of the network (see e.g.,
[17] and the references therein). For example, in a typical application, an MIS (or an MDS) can
be used to form clusters with low diameter, with the nodes in the MIS being the “clusterheads”
[11]. Each clusterhead is responsible for monitoring the nodes that are adjacent to it. Having an
MIS with low degree is useful in a resource/energy-constrained setting since the number of nodes
monitored per node in the MIS will be low (on average). This can lead to better load balancing,
and consequently less resource or energy consumption per node, which is crucial for ad hoc and
sensor networks, and help in extending the lifetime of such networks while also leading to better
fault-tolerance. For example, in an n-node star graph, the above requirements imply that it is better
for the leaf nodes to form the MIS rather than the central node alone. In fact, the average degree of
the MIS formed by the leaf nodes – which is 1 – is within a constant factor of the average degree of
a star (which is close to 2), whereas the average degree, n− 1, of the MIS consisting of the central
node alone is much larger.

1 As is common in distributed verification (e.g., [4]), we require that all nodes output “yes” when given a valid
instance; otherwise at least one node must output “no”.
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Another proposed application of balanced structures is in the context of dynamic networks
where one aims to maintain structures such as MISs efficiently even when nodes or links (edges)
fail or change with time. Such changes are a feature of ad hoc and mobile networks due to mobility
or failures. BMISs are a good candidate for maintaining an MIS efficiently in an incremental fashion:
since the degrees of nodes in the MIS are balanced, this will lead to less overhead per insertion or
deletion.

1.4 Our Results

Randomization is a vital component of our positive and negative results. We first note that the
trivial lower bound is d for all balanced problems which follows from the example of a regular
graph (where all nodes have the same degree). Hence, in general, the average degree of a balanced
structure cannot be guaranteed to be less than d. On the other hand, there exist graphs where
the average degree of the BMIS is significantly smaller than d (e.g., consider a graph in which
n/2 nodes form a complete subgraph, with these nodes connected by a perfect matching to the
remaining n/2). This leads us to two basic questions: (i) In every given graph G, does there always
exist a BMIS whose average degree is at most d? and (ii) Can question (i) be answered for a specific
graph G in polynomial time? We answer both questions in the negative.

The well-known probabilistic proof of Turán’s theorem on independent sets [2, 16, 14] motivates
question (i), and sheds light in an interesting way on the BMIS problem. Recall that in this proba-
bilistic approach, we construct an independent set in G as follows: randomly permute the vertices,
and construct an independent set I in which we put a vertex v iff no neighbor of v precedes v in the
permutation constructed. Note that P (v ∈ I) = 1/(dv + 1). Thus, E[|I|] =

∑
v 1/(dv + 1), which is

at least n/(d+ 1) by convexity; and, letting T denote the total degree (in G) of I, we have

E[T ] =
∑
v

dv
dv + 1

< n.

Thus, heuristically “E
[
|T |
|I|

]
6 O(d)”; this is also true rigorously at least in the case where all

degrees are small, in which case we can show that |I| is concentrated around its mean (e.g., by a
second-moment calculation). That is, there is an independent set I with dI = O(d). Note, however,
that I is an independent set, not necessarily an MIS. Nevertheless, this argument appears to suggest
that there is an MIS S with dS = O(d) for all graphs. Our theorems contradict this, show that
“O(d2)” is the truth here instead of O(d), and also develop good distributed versions of this result.

We show that unlike MIS, its balanced version, BMIS, is NP-hard. In particular, we show
that the following decision version of the problem is NP-complete (cf. Theorem 8 in Section 2.3):
“Given a graph G, is there an MIS in G with average degree at most d?” In fact we show that
the optimization version BMIS is quite hard to approximate in polynomial time: it cannot be
approximated in polynomial time to within a factor of Ω(

√
n) (cf. Theorem 9 in Appendix 2.4).

Henceforth, we focus on obtaining solutions for BMIS that are good compared to the average
degree of the graph. We show that we can obtain near-tight solutions that compare well with d.
The following are our main results:

Theorem 1. There is a (centralized) algorithm that selects an MIS of average degree at most
d2/8 +O(d) and runs in O(nm3 log n) time with high probability.2

2 “With high probability” (w.h.p.) means with probability > 1− 1/nΩ(1).
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To prove this theorem, we show that Luby’s MIS algorithm [10] returns an MIS with average degree
at most d2/8 +O(d), albeit with inverse polynomially small probability. This can be easily turned
into a centralized algorithm by repeating it a polynomial number of times until the desired bound
is obtained; however, this does not yield a fast distributed algorithm. Our average-degree bound
here is near-optimal, as we show an almost-matching lower bound (thereby also answering question
(i) posed above in the negative):

Theorem 2. For any real number α > 1, there is a graph G with average degree at most α, but in
which every MIS has average degree at least α2/8 + 3α/4 + 5/8.

We next consider distributed approximation algorithms for BMIS and show that we can output
near-optimal solutions fast, i.e., solutions that are close to the lower bound. We consider the fol-
lowing standard model for our distributed algorithms where the given graph G represents a system
of n nodes, with each node having a distinct ID [12]. Each node runs an instance of the distributed
algorithm and the computation advances in synchronous rounds, where, in each round, nodes can
communicate with their neighbors in G by sending messages of size O(log n). A node initially has
only local knowledge limited to itself and its neighbors (it may however know n, the network size).
We assume that local computation (performed by the node itself) is free as long it is polynomial in
the network size. Each node u has local access to a special bit (initially 0) that indicates whether
u is part of the output set. Our focus is on the time complexity, i.e., the number of rounds of the
distributed computation.

We present two distributed algorithms for BMIS in Section 2.2, both running in polylogarithmic
rounds; the second algorithm gives a better bound on the average degree at the cost of somewhat
increased run time.

Theorem 3. Consider a graph G = (V,E) with average degree d.

