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APPENDIX A

PROOF FOR LEMMA 2

Proof: For each link-flow pair (if , f), by taking squares

of the following equation Qif ,f (t+1) = Qif ,f (t)−dif ,f (t)+
aif ,f (t), we obtain the following difference of square between

the two queueing systems:
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Taking expectation of, time-averaging and removing equiv-

alent terms on both sides of the above equation yields
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lim sup
t→∞

1

t

t−1
∑

τ=0

E
{

QR
′

if ,f
(τ)

}

≤ lim sup
t→∞

1

t

t−1
∑

τ=0

E
{

QR
′′

if ,f
(τ)

}

,

which leads to the statement of the lemma.

APPENDIX B

QUANTIFYING THE DELAYS FROM ADAPTIVE CHANNEL

SWITCHING

One of the novel aspects of cognitive networks is adaptive

channel switching; however, this can add to the delays [4].

As a specific application of our approach, we show how

to estimate throughput capacity in networks with adaptive

channels (e.g., in cognitive networks) and end-to-end delay

requirements. These constraints can be explicitly incorporated

into our framework, thereby allowing us to provably quantify

the trade-offs between these constraints. Much of the work

dealing with these aspects (e.g., [1], [3]) has only considered

individual constraints such as the delay or the number of

channels; our approach allows all of them to be incorporated

simultaneously.

Here, we discuss a single radio interface per node; this can

be easily extended to the case of multiple interfaces. Let Ψ
denote the set of channels available in the system; let ψ,ψ′

be two arbitrary channels in Ψ. If l and l′ are incoming

and outgoing links of a node respectively, let the delay in

switching from channel ψ to ψ′ be denoted by d(ψ,ψ′). Our

formulation in Section VI is based on link delays, whereas

switching delays are not captured because they are associated

with nodes. The difficulty of applying the LP formulation lies

in adapting constraints LP-(6c) and LP-(6d) to multi-channel

model. We tackle this by performing a graph transformation

on the network graph G to a new graph G′ by the following

three steps: (1) We split each link in G into |Ψ| links, each

associated with a unique channel; (2) for each node v ∈ G, we

split it into
(

|Lin(v)|+ |Lout(v)|
)

|Ψ| nodes, each of which is

incident with only one incoming or outgoing link. (3) each

node incident with an incoming link is connected to each

node incident with an outgoing link, by an intermediate link

associated with a switch delay.
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Fig. 1: (a) Node v with incoming link l1, outgoing links l2,

l3, and channels ψ, ψ′. (b) The reduction after node and link

splitting with addition of switching link with delays d1, d2.

Let l(ψ) denote the link associated with channel ψ in

G′ emerged from link l in G, Let L′ denote the set of

links in G′. Figure 7 shows an example of transforming the

original network graph in Figure 7a to the graph in Figure 7b,

where switch delays are d1 = d(ψ,ψ) = d(ψ′, ψ′) and

d2 = d(ψ,ψ′) = d(ψ′, ψ). For node v, let L′
(1)(v) denote

the new sets of links emerging from Step (1) above, which

corresponds to the incoming and outgoing links in Figure 7a;

and let L′
(3)(v) denote the sets of new links emerging from

Step (3) above, which corresponds to the set of all the complete

bipartite links in the middle connecting the incoming and

outgoing links in Figure 7b.

For link l ∈ G, let Pri(l) denote the primary interference

set which includes all links in G sharing an end with link l.

After graph transformation, for link l(ψ) ∈ G′, let λ(l(ψ)) ,
∑

c∈C λ (l(ψ), c). The stability condition [2] is
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e
, ∀l, ∀ψ.

In the above inequality, note that l and l′ denote links

from G; the link-channel pair l(ψ) denotes a link from

G′. Additionally, we construct interference constraints on the

intermediate switching links in G′, depending on specific

switching conditions. For example, when we are restricted to
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Fig. 2: Trade-offs among OPT throughput, delay, number of channels

using only one channel at a time, we can apply the following

as the interference constraints for intermediate switching links:
∑

l∈L′

(1)
(v)∪L′

(2)
(v)

λ(l) ≤ 1, ∀v.

Then after modifying the flow conservation conditions and

using switching delay as the link cost for any intermediate

switching link, we are able to adapt the LP in Section VI to

finding a multi-commodity flow vector for the multi-channel

model. By using the distributed random-access scheduling

scheme of [2], and setting p(l, f) as in Section III, we can

obtain results in the same form as Theorem 2.

A. Simulation Results for Multi-channel Networks

This complements the simulation results for single-channel

networks in Section VIII. Figures 8a and 8b show the optimal

throughput calculated by solving the LP’s for grid topolo-

gies with 2-hop interference model on grid topologies. As

expected, the total throughput increases as additional channels

are equipped and delay bounds are relaxed. Saturation points

are observed in both plots. Addition of channel resources

alleviates the interference, thus yielding a slower saturation

process. Also, loosening the delay bound produces similar

effects, and the addition of channels make the optimization

process to exploit more under the delay bounds.
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