1. There is a distributed algorithm that runs in O(log n log log n) rounds and with high probability
outputs an MIS with average degree O(d2).

2. There is a distributed algorithm that runs in log2+o(1) n rounds and with high probability outputs
an MIS with average degree (1 + o(1))(d2/4 + d).

Note that in general, due to the lower bound of Theorem 2, the bounds provided by algorithms
of the above theorem are optimal up to constant factors.

We next present results on BMDS. Since an MIS is also an MDS, an algorithm for MIS can
also be used to output an MDS. However, this can lead to a poor approximation guarantee, since
there are graphs for which every MIS has a very large average degree compared to some MDS. This
follows from the graph family used in the proof of Theorem 2: while the average degree of every
MIS – of any graph in the family – is Ω(d2), there exists an MDS with average degree only O(d).
Because an MIS is also an MDS, the results of Theorem 3 also hold for BMDS. Our next theorem
shows that much better guarantees are possible for BMDS.

Theorem 4. Any graph G with average degree d has a minimal dominating set with average degree
at most O( d log d

log log d). Furthermore, there is a sequential randomized algorithm for finding such an
MDS in polynomial time w.h.p.

The next theorem shows that the bound of Theorem 4 is optimal in general up to constant
factors:
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Theorem 5. For any real number α > 0, there are graphs with average degree 6 α, but for which
any MDS has an average degree of Ω( α logα

log logα).

Finally, we show that there cannot be any bounded approximation algorithm for BMVC:

Theorem 6. For any real number α > 2, there are graphs for which the average degree is at most
α, but for which the average degree of any MVC is arbitrarily large.

2 Balanced Maximal Independent Set

We first prove Theorem 2 which shows that there are graphs G for which the degree of every MIS
is much larger than d. More importantly, the theorem gives a lower bound on the quality of BMIS
in general: one cannot guarantee an MIS whose average degree is less than d2

8 +Θ(d).

Theorem 2. For any real number α > 1, there is a graph G with average degree at most α, but in
which every MIS has average degree at least α2/8 + 3α/4 + 5/8.

Proof. Consider the graph consisting of a copies of Kb, as well one copy of Kc,c, where b = b3+α2 c
and c = b12

√
2ab(α− b+ 1) + α2 + αc.

The resulting graph has average degree ab(b−1)+2c2

ab+2c 6 α. Every MIS of this graph contains one

vertex from each Kb, as well as one half of the vertices of Kc,c, for an average degree of ab+c2

a+c . As

a tends to infinity, such average degree increasingly approaches (3+α−b)b
2 > α2/8 + 3α/4 + 5/8.

2.1 An Almost-Optimal Sequential Randomized BMIS Algorithm

In this section, we prove Theorem 1. To do so, we use Luby’s algorithm for MIS [10], which can
be described as follows. Every vertex v choose a rank ρv uniformly and independently from the
real interval [0, 1].3 Any vertex whose rank is lower than all its neighbors is then selected for the
independent set. Such vertices and their neighbors are removed from the graph, and this process
is repeated until an MIS is formed. We show that if the original graph has average degree d, then
Luby’s algorithm may select an MIS of average degree ≈ d2/8, albeit with a polynomially small
probability. By checking and repeating the algorithm a polynomial number of times we can obtain
an algorithm that outputs such a MIS (w.h.p.). This can be done easily in a sequential setting.
Theorem 2 shows that the average degree bound obtained is close to optimal.

Lemma 1. With probability Ω(d−2n−3), Luby’s algorithm selects an MIS of average degree 6 d2

8 +
7d
4 . Let ε > 0 be any constant. With probability Ω(d−2n−1), Luby’s algorithm selects an MIS of

average degree 6 d2

8 + (74 + ε)d.

Proof. Let t be the target degree of the MIS we are trying to construct. In this case, either t = d2

8 + 7d
4

or t = d2

8 + (74 + ε)d. We say a vertex v is big if dv > t, otherwise it is small. Roughly speaking,
our goal is to choose an MIS of degree 6 t, and for this end adding small vertices helps us while
adding big vertices hurts us.

For each vertex v, let xv (respectively yv) denote the number of small (respectively big) neigh-
bors, so xv + yv = dv. Now, suppose we run Luby’s algorithm completely, and let M̃, Ñ be the

3 One can also assume that ranks are chosen uniformly from the integer interval {1, 2, . . . , n4}, where n is the number
of nodes.
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random variables that are the number of edges and vertices in the resulting MIS I. Define the
random variable St = M̃ − tÑ . The MIS I will have degree 6 t iff St 6 0. We have

E[St] =
∑
v

(dv − t)P (v ∈ I) 6
∑

small v

(dv − t)P (v selected in 1st round) +
∑

big v ∈ I
yv

+
∑
big v

max(0, (xv − t))P (v available after 1st round).

Let us consider these terms in turn. The probability that a small vertex v is selected in the first
round is 1

dv+1 .
Note that any edge whose endpoints are both big vertices can appear only once in the MIS,

hence
∑

big v ∈ I yv 6
∑

big v yv/2.
To upper-bound (xv − t)P (v available after 1st round), consider all the small neighbors of v.

Suppose that, for a small u ∈ N(v), the rank of vertex u is smaller than all its neighbors (in-
cluding v), as well as all the other small neighbors of v. This occurs with probability 1

du+xv
. If

this event occurs, then vertex u is selected and vertex v is unavailable for I. Furthermore, for
each of the small neighbors of v, the corresponding events are mutually exclusive. Hence we get
P (v available after 1st round) 6 1−

∑
small u ∈ N(v)

1
du+xv

6 1−
∑

small u ∈ N(v)
1

t+xv
6 t

t+xv
. Hence,

we obtain the following bound on E[St]:

E[St] 6
∑

small v

dv − t
dv + 1

+
∑
big v

(
yv/2 + max(0, (xv − t)

t

t+ xv
)

)
6
∑

small v

dv − t
dv + 1

+
∑
big v

(yv/2 + xv/2) 6
∑

small v

dv − t
dv + 1

+
∑
big v

dv/2

Now suppose there are nS small vertices and nB large vertices, with average degrees dS and dB
respectively. We have nS + nB = n and nSdS + nBdB = dn. By concavity we have

E[St] 6 n
dBdS(d+ 1− dS)− 2t(dB − d) + d(dB − 2dS)

2(dS + 1)(dB − dS)
.

Routine calculus shows that this achieves its maximum value at dB = t and dS =
√
2t
√
t2+2t+1−3t
t−2 ,

yielding

E[St] 6 n
2
√

2t(d− t) + t(d− 1) + 2d

2(t+ 1)
.

For t = d2/8 + 7d/4, the resulting expression is negative for all d > 1. For t = d2/8 + (7/4 + ε)d,
the resulting expression is bounded uniformly below −Ω(1) for all d > 1.

We have shown that the random variable St has mean E[St] 6 0 (respectively E[St] 6 −Ω(1)).
Furthermore, St is always a rational number with denominator at most 8n2, and St > −d2n. This
implies that, with probability at least Ω(d−2n−3), we must have St 6 0. When this occurs, resulting

MIS has average degree 6 t = d2

8 + 7d
4 as desired. A similar argument applies to t = d2

8 + (7/4 + ε)d.
ut

Theorem 1. There is a (centralized) algorithm that selects an MIS of average degree at most
d2/8 +O(d) and runs in O(nm3 log n) time with high probability.
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Proof. By repeating Luby’s algorithm for O(n3d2) iterations we find an MIS with average degree

6 d2

8 + 7d
4 w.h.p. As each iteration can be implemented in O(m log n) time, the total work expended

is O(nm3 log n) w.h.p. If we are willing to accept an MIS of slightly higher degree, i.e., 6 d2

8 +(74+ε)d,

this can be reduced to O(m
3

n log n).

2.2 Distributed Algorithms for BMIS

This section is devoted for designing different distributed algorithms for BMIS. In particular we will
prove Theorem 3 (Parts 1, and 2). The proposed algorithms do not require any global information
of the original graph other than n.

Theorem 3. Consider a graph G = (V,E) with average degree d.
1. There is a distributed algorithm that runs in O(log n log log n) rounds and with high probability

outputs an MIS with average degree O(d2).
2. There is a distributed algorithm that runs in log2+o(1) n rounds and with high probability outputs

an MIS with average degree (1 + o(1))(d2/4 + d).

Proof of Part 1 of Theorem 3. We propose a distributed algorithm that constructs an MIS I
of G such that the following two properties hold with high probability: (a) I has average degree at
most O(d2), and (b) I is constructed within O(log n× log logn) rounds.

This algorithm does not require any global information of the original graph, other than the
network size n. The algorithm depends on a parameter φ, which is held constant. For any constant
c > 0, one can choose φ appropriately so that the distributed algorithms succeeds with probability
1−n−c; the parameter φ will only affect the running time by a constant factor. This is the strongest
form in which an algorithm can be said to succeed with high probability.

The algorithm has three phases, which are intended to address the cases where d 6 O(
√
n/ log n),

Θ(
√
n/ log n) 6 d 6 Θ(

√
n), and d > Ω(

√
n) respectively. The first phase runs Luby’s algorithm

for MIS on the vertices with degree 6
√
n/ log n. The next phase gradually extends the resulting

independent set by finding MIS’s of the subgraphs consisting of successively larger degrees. Finally,
using Luby’s algorithm, this is extended to an MIS of G itself. It is easy to see that this leads to
an MIS of G, and the resulting algorithm runs in O(log n × log logn) rounds. We will also show
that if we run only Phases I and III of this algorithm, then we can obtain an MIS of average degree
O(d2 log d) in time O(log n).

We introduce the following definition which will be used throughout the proof. For any real
number s, we let Gs denote the subgraph of G induced on the vertices of degree 6 s. This notation
is used in describing Algorithm 1.

The following basic principle will be used in a variety of places in this proof:

Proposition 1. Suppose a graph G has n vertices and average degree d. Suppose s > 1. Then the
subgraph Gsd contains at least n(1− 1/s) vertices.

Proof. Note that
∑

v dv = nd. Suppose that Gsd has less than n(1− 1/s) vertices. Then there are
more than n/s vertices with degree larger than sd. They contribute more than sd · n/s to the sum∑

v dv, which is a contradiction. ut

We now show that this algorithm has good behavior in the first two parameter regimes. The
third regime d = Ω(

√
n) is trivial.
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First Phase – Luby’s algorithm on G
φ
√
n/ logn

:

(Recall that Gx denotes the subgraph of vertices of degree 6 x.)
1. Each vertex v in G

φ
√
n/ logn

marks itself independently with probability 1/(2dv).

2. If two adjacent nodes are marked, unmark the one with higher degree (breaking ties arbitrarily).
3. Add any marked nodes to the independent set I.

Second Phase – Extending the MIS:
1. For i = 0, 1, . . . , 1

2
dlog2 logn− log2 φe, repeat the following:

2. Let xi = 2iφ
√
n/ logn. Run Luby’s MIS algorithm for φ logn iterations to extend the current independent set I

to an MIS of the graph Gxi .
Third Phase:

1. Using Luby’s algorithm, extend the current independent set I to an MIS of G.

Algorithm 1: Distributed Algorithm for Approximating BMIS.

Lemma 2 (First Phase). Suppose d 6 φ
2

√
n/ log n. Then with probability 1 − n−Ω(1/φ), the

independent set produced at the end of the first phase, contains Ω(n/d) vertices. In particular, the
final MIS produced has average degree O(d2).

Proof. Let n′, d′ denote the number of vertices and average degree of the graph G
φ
√
n/ logn

. Note

that d′ 6 d. By Proposition 1 we have n′ > n/2.
For each vertex v ∈ G

φ
√
n/ logn

let Xv be the random variable indicating that v was marked,

and X ′v the random variable indicating that v was accepted into I (i.e. it did not conflict with a
higher-degree vertex). Let Y denote the size of this independent set, i.e., Y =

∑
v∈G

φ
√
n/ logn

X ′v. As

shown in [10], we have E[Y ] = Ω(n′/d′) = Ω(n/d). Now, we want to show that Y is concentrated
around its mean. As described in [6], this sum can be viewed as a “read-k family”; each variable X ′v
is a Boolean function of the underlying independent variables X, and each variable Xv affects at
most k = O(φ

√
n/ log n) of the Boolean functions. Hence this sum obeys a similar concentration

bound to the Chernoff bound, albeit with the exponent divided by k. In particular, the probability

that Y deviates below a constant factor from its mean is given by P (Y 6 (1−x)E[Y ]) 6 e−
E[Y ]x2

2k 6

e
−Ω( logn

φ2
)

= n−Ω(1/φ2). Hence, with high probability, the total number of vertices returned from the
first phase is Ω(n/d) as desired. ut

We next show that the second phase has the appropriate behavior:

Lemma 3 (Second Phase). Suppose φ
2

√
n/ log n < d 6 1

2

√
n. Then with probability 1−n−Ω(1/φ),

the independent set produced at the end of the second phase, contains Ω(n/d) vertices. In particular,
the final MIS produced has average degree O(d2).

Proof. Let n′, d′ represent the number of vertices and average degree of G√n. By Proposition 1 we
must have n′ = Ω(n) and d′ 6 d.

If d′ 6 φ
2

√
n/ log n, then by Proposition 1 there would be Ω(n) vertices of G with degree 6

φ
2

√
n/ log n. By Lemma 2, phase 1 would then produce an independent set with Ω(n/

√
n/ log n) =

Ω(n/d) vertices.
So suppose d′ > φ

2

√
n/ log n. Now, as i increases, xi is multiplied by a factor of 2 as it increases

from φ
√
n/ log n to

√
n. In particular, there is some value of i which has 2d′ 6 xi 6 4d′. At

this point, the standard analysis shows that φ log n iterations of Luby’s algorithm produces, with
probability 1− n−Ω(1/φ), an MIS of the graph Gxi . By Proposition 1, Gxi contains Ω(n′) vertices.
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1: Let φ > 1 be a fixed parameter. Initialize I = ∅.
2: for i = 0, . . . , dlogφ ne do
3: Using any distributed MIS algorithm, extend I to an MIS of the graph Gφi .
4: Return the final MIS I.

Algorithm 2: Greedy Distributed Approximation Algorithm for BMIS.

Furthermore, any MIS of G′ must contain Ω(n′/d′) vertices; the reason for this is that the maximum
degree of any vertex in Gxi is O(d′), and it is necessary to select Ω(n′/d′) simply to ensure that
every vertex is covered by the MIS.

Now, at stage i we produce an MIS of Gxi which contains Ω(n/d) vertices. This is eventually
extended to an MIS of G with Ω(n/d) vertices. ut

Proof of Part 2 of Theorem 3. The greedy algorithm for BMIS is very simple. We label
the vertices in order of increasing degree (breaking ties arbitrarily). Each vertex is added to the
IS (Initially, IS=∅), unless it was adjacent to a earlier vertex already selected. This is a simple
deterministic algorithm which requires time O(m).

Theorem 7. The greedy algorithm produces an MIS of degree at most d2

4 + d.

Proof. Order the vertices in order of increasing degree d1 6 d2 6 . . . 6 dn. Define the indicator
variable xv to be 1 if v ∈ I and 0 otherwise, where I is the MIS produced. For any pair of vertices
u and v with du > dv, we also define the indicator yvu to be 1 if v ∈ I and there is an edge from v
to u. (It may seem strange to include the variable yvv, as we always have yvv = 0 in the intended
solution, but this will be crucial in our proof, which is based on LP relaxation.)

As the greedy algorithm selects v iff no earlier vertex was adjacent to it, we have xv = 1 if
and only if y1v = y2v = · · · = yv−1,v = 0. In particular, xv satisfies the linear constraint xv >
1−y1v−y2v−· · ·−yvv. The variables x, y also clearly satisfy the linear constraints ∀v : 0 6 xv 6 1,
∀v 6 u : 0 6 yvu, and ∀v :

∑
u yvu 6 dvxv. which we refer to as the core constraints. The final MIS

contains
∑
xv vertices and

∑
v dvxv edges, and hence the average degree of the resulting MIS is

dI =
∑

v dvxv/
∑

v xv.

We wish to find an upper bound on the ratio R =
∑
v dvxv∑
v xv

. The variables x, y satisfy many

other linear and non-linear constraints, and in particular are forced to be integral. However, we will
show that the core constraints are sufficient to bound R. The way we will prove this is to explicitly
construct a solution x, y which satisfies the core constraints and maximizes R subject to them, and
then show that the resulting x, y still satisfies R 6 d2

4 + d.

Let x, y be real vectors which maximizes R among all real vectors satisfying the core constraints,
and among all such vectors, which minimize

∑
u>v yvu. Suppose yvu > 0 for some u > v. If xu = 1,

then we simply decrement yvu by ε. The constraint xu > 1−y1u−· · ·−yuu clearly remains satisfied
as xu = 1, and all other constraints are unaffected. The objective function is also unchanged.
However, this reduces

∑
u>v yvu, contradicting maximality of x, y.

Suppose yvu > 0 for some u > v, and xu < 1 strictly. Note that yvu 6 dvxv, so we must have
xv > 0 strictly. For some sufficiently small ε, we change x, y as follows: y′vu = yvu−ε, y′vv = yvv+

ε
dv+1 ,

x′v = xv − ε
dv+1 , x′u = xu + ε

du+1 , and y′uu = yuu + εdu
du+1 . All other values remain unchanged. We

claim that the constraints on x, y are still preserved. Furthermore, the numerator of R increases
and the denominator decreases; hence R′ > R. This contradicts the maximality of x, y.

10



In summary, we can assume yvu = 0 for all u > v. In this case, the core constraints on v become
simply 1− yvv 6 xv 6 1 and yvv 6 dvxv.

It is a simple exercise to maximize R subject to these constraints (every vertex operates com-
pletely independently). The maximum is achieved by a solution which has the form, for some t > 0,
of xv = 1

dv+1 for dv 6 t, and xv = 1 for dv > t. In this case, the objective function R(x) satisfies

R 6

∑
dv6t

dv
dv+1 +

∑
dv>t

dv∑
dv6t

1
dv+1 +

∑
dv>t

1

Let dS , dB denote the average degrees of the vertices of degree 6 t, > t respectively, and let nS , nB
represent the number of such vertices. Then by concavity, we have

R 6
nS

dS
dS+1 + nBdB
nS
dS+1 + nB

6
d(dB − dS) + dBdS(d− dS)

dS(d− dS) + (dB − dS)

Routine calculus shows that this achieves its maximum value at dB =∞ and dS = d/2, yielding
R 6 d2/4 + d as claimed. ut

This greedy algorithm can be converted, with only a little loss, to a distributed algorithm as
shown in Algorithm 2. This algorithm is basically the sequential greedy algorithm, except we are
quantizing the degrees to multiples of some parameter φ. Allowing φ → 1 sufficiently slowly, we
obtain an algorithm which requries log2+o(1) n rounds and returns an MIS of average degree at most
(1 + o(1))(d2/4 + d) w.h.p. As we have seen in Theorem 2, this is within a factor of 2 of the lowest
degree possible.

The following lemma shows that the above analysis of the greedy algorithm is essentially tight.

Lemma 4. For all real numbers α > 0, there are graphs of average degree 6 α, and for which the
greedy algorithm produces an MIS of average degree at least α2/4 + α− 1.

Proof. Define the following graph G which contains three groups of vertices A,B,C. We have
|A| = a, |B| = b− 1, and |C| = ab. Each A-vertex connects to b C-vertices. Each C-vertex connects
to all b− 1 B-vertices.

The graph G contains a + ab + b − 1 vertices and ab2 edges, and has an average degree of
d = 2ab2

a+ab+b−1 .
Now, the vertices in A,C have degree b, while the vertices in B have degree ab. Suppose that

the greedy algorithm selects the A-vertices (they are tied with the C-vertices). It then selects
all B-vertices, and hence, the resulting MIS has a + b − 1 vertices and ab2 edges. Now set b =⌊
(a+1)α+

√
(a+1)2α2+8(a−1)aα

4a

⌋
. As a tends to infinity, we have d 6 α, while the degree of the resulting

MIS approaches a value that is at least α2/4 + α− 1. ut

2.3 NP-Completeness of the Decision Version of BMIS

We show NP-completeness of the decision version of BMIS (cf. Sec. 1.1) by reducing a variant of
the 3-SAT problem to the BMIS problem and vice versa.

A Boolean formula in conjunctive normal form is called a (k, s)-formula if every clause contains
exactly k distinct variables and every variable occurs in at most s clauses. A (k, s)-formula is called
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a (k,=s)-formula if every variable occurs in exactly s clauses. Let (k, s)-SAT (resp., (k,=s)-SAT)
denote the satisfiability problem restricted to (k, s)-formula (resp., (k,=s)-formula). Kratochvil et
al. [8] proved that the (k,= s)-SAT problem is NP-complete for every k > 3 and s > 4. We now
show how to reduce an instance of the (3,=4)-SAT problem to an instance of BMIS.

In the (3,= 4)-SAT problem, the input is a set of clauses, each of them with 3 variables and
each variable occurs in exactly 4 clauses and the aim is to find a satisfying truth assignment to
the whole (3,= 4)-formula. To form a satisfying truth assignment we must pick one literal from
each clause and give it the value TRUE. But our choices must be consistent, namely, if we choose
a variable x in one clause, we cannot choose the negation of x in another. Any consistent choice of
literals, one from each clause, specifies a truth assignment. Recall that for the BMIS problem, we
are given a graph G and we want to know whether G contains MIS with average degree at most
that of the graph. We relate the above two problems as follows.
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Fig. 1. Graph construction corresponding to clause (x ∨ y ∨ z).

BMIS Graph Construction Given a (3,= 4)-formula F = A1 ∧ A2 ∧ · · · ∧ Ak, we construct the
following graph GF , which we simply denote as G if F is clear from the context. For each clause,
say Ai = (x∨ y∨ z), in F , we construct the following corresponding clause component. Construct a
triangle with vertices labeled x, y, and z, and for each triangle vertex, add an additional neighbor
labeled the negation of the corresponding vertex, and for each of these negations, add another
neighbor (of degree 1). Construct a single copy of Kq,q and q copies of Kj , and connect each of the
triangle vertices with all vertices in Kq,q (see Fig. 1) . Finally, we connect each labeled vertex in
each clause component with its negation vertex in all other clause components, and hence, any MIS
in G cannot contain vertices labeled both x and −x for all variables x in F . This construction is
shown in Figure 1. We will see in the proof of Theorem 8 how to obtain a mapping between truth
assignments of the literals in F and maximal independent sets on GF .

12



Clearly, this construction takes polynomial time and each of the triangle vertices has degree
2q + 6, whereas each of the negation vertices has degree 5, and each neighbor of these negation
vertices has degree 1.

Lemma 5. Let F be a (3,=4)-formula and consider the corresponding graph G with average degree
d. Consider any MIS S in G. Then dS 6 d iff S contains one triangle vertex from every clause
component of G.

Proof. The average degree of one component in G is (qj(j − 1) + 2q(q+ 3) + 3(2q+ 6) + 18)/(qj +
2q + 3 + 6). The average degree of an MIS (in one component) containing one of the triangle
vertices and the three degree 1 vertices is (q(j − 1) + (2q + 6) + 3)/(q + 1 + 3). On the other
hand, the average degree of any MIS that does not contain one of the triangle vertices is at least
(q(j − 1) + q(q + 3) + 3)/(q + q + 3). Therefore, the ratio of the average degree of any MIS in
one component that does not contain one of the triangle vertices to the average degree of this
component tends to (j + 2)/4 as q tends to infinity.

Now consider the whole graph G. Clearly, the average degree of G is the average degree of each
component scaled appropriately by the number of clauses in F , denoted by k. Now, assume that i
of the k clauses are not satisfiable (hence k− i clauses are satisfiable). Then, the average degree of
any MIS in G is at least

(k − i)(q(j − 1) + (2q + 6) + 3) + i(q(j − 1) + q(q + 3) + 3)

(k − i)(q + 1 + 3) + i(q + q + 3)
.

Therefore, the ratio of the average degree of any MIS in G to the average degree of G tends to
i(j + 2)/(2(k+ i)) as q tends to infinity. That is, by choosing j large enough with respect to k, the
above ratio will be greater than 1.

Theorem 8. The following decision problem is NP-complete: Given a graph G, is there an MIS
in G with average degree at most that of the graph?

Proof. We proceed by giving reductions from (3,=4)-SAT to BMIS and vice versa.
(3,=4)-SAT → BMIS: We need to show that if a (3,=4)-formula F has a satisfying assignment,
then there exists an MIS S in G with dS 6 d.

Assume that the (3,=4)-formula F has a satisfying assignment. For each clause in F , we pick
any literal whose value under a satisfying assignment is TRUE (there must be at least one such
literal), and add the corresponding vertex in the component corresponding to that clause to S. We
then add, from each component, all degree one vertices and one vertex from each complete graph
Kq to S. Clearly, S yields an independent set that is maximal. Moreover, since S contains one of
the triangle vertices in each component, Lemma 5 tells us that the average degree of S is at most
that of G.
BMIS → (3,= 4)-SAT: We want to show that if there exists an MIS S in G with an average
degree of at most that of the graph G, then the corresponding (3,= 4)-formula F has a satisfying
assignment.

By Lemma 5, if S has dS 6 d, then S includes, for each clause component of G, one of the
triangle vertices, all degree one vertices, and one vertex from each complete graph Kq.

To obtain a satisfying assignment of F , we assign x a value of TRUE if S contains a vertex
labeled x, and a value of FALSE if S contains a vertex labeled −x (if S contains neither, we assign
an arbitrary truth value to x). Clearly this yields get a truth assignment that satisfies all clauses
in F .
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1: Mark each vertex of degree > 2d independently with prob. log t
t

where t = 2d log d
log log d

.
2: Mark every vertex of degree 6 2d.
3: If any vertex v is not marked, and none of the neighbors of v are marked, then mark v.
4: Let M denote the set of marked vertices at this point. M forms a dominating set of G, but is not necessarily

minimal. Using any algorithm, select a minimal dominating set M ′ ⊆M .
5: Check if dM′ 6 t. If so, return M ′. Otherwise, return FAIL.

Algorithm 3: Approximation Algorithm for BMDS.

2.4 Hardness of Approximating BMIS

Theorem 9. The BMIS problem on a graph with n vertices cannot be approximated to within a
factor of (3 +

√
8n− 7)/12 in polynomial time.

Proof. Given a graph H with p vertices, we construct a graph G with n = 2p2 + p + 1 vertices as
follows. We first construct a complete bipartite graph KA,B such that |A| = p2+1 and |B| = p2, and
then attach H to KA,B by connecting each vertex in H with p vertices in A such that each vertex
in A has at most one neighbor in H. Assume that the size of the maximum independent set of H
is at least p1−ε, where ε = O(1/

√
log log p) (see for example the graph in [3]). It is well known that

the maximum independent set problem on graphs with p vertices cannot be approximated within
p1−ε in polynomial time [3]. This implies that there is no approximation algorithm that guarantees
an approximated solution for the maximum independent set problem on H of more than pε vertices
(since the size of the maximum independent set is at most p). We now convert the graph H to a
p-regular graph by adding an appropriate number of self loops to each vertex in H. We observe
that the above inapproximability result on the maximum independent set problem on H still holds
for the resulting p-regular graph H. Thus, each vertex of the graph H has degree 2p, one vertex in
A has degree p2 (the vertex with no neighbors in H), and each of the remaining vertices of A ∪B
has degree p2 + 1. Clearly, the optimal solution for BMIS on G includes the maximum independent
set on H, and has average degree at most (2p2−ε + (p2− p2−ε)(p2 + 1) + p2)/(p1−ε + p2− p2−ε + 1).
On the other hand, the average degree of the approximated polynomial time solution of BMIS is at
least (2p1+ε+ (p2 + 1−p1+ε)(p2 + 1))/(pε+p2 + 1−p1+ε). Note that ε = O(1/

√
log log p) tends to 0

for sufficiently large p, and hence the average degrees of the optimal BMIS and the approximated
BMIS tend to 3p2/(p+ 1) and p2 + p/(p2− p+ 2), respectively. Therefore, the approximated BMIS
is at least (p+1)/3+(p+1)/3p(p2−p+2) > (p+1)/3 times the optimal, which proves the theorem.

3 Balanced Minimal Dominating Set

For arbitrary graphs, we turn our attention to designing algorithms for finding approximate solu-
tions to BMDS. Since any MIS in a given graph G is also an MDS in G, all algorithms designed for
BMIS also return an BMDS in G of the same average degree. Thus, we have the same bounds (and
distributed algorithms) corresponding to those in Section 2.However, for BMDS, better bounds are
possible. Given a graph with average degree d, we will present a polynomial-time algorithm that
finds an MDS of average degree O( d log d

log log d). We will also construct a family of graphs G for which

every MDS has average degree Ω( d log d
log log d).

Theorem 4. Any graph G with average degree d has a minimal dominating set with average
degree at most O( d log d

log log d). Furthermore, there is a sequential randomized algorithm for finding such
an MDS in polynomial time w.h.p.
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Proof. Let dv denote the degree of vertex v in G for notational convenience. For a target degree
t, and any set of vertices V0, we define SV0t =

∑
v∈V0(dv − t). Our goal is to find an MDS X with

SXt 6 0, for some t = O(d log d/ log log d).
Let x = 2d and divide the vertices into three classes: A, the set of vertices of degree 6 x; B,

the set of vertices of degree > x, which have at least one neighbor in A; and C, the set of vertices
of degree > x, all of whose neighbors are in B or C. Mark each vertex in B ∪ C with probability
p = log t

t . Next, form the set Y ⊆ B ∪ C, by inserting all marked vertices in B ∪ C and vertices in
C with no marked neighbors. Clearly Y dominates C, and A ∪ Y dominates G. Now, select two
subsets A′ ⊆ A and Y ′ ⊆ Y such that X = A′ ∪ Y ′ is an MDS of G.

We first examine SY
′

t . Any vertex of G with degree 6 t contributes at most 0 to SY
′

t . Therefore,
suppose v has degree > t. If v ∈ B, it is selected for Y with probability at most log t

t . If v ∈ C,

all its neighbors are marked with probability log t
t , so it is selected for Y with probability at most

log t
t + (1− log t

t )t 6 2 log t
t . Hence the expected contribution of such vertex to SY

′
t is at most 2dv

log t
t .

Summing over all such vertices, we have E[SY
′

t ] 6 2|B ∪ C|dB∪C log t
t , where dB∪C denotes the

average degree of vertices in B ∪ C.
Now, some of the vertices in A are dominated by B-vertices of Y ′. Let A0 be the set of vertices

not dominated by Y ′. These vertices can only be dominated by vertices of A′, so we must have
|A′|(dA′ + 1) > |A0|. Subject to the conditions |A′|(dA′ + 1) > |A0| and dA′ 6 x, we have SA

′
t 6

|A0|(x−t)
x+1 . The ultimate MDS may contain vertices in A− A0 as well; however, as x 6 t, these will

have a negative contribution to St, and hence they will only help us in showing an upper bound on
St.

Consider the expected size of A0. A vertex v ∈ A lies in A0 if none of its neighbors are marked
(this is not a necessary condition), and vertices are marked independently with probability p. Hence
E[|A0|] >

∑
v∈A(1 − p)dv > |A|(1 − p)dA . Putting all this together, we have that the final MDS

X = A′∪Y ′ satisfies E[SXt ] 6 2p|B∪C|dB∪C+|A| x−tx+1(1−p)dA . For d sufficiently large, p approaches

zero, so that that (1− p)dA 6 e−2pdA .
We know that |A|+ |B|+ |C| = n, and |A|dA + (|B|+ |C|)dB∪C 6 nd. Eliminating |A|, |B|, |C|

we have

E[SXt ] 6 n
(2dB∪C(d− dA) log t

t(dB∪C − dA)
− (dB∪C − d)(t− 2d)t−

dA
t

(2d+ 1)(dB∪C − dA)

)
Routine calculus shows that, for t sufficiently large, this achieves its maximum value at dB∪C →

∞ and dA =
t log( t−2d

4d+2)
log t , yielding

E[SXt ] 6
2d log t

t
− 2 log

(
t− 2d

4d+ 2

)
− 2.

For t = 2d log d/ log log d, the RHS approaches −∞ as d → ∞. This implies that E[SXt ] 6 0, so
there is a positive probability of selecting an MDS of average degree 6 t.

Note that for t = 2d log d/ log log d, we have SXt > −dn logO(1) n and E[SXt ] 6 −Ω(1). By
Markov’s inequality, the random variable SXt is negative with probability > d−1n−1 log−O(1) n.
Hence, after dn logO(1) n iterations of this sampling process, we find an MDS of degree O( d log d

log log d)

with high probability. The total work expended is m2 logO(1) n. This is summarized as Algorithm 3.

We next prove Theorem 5, which shows that this bound O( d log d
log log d) is optimal up to constant

factors.

15



Theorem 5. For any real number α > 0, there are graphs with average degree 6 α, but for which
any MDS has an average degree of Ω( α logα

log logα).

Proof. We will construct a graph of average degree d = O(α), all of whose MDS’s have degree
Ω( α logα

log logα). To simplify the proof, we will ignore rounding issues. As all the quantities tend to
infinity with α, such rounding issues are negligible for α sufficiently large.

Define k = log2(α logα/ log logα). We define a random process which constructs a graph with
three types of vertices, which we denote A,B,C (these play the same role as in the proof of
Theorem 4). The vertices in A,B are organized into clusters of related vertices. For class A, there
are l = ( logα

log logα)2 clusters of size α. For class B, there are r clusters of size α logα
r log logα , for some

r = Θ(k) (the constant will be specified later).

There are 2k − 1 vertices in class C. These are not organized into clusters but are considered
individually. We index these vertices by the non-zero k-dimensional binary vectors over the finite
field GF (2). That is, C corresponds to C = GF (2)k − 0.

We add the following edges to the graph (some of these edges are deterministic, some are
random):

1. From each A-vertex to the other vertices in the same A-cluster.
2. From each B-vertex to all the other B-vertices, even those outside its cluster.
3. For each B-cluster b, we choose a random non-zero binary vector vb in GF (2)k. For each vertex

in C, indexed by vector w, we construct an edge from all the B-vertices in the cluster b to the
vertex w iff vb.w = 1. The dot product here is taken over the field GF (2).

4. For each A-cluster a, we select r log logα
logα of the B-clusters uniformly at random, with replacement.

We add an edge from every vertex in the A-cluster a to every vertex in the selected B-clusters.

This graph has degree O(α). The following lemmas characterize the behavior of this graph and its
minimal dominating sets:

Lemma 6. Any MDS of G contains at most one vertex from each B-cluster. If the MDS contains
i such B-vertices, then it contains at least 2k−i − 1 C-vertices.

Proof. Let v1, . . . , vi be the binary vectors associated with the selected B-vertices. Then the set of
k-dimensionsal binary vectors which are perpendicular to v1, . . . , vi has dimension at least k− i. So
there are at least 2k−i−1 non-zero vectors perpendicular to v1, . . . , vi. The corresponding C-vectors
have no edges to the selected B-vertices, and no edges to any other type of vertex. In order for
them to be dominated, they must themselves be part of the MDS. ut

Lemma 7. It is possible to select the parameter r = Θ(k) such that, with high probability, all C
vertices have degree Ω( α logα

log logα).

Proof. Let us fix a particular C-vertex, associated to binary vector w ∈ GF (2)k. This vector w is
perpendicular to any randomly selected vector v 6= 0 with probability 1/2−2−k. Hence the expected
number of B-clusters connected to it is r(1/2− 2−k). By Chernoff’s bound, the probability that it
connects to fewer than r/4 clusters is exp(−Ω(r)).

For r a sufficiently large constant multiple of k, this probability is much less than 2−k. By the
union bound, this implies that the probability that any C vertex connects to < r/4 B-clusters is
negligible. So with high probability, every C-vertex connects to Ω(r) B-clusters. As every B-cluster
has α logα

r log logα vertices, this implies that the C-vertices have degree Ω( α logα
log logα). ut
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Lemma 8. With high probability, the graph G satisfies the following property: For all sets X of
B-clusters where X contains at least (3/4)k distinct B-clusters, all but O(logα) of the A-clusters
are connected to some vertex in X.

Proof. Suppose we fix a set X which contains i > 3/4k distinct B-clusters. Any given A-cluster
connects to α/(2k/r) B-clusters chosen uniformly a random, so the probability that this A-cluster

is disjoint to X is at most (1 − i/r)α/(2k/r) 6 exp(−αi/2k). Hence the expected number of such
A-clusters is at most l exp(−αi/2k). For i > 3/4k, this is o(logα). Hence by Chernoff’s bound, the
probability that the number of disconnected A-clusters exceeds φ logα is at most exp(−φ′ logα),
where φ′ increases with φ.

The total number of such sets X is at most 2r = exp(O(k)). So, by the union-bound, the
probability that any such X has this event occuring is at most exp(O(k) − φ′ logα). For φ a
sufficiently large constant, this probability is negligible. ut

Lemma 9. Suppose the graph G has all the properties of Lemmas 6, 7, 8. Then every MDS of G
has degree Ω( α logα

log logα).

Proof. Suppose we have an MDS of G which contains i distinct B-clusters. There are two cases.
First, suppose i 6 3/4k. In this case, the MDS contains at least 2k−i > 2k/4 C-clusters. The MDS
contains at most one vertex from each of the A-clusters. Hence, the average degree of the A,C

vertices in this MDS is Ω( lα+2k/42k

l+2k/4
) = Ω( α logα

log logα). As any B-vertex has also degree Ω( α logα
log logα), this

implies that the total average degree of the MDS is Ω( α logα
log logα).

Next, suppose i > 3/4k. The total number of B + C vertices is at least i + 2k−i = Ω(k). All
but O(logα) of the A-clusters are already dominated by B vertices; these are the only A-clusters
which can join the MDS. As a vertex in A cluster connects to only the other vertices in that same
cluster, the total number of A-vertices in the MDS is at most O(logα). Hence the degree of the

MDS is at least Ω(α logα+k2k

logα+k ) = Ω( α logα
log logα). This completes the proof of Theorem 5. ut

With high probability, every MDS of G has degree Ω( α logα
log logα).

4 Balanced Minimal Vertex Cover

Theorem 6. For any real number α > 2, there are graphs for which the average degree is at most
α, but for which the average degree of any MVC is arbitrarily large.

Proof. The following example shows that the ratio of the average degree of any MVC in the un-
derlying graph to that of the graph itself can become arbitrarily large.

Consider the graph G that contains a single copy H of a complete graph Kp such that each
vertex of H is connected to q neighbors, each of them of degree 1. Then we have d = p−1+2q

1+q .

On the other hand, any VC in G contains at least p − 1 vertices from H. In particular, the
minimum-average-degree MVC in G contains exactly p− 1 vertices from H and the q neighbors of
the remaining vertex of H, so has average degree at least (p−1)(p−1+q)+q

p−1+q . Now, let p = b(α − 2)qc
and let p, q →∞. The resulting graphs have d 6 α, while the MVC has its degree approach ∞.

(Note that if we allow G to contain isolated vertices, then this theorem becomes a triviality: we
can simply add arbitarily many isolated vertices to a graph G.)
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5 Conclusion

We have initiated the study – graph-theoretic, algorithmic, randomized, and distributed – of the
balanced versions of some fundamental graph-theoretic structures. As discussed in Section 1, the
study of balanced structures can be useful in providing fault-tolerant, load-balanced MISs and
MDSs. We have developed reasonably-close upper and lower bounds for many of these problems.
Furthermore, for the BMIS problem, we have presented fast (local) distributed algorithms that
achieves an approximation close to the best possible in general; a key problem that is left open is
whether one can do the same for the BMDS problem. We view our results also as a step toward un-
derstanding the complexity of local computation of these structures whose optimality itself cannot
be verified locally.
